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Abstract

Civil structural component detection plays an integral role in Structural Health Monitoring (SHM) pre and post-construction. Challenges 

including but not limited to labor-intensiveness, cost, and time constraints associated with traditional methods make it a less opti-

mal approach in SHM. Despite the success of deep convolutional neural networks in diverse detection problems, the required 

computational resources are a challenge. This has led to rendering a chunk of resource-constrained edge nodes less applicable with 

deep convolutional neural networks. In this paper, a computational-efficient deep convolutional neural network is presented based 

on Gabor filters and a color Canny edge detector. Generic Gabor filters are generated and used as initializers in the computational-

efficient deep convolutional neural network presented, afterward trained on building components data. Next, extensive offline and 

online experimentation with a resource-constrained edge node is conducted and evaluated using diverse metrics. The computational-

efficient detection model demonstrates to be effective in detection and via NVIDIA GPU profiler, we observe conservation of around 

30% of computational resources during training. The computational-efficient detection model adduces almost a 3% mean average 

precision higher than two state-of-the-art detectors and records a promising frame processing rate during the online experimentation.
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1 Introduction
With the advancement of urban life, the continuous 
requirement to provide shelter for humanity over natu-
ral occurrences (rain, strong winds, intense sunlight, etc.) 
keeps on rising with diverse construction standards before 
and post-construction of an infrastructure [1]. Primarily, 
the construction of buildings that come in variant dimen-
sions, architectural designs, and construction materials 
addresses the problem of shelter but at a cost (corrosion, 
deterioration, cracks, etc.). To this end, periodic inspec-
tion of the structural health of civil infrastructures such as 
buildings is knee to aid the prevention of accidental struc-
tural collapse. At present, Structural Health Monitoring 
(SHM) is the branch in civil engineering denoted to inspect 
the health condition of civil structures [2]. SHM entails an 
array of diagnostic tools and analyzing techniques that seek 
to offer timely and accurate diagnoses and analyzes a wide 
range of civil structures (e.g., buildings, bridges, etc.), and 

report their health status. Detection of structural parts pre-
cedes the diagnostic and analysis aspect of SHM since the 
different parts of an infrastructure (e.g., building.) require 
varying maintenance. Besides, detecting the various com-
ponents of infrastructure is peculiar to the interpretation of 
damages, health evaluation of the structure, and the opti-
mal maintenance required. 

SHM has seen the integration of deep learning which 
at present is the backbone of many vision-based tasks 
under categories of classification, detection, and segmen-
tation [3] with contact and non-contact sensors. Contact 
sensors (fiber optic sensors, strain gauges, etc.) are asso-
ciated with erroneous readings, costly installation, and 
maintenance. As a result, non-contacting sensors (high-
speed cameras, unmanned aerial vehicles, etc.) are being 
utilized due to advantages including easy deployment, 
reliability in data acquisition, and cost-effectiveness [4]. 
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A non-contacting sensor such as an Unmanned Aerial 
Vehicle (UAV) categorically is in two groups, macro and 
micro UAVs [5]. The majority of macro UAVs support the 
integration of extra sensing modalities (flight comput-
ers, etc.) to provide extra computing power to meet com-
pute demands of deep learning. Such cannot be said for 
resource-constrained edge nodes such as Micro Aerial 
Vehicles (MAVs). This has rendered the majority of MAVs 
redundant in the civil engineering domain. Tasks such 
as site monitory, infrastructure inspection (analogous 
inspections, data collection, etc.) can be accomplished 
via MAVs together with deep learning before deployment 
of costly macro UAVs. However, the challenge faced by 
many civil engineers is the computational requirements of 
deep learning technologies.

Whence, as a contribution to the SHM domain, we put 
forward a computational-efficient detector for building 
components detection task. We present a variant Deeply 
Supervised Object Detector (DSOD) [6] integrated with 
a variant Canny edge detector [7] and Gabor filters [8] and 
introduce the domain randomization technique to miti-
gate compute requirements without compromising perfor-
mance. The remaining content of the paper is structured 
as follows: Sections 2 and 3 present related works and data 
acquisition and preparation, respectively. The computa-
tional-efficient detector is described in Section 4 followed 
by extensive experiments in Section 5. Section 6 draws the 
conclusions and future works.

2 Related works
2.1 Deep learning-based SHM
Classification, localization, detection, and segmentation 
problems in SHM are being mitigated via the use of deep 
learning technologies [9]. In [10], a pre-trained state-of-
the-art classifier VGG-16 is used in the classification of 
building detrimental (mold, stain, deterioration, etc.) 
caused by dampness. The authors used VGG-16 to extract 
features from building data, fed to the network, and with 
the aid of fully connected layers and a softmax, classifi-
cation of building damages was attained. An accuracy of 
87.50% was adduced in classifying defects of buildings. 
The authors' approach is promising yet feature specifics 
related to the training data are not learned since there is 
no retraining of convolutional blocks. A combination of 
Convolutional Neural Network (CNN) and conventional 
machine learning methods (random forest and support vec-
tor machine) is presented in [11] for the detection of cracks 
in concrete building structures. A conclusion drawn by the 

authors indicates CNNs with conventional machine learn-
ing methods such as SVM as a classifier comparative to 
CNNs with softmax as a classifier, the former outperforms 
the latter. The experimental results reported support the 
conclusion of the authors' claims yet generalization of the 
presented approach is not established.

In another SHM task, corrosion detection is studied 
in [12] by the proposition of a classifier based on a slid-
ing window and 4 color spaces (RGB, YCbCr, CbCr, and 
grayscale). Conversion of images to the 4 aforementioned 
color spaces before input to the Deep Convolutional Neural 
Network (DCNN) adds up to the computational bottle-
neck of DCNN. Reference [13] investigates an SHM task 
based on vibrations to detect defects associated with a civil 
structure. The authors claim a 100% accurate prediction 
of defects ranging from minor to extensive damage, this is 
open to discussion. A one-dimensional CNN is used in the 
detection of defects associated with civil structures, how-
ever, the challenge of requiring large measurements of civil 
structures to form training data is a limitation to the one- 
dimensional CNN proposition in [14, 15]. As a result, a non-
parametric CNN method is proposed in [16] to address the 
challenge in [14, 15]. Autoencoders and layer-wise train-
ing which constitutes a computer vision merged with deep 
learning method is used in the classification of a six-class 
anomaly on a civil structure. An accuracy of 87% was 
attained including acknowledging the limitation of too 
many manual representations of anomalies [17]. A fusion 
CNN for detecting cracks in a steel box girder of bridges is 
presented in [18] with a classification accuracy of 96.38%. 
The fusion CNN classifier follows a binary conversion 
and optimal entropy threshold process in detecting cracks. 
Crack detection by the fusion CNN classifier has a lim-
itation at certain distances to objects. The introduction of 
hyperparameters in CNN to alleviate overfitting is pre-
sented in [19] in the analysis of a truss bar planar. The con-
clusions drawn by the authors indicate the success of their 
proposition, it must be noted the hyperparameters intro-
duced are task-specific and not generic.

2.2 Deep learning-UAV-based SHM
Kang and Cha [20] proposed a DCNN beacon system with 
geo-tagging for SHM. The authors' proposition consti-
tutes an ultrasonic beacon system for mapping and posi-
tion localization of the UAV based on a mission planner 
equipped with navigation maps. A Pixhawk 2.1 flight con-
troller serves as means of controlling the UAV guided by 
the beacon routers together with a ground station computer 
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for compute processing. The UAV was flown over the 
region of interest, and a DCNN running on the ground sta-
tion computer estimated cracked and non-cracked regions. 
A 97.7% specificity with a sensitivity of 91.9% was attained. 
A wall-climbing Unmanned Aerial System (UAS) cou-
pled with CNN is proposed in [21] for crack assessment. 
Through a wireless data transmission, data captured from 
the UAS is sent to an Android platform for crack detection 
based on CNN. The authors' UAS CNN-based system for 
crack detection is made up of the UAS (flight controller, 
a camera with undistorted lens, soft wheel, data transmitter, 
battery, and horizontal and vertical motors) and a ground 
station. The conclusions drawn by the authors indicate an 
accuracy of 94.48% for crack detection together with less 
than 5% error in detection of cracks with width measured 
below 0.1mm. A UAV-based thermographic encoder-to-de-
coder for segmentation of a bridge deck delamination 
towards SHM is given in [22]. A DJI Matrix 600 equipped 
with a thermal camera (FLIR A8300) with an orthogonal 
field of view medication is used for a deck delamination 
assessment. An onboard computer together with a cus-
tomized MATLAB algorithm running off the DJI Matrix 
600 was used in the processing of the data before the deep 
learning-based encoder-to-decoder is applied for segmen-
tation. In [23], a U-Net CNN-based UAV assessment of the 
serviceability of pavements is presented. Based on UAV 
photogrammetry data, the authors employed a well-known 
architecture (U-Net) in the biomedical domain for the seg-
mentation task, 95% accuracy is reported by the authors. 
DJI Phantom 4 pro, control points,  a Topcon ISO1 Robotic 
Total Station detector, and GPS antennas formed part of 
the UAV system used. Lee et al. [24] in a field test, applied 
Recurrent Neural Network (R-CNN) to photographs 
acquired via a variant EX-drone (Korea) equipped with an 
HDR-PER 790V and FDR 3000r cameras using a custom-
ized MATLAB application.

An identity running through the reiterated works indi-
cates the dominance of macro UAVs in SHM tasks. Based 
on the reiterated works, by far at the time of writing, this 
paper would be the first deep learning-based micro UAV 
SHM attempt with promising signs.

3 Data acquisition and preparation
At the time of writing this paper, there is no established 
and open structural image databank such as the ImageNet 
for scientific and engineering studies within the civil con-
struction set [25]. As such, structural data related to build-
ings are collected to constitute a mini-structural databank 

for this study. First, an internet data gathering is conducted 
using structural digital libraries (National Information 
Service for Earthquake Engineering (NISEE), Design and 
Safe) and generic digital libraries (Google Image, Baidu 
Image, and Yahoo). To add up to the surfed data, a DJI 
Phantom 3 and a smartphone were used to take pictures 
within the localities of the authors of this paper. Next, 
image annotation is key in object detection tasks, as such 
we manually annotate the sampled images via the use of 
the VGG Image Annotator tool [26]. Circular region shape, 
2D bounding box, Elliptical region shape, Polygon region 
shape, Polyline region shape, and Point region shape are 
the annotation shapes available in the VGG Image anno-
tator tool at the time of access. Due to the asymmetrical 
shapes of the components of buildings, three annotation 
shapes (2D bounding box, Circular, and Polyline region 
shapes) were used for the annotation. A synopsis of the 
databank reposited at [27] is tabulated in Table 1.

4 Lightweight detector
4.1 DSOD overview
The DSOD combines the Single Short Detector (SSD) [28] 
which is multi-scale proposal-free and DenseNet [29] 
which introduced deep supervision via dense CNN con-
nections. DSOD network has two main parts, the back-
bone network for feature extraction and the front-end 
(detection layers) for object detection. The backbone net-
work comprises a stem block, four dense blocks, two tran-
sition layers, and two transition layers without pooling. 
The front-end contrary to the plain structure of SSD uses 
an elaborated dense connection to fuse multiscale pre-
dicting maps. DSOD is advantageous over other detectors 
which dwell on pre-trained models. We conjecture that 
features learned from ImageNet may differ from features 
of structural imagery (e.g., bridges, etc.). As such training 
from scratch with few data samples places DSOD ahead 
of other detectors within this context. However, the net-
work configuration of DSOD overwhelms resource-con-
strained edge nodes. Reducing the network parameters is 

Table 1 Details of building components used in the study

Building 
components
(classes)

Quantity Source Annotation type

Door, 
Window, 
Pillar, Beam, 
Shear wall/
Wall, Roof, 
and Staircase

6,675

Google 
image, Baidu 
image, Yahoo, 
smartphone, 

NISEE, and DJI 
Phantom 3

2D bounding 
box, Circular 

region shape, and 
Polyline region 

shape
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a step towards adducing a computational-efficient detec-
tor but performance may be compromised. Hence mean-
ingful feature extraction is required to compliment the 
performance.

4.2 Color Canny edge detector
Canny edge detectors [30] have the advantage of detect-
ing edges with minimum computation yet it is limited to 
grayscale images. The Canny edge detector operates on 
a four-stage module; (1) noise reduction, (2) gradient com-
putation, (3) non-maximum suppression, and (4) hystere-
sis thresholding. An improved color Canny edge detector 
approach is adopted. In [7] the authors replace the first 
stage (noise reduction via a Gaussian function) with a qua-
ternion weighted filter which extends a two-dimensional 
array. As such an RGB image can be expressed in a pure 
quaternion as: 

Q r i g j b kx y x y x y x y, , , ,= + + , (1)

where x, y represents coordinates of a color pixel, i, j, k 
denotes an imaginary part and r, g, b ∈ {0,1,2,…,255} rep-
resents the real part. In the second stage, a Sobel kernel 
operates on an RGB image expressed in a three-dimen-
sional vector I = rx,y, gx,y, bx,y given in a row and column as:

∆∆H = ( )− +H H0 , (2)
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to compute gradients that detect edge intensity within an 
RGB color space between 0 to 255. H +, H –, V + and V – are 
given as:
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where x0, y0 denotes coordinates of a color pixel. Then fol-
lows the magnitude G and slope θ which are expressed as:

G x y x yx y, , ,= ( ) + ( )∆∆ ∆∆H V
2 2

, (8)

θ =
( )
( )









arctan

x y
x y

∆∆
∆∆
V
H

,
,

. (9)

Non-maximum suppression is performed to intensify 
the edges (thin out thick and thin edges, i.e., uniform 
RGB values) followed by double thresholding which con-
nects the detected edges based on strong and weak pix-
els. In Fig. 1, we show a non-maximum suppression tech-
nique. From Fig. 1, the pixel within the dotted red box is 
being processed and being compared with pixels within 
the green dotted box in the direction of an edge, blue dot-
ted arrow. If one of the pixels (a, b + 1) or (a, b – 1) is more 
intense than the pixel (a, b) being processed, then the more 
intense pixel (a, b + 1) is kept and the RGB values of the 
other pixels (a, b – 1) and (a, b) are reduced by the prod-
uct of the Sobel kernel (i.e., a 3 × 3 = 9). This results in 
an RGB image where the edges of objects are intensified. 
To produce a monochrome image, the RGB values of the 
most intense pixel are replaced with 0 and the less intense 
pixels with 255.

Fig. 1 Illustration of non-maximum suppression within color Canny edge detector
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4.3 Gabor filters
Filters are important in image analysis as it is through fil-
ters content of an image is understood via transformation 
of the image into some other domain to detect the pres-
ence of a feature. Several image analysis filters such as 
mean, median, min-max, gaussian, bilateral, Gabor, and 
convolutional filters do exist with varying pros and cons. 
Gabor filters, a novel contribution from Denis Gabor are 
orientation-sensitive filters with capabilities of feature 
extraction, texture analysis, and disparity estimations of 
an image. A multiplication of a Gaussian envelope func-
tion with a complex oscillation and an extension of the 
aforementioned functions results in two-dimensional fil-
ters. Primarily, Gabor filters are mathematically structured 
to cope with diverse feature sizes, orientation, shape, and 
texture within a given image. There have been some stud-
ies suggesting the use of Gabor filters in place of convo-
lutional filters [31]. Krizhevsky et al. [32] experimentally 
show features extracted using convolutional filters have 
high similarity to that of features extracted using Gabor 
filters. To some extent, convolved features from convolu-
tional filters share some similarities with color blobs as 
well. As a result, Gabor filters have been used in some 
vision-based problems together with CNNs [33, 34]. Gabor 
filters defined by parameters orientation, wavelength, 
phase offset, bandwidth, and aspect ratio are some of the 
key advantages Gabor filters have over convolutional fil-
ters. Programmatically using OpenCV-Python, Gabor fil-
ters generation follows the structure: cv.getGaborKer-
nel(ksize, theta, lambda, gamma, psi, ktype), where ksize 
= Gabor kernel size, sigma = bandwidth, theta = orienta-
tion, lambda = wavelength, gamma = aspect ratio, psi = 
phase offset, and ktype = range of values each Gabor filter 
can hold. The computational advantage of Gabor filters is 
attributed to their kernel size, ksize = (a, b) (i.e, a × b pixels) 
as opposed to mostly an odd-sized convolutional kernel, 
k (e.g., 3 × 3, 5 × 5, etc.) with the kernel being squared, k2. 

To this end, we employ Gabor filters in the lower layers 
of a DCNN to mitigate compute demands during the train-
ing of the DCNN model. Reference to [33, 34], through 
a Gabor filter bank, we generate generic Gabor filters as 
initializers for a DCNN model. Gabor function has param-
eters as follows:

g x y= ( ), , , , , ,λ θ ϕ σ γ , (10)

where x, y denotes Gabor kernel size, λ is the wavelength, 
θ is the orientation, φ represents phase offset, σ denotes 
bandwidth, and γ is the aspect ratio. A Gabor function is 
given based on the aforementioned parameters as: 
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denotes an imaginary parameter. However, since we use 
real values for Gabor filters, the expression unfolds in two 
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and (2) the imaginary, given as:
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A Gabor filter has a valid orientation θ between 0 and 
2π which is given as:

θ
π

m m m= −( ) =
2

1 1 2 8; , , , , (14)

and an associated wavelength λ being either 2 or >2, 
a phase offset φ with valid values in the range of –π to π, 
an aspect ratio γ between 0 and 1, and a bandwidth σ > 0. 
In Fig. 2 are randomly generated generic Gabor filters 
via a Gabor filter bank, random data samples processed 
through the generic Gabor filters, and a visualization of 
an image processed through an intermittent generic Gabor 
filter kernel sizes.

4.4 Domain randomization
CNN/DCNN models generalize well as a result of train-
ing on diverse data characterized by varying environmen-
tal parameters, but in the real world, such data is hard to 
come by and expensive to produce. For some time now, 
augmenting training data has been one of the approaches 
in aiding CNN/DCNN models to attain good generaliza-
tion. Domain Randomization herein DR can be said to 
offer an enhanced version of data augmentation. Data aug-
mentation primarily introduces noise such as hue, satura-
tion, rotation, flips, and other image renderings which in 
a hierarchical level falls within a moderate measure with 
regards to image rendering techniques. On the other hand, 
DR offers advanced image renderings including, posi-
tioning and orientation of objects of interest, environment 
control, texture control, lighting control, camera field of 
view control, and random noise addition, which data aug-
mentation provides. To this end, we adopt DR in the study 
by utilizing Blender [35], a computer graphics application 
suitable for rendering. Using diverse 3D models of build-
ings with varying architectural plans, lighting, camera 
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Fig. 2 (a) Generic Gabor filters with varying parameters (orientation, wavelength, phase offset, aspect ratio, and bandwidth), (b) Random selected 
building components filtered through generated generic Gabor filters, and (c) sample image processed through generic Gabor filters at incremental 

kernel sizes

field of view, positioning, and orientation of the object of 
interest, intensity, texture, and random noise parameters, 
respectively are randomized to create the most varied data 
in addition to the real data gathered. Dwelling on the auto-
mated annotation feature Blender provides, key building 
components are annotated and cropped to generate syn-
thetic data. By randomizing the parameters less import-
ant for detecting and localizing a building component, 
the DCNN model is intended to learn to generalize faster. 
Using DR, 1000 varied synthetic data is generated in addi-
tion to the collected data. For brevity, randomly selected 
3D buildings and cropped annotated building components 
are visualized in Fig. 3.

4.5 Network configuration
Inspired by the variant tiny DCNN models, we construct 
a lightweight DSOD herein CG-DSOD. Our approach in 
adducing a computational-efficient detector is to reduce 

the parameters of DSOD yet have an efficient backbone 
for feature extraction. We conjecture that detecting the 
edges of objects is paramount to the overall detection of 
the object. As such we fuse the color Canny edge detector 
given in Section 4.2 as a convolutional layer in the stem 
block of CG-DSOD. To further reduce compute resources, 
we introduce Gabor filters generated in Section 4.3 as 
a replacement and for feature extraction in the stem block. 
In principle, the computational complexity of a convolu-
tional filter kernel is (N × N)2 and that of the Gabor fil-
ter kernel is N × N, which gives it a computational urge 
over the convolutional filter. With these design principles 
in place, we reduce the parameters of the original DSOD 
detector and describe the variant CG-DSOD architecture. 
Similar to DSOD, CG-DSOD is composed of a backbone 
and a front-end sub-network, respectively. The stem block 
in CG-DSOD starts with a 3 × 3 color Canny edge con-
volution with a stride of 1 which is meant to enhance the 

(a)

(b)

(c)
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edges of objects. This is followed by two Gabor convolu-
tional layers for feature extraction at a low computational 
rate. Afterward, a convolutional layer follows, then a pool-
ing layer before dense blocks and transition layers with 
reduced parameters. 

Lastly comes the front-end which comprises 6 scales as 
in the original DSOD but with reduced parameter configu-
ration. CG-DSOD configuration parameters are tabulated 
in Table 2 followed by a graphical illustration of the archi-
tecture CG-DSOD in Fig. 4.

5 Experiments
The presented detector CG-DSOD is extensively evaluated 
in two categories, offline and online mode under diverse 
evaluation metrics. The offline mode entails the use of 
allocated testing data and the online mode uses a low-cost 
MAV, a DJI Tello drone in the real world for a detection task. 
Accuracy and loss, mean Average Precision (mAP), and 
computational consumption are used as evaluation metrics 
in the offline mode. A confidence score and frame process-
ing rate is used as a metric in the online mode under two 

Table 2 CG-DSOD configuration, "cceconv" denotes color canny edge convolution, and "gconv" denotes Gabor convolution

Block Layer Output Size CG-DSOD

- Input 3 × 300 × 300 -

Stem Block

Color Canny Edge Conv. 64 × 300 × 300 3 × 3 cceconv, stride 1

Gabor Conv. 64 × 150 × 150 3 × 3 gconv, stride 2

Gabor Conv. 64 × 150 × 150 3 × 3 gconv, stride 1

Convolution 128 × 150 × 150 1 × 1 conv, stride 1

Pooling 128 × 75 × 75 2 × 2 max pool, stride 2

Dense Blocks with 
transition layers

Dense 0 256 × 75 × 75

Transition 0 128 × 38 × 38 1 × 1 conv
2 × 2 max pool, stride 2

Dense 1 416 × 38 × 38

Transition 1 128 × 19 × 19 1 × 1 conv
2 × 2 max pool, stride 2

Dense 2 512 × 19 × 19

Transition 2 256 × 19 × 19 1 × 1 conv

Dense 3 736 × 19 × 19

Transition 3 64 × 19 × 19 1 × 1 conv

Prediction block CG-DSOD Prediction - Plain/Dense

1 1

3 3
4

×
×









 ×

conv
conv

1 1

3 3
6

×
×









 ×

conv
conv

1 1

3 3
6

×
×









 ×

conv
conv

1 1

3 3
6

×
×









 ×

conv
conv

Fig. 3 Randomly selected (a) 3D building models and (b) cropped annotated building components

(a)

(b)
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environmental conditions. We also demonstrate the com-
putational efficiency of the presented approach in an abla-
tion study with a focus on computational complexity and 
early convergence. Faster R-CNN [36] and YOLOv3 [37] 
are selected as comparators to CG-DSOD.

5.1 Training of CG-DSOD
CG-DSOD is trained from scratch using a higher ratio of 
the building component data which is augmented to attain 
a total of 6,675 images and tested with 20% of the unseen 
data. Caffe framework is used as the machine learning 
platform and an NVIDIA Geforce RTX 2070 with Max-Q 
Design serves as the computing resource. We follow the 
training technique used to train DSOD, such as the use 
of SGD Solver, smooth Loss L1 to penalize deviation of 
estimated bounding box by CG-DSOD from the ground 
truth, and cross-entropy loss for classification. We set the 
learning rate at 10–3, using a batch size of 32 and train 
CG-DSOD for 100 epochs.

5.2 Offline evaluation
5.2.1 Detection accuracy and loss
Both comparators, Faster R-CNN and YOLOv3 go through 
a similar fine-tuning configuration and both are initialized 
with ImageNet weights before retraining for feature spe-
cifics. Faster R-CNN is trained using ResNet-50 as the 

backbone and YOLOv3 is trained using DarkNet 19 as the 
backbone network.

CG-DSOD records a training accuracy of 98.44% 
accompanied by a loss of 0.0506 and a testing accuracy of 
98.01% with a loss of 0.0540 after the 100th epoch. From 
Fig. 5(a), CG-DSOD shows a steady training and testing 
pattern on the building component dataset. There are nearly 
no sudden drifts of both training and loss curves which con-
notes CG-DSOD attains strong robustness. An observation 
from Fig. 5(a) shows incorporating Gabor filters and color 
Canny edge convolution aids the variant model, CG-DSOD 
to learn faster hence early convergence is adduced. A pro-
gressive accuracy of 90% is recorded for both training 
and testing somewhere into the 10th epoch during training 
for CG-DSOD (refer to Fig. 5(a)) as opposed to YOLOv3 
which records 90% plus of accuracy somewhere beyond 
the 40th epoch (refer to Fig. 5(b)) and Faster R-CNN which 
is after the 50th epoch (refer to Fig. 5(c)). It must be noted 
that despite CG-DSOD progressive accuracy rise at an ear-
lier epoch, it experiences downward accuracy spikes at 
some epochs yet it rises and is more stable compared to 
both comparators. Clearly from Fig. 5(a), CG-DSOD has 
not fitted to the building component data. There is almost 
nearly no overfitting which indicates good generalization 
of CG-DSOD. Besides, the rapid depreciation in the loss 
curves as seen in the subplot of Fig. 5(a) around the 10th 

Fig. 5 Graphical comparison of training and testing accuracies and losses for (a) CG-DSOD, (b)YOLOv3, and (c) Faster R-CNN

Fig. 4 The architecture of CG-DSOD detector
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epoch reflects possibly the absence of further relevant fea-
tures for CG-DSOD to utilize to improve the accuracies. 
As such, the configuration of CG-DSOD is efficient and 
training for further epochs may lead to overfitting.

YOLOv3 which is the first runner-up in detecting build-
ing components in this study records training and testing 
accuracies of 97.56% and 97.94% with losses of 0.1072 
and 0.0792, respectively. Faster R-CNN records an accu-
racy of 96.29% and a loss of 0.1097 during training and at 
testing records 95.02% as accuracy and 0.1371 as a loss. 
Both comparators attain good generalization as it can be 
seen from Fig. 5(b) and 6(c), little overfitting is attained by 
both comparators as compared to CG-DSOD. Although all 
three detection models (CG-DSOD, YOLOv3, and Faster 
R-CNN) records training and testing accuracies above 
95%, YOLOv3 and Faster R-CNN lag behind CG-DSOD. 
CG-DSOD surpasses YOLOv3 and Faster R-CNN con-
cerning accuracy, loss, and early convergence. Table 3 is 
a tabulation of training and testing accuracies and losses 
of the detectors followed by visualization of the perfor-
mance of each model in Fig. 5. 

Using Intersection over Union (IoU) at a threshold of 
0.6 and Per-Class Regression (PCR) which designates 
separate predicted bounding boxes for the classes, ran-
domly selected correct and incorrect detection of building 

components by CG-DSOD is presented in Fig. 6 excluding 
that of the comparators for reasons of brevity. Besides, it 
must be noted the accuracies adduced by each detection 
model do reflect on the detection of the object of interest in 
the test data. IoU here is the intersection of bounding box 
estimations by the detectors (CG-DSOD, YOLOv3, and 
Faster R-CNN) against the ground truth, more details are 
given in Section 5.2.2. Interpretation of detection results 
in Fig. 6 is read from left to right in corresponding rows a, 
b, and c. Correct detected results are given in rows a and 
b with the incorrect detections in row c. Incorrect results 
in Fig. 6 fall within the False Positive (FP) and False 
Negative (FN) categories. The former, FP denotes cor-
rect classification and localization but IoU is less than the 
given threshold 0.6, and the latter, FN denotes an instance 
such as images 1, 3, and 4 in row c where wrong classifica-
tions are assigned by CG-DSOD.

Table 3 Training and testing accuracies and losses for the three 
detection models used in this study

Detection 
model

Training 
accuracy

Training 
loss

Testing 
accuracy

Testing 
loss

CG-DSOD 98.44% 0.0506 98.01% 0.05040

YOLOv3 97.56% 0.1072 97.94% 0.0792

Faster R-CNN 96.29% 0.1097 95.02% 0.1371

Fig. 6 Random selection of correct detections by CG-DSOD in rows (a) and (b) and incorrect detections in row (c) based on IoU threshold at 0.6

(a)

(b)

(c)
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5.2.2 Mean average precision
We employ the evaluation approach used in the MS COCO 
2014 challenge to measure the performance of each detec-
tion model (CG-DSOD, YOLOv3, and Faster R-CNN). 
As such, we compute the Average Precision (AP) of the 
7 classes (refer to Table 1) over specified IoU thresholds 
and average the adduced APs. Afterward, the mean of the 
averaged APs at specified thresholds are taken, hence the 
mean Average Precision (mAP) is attained. The threshold 
used in the benchmark is AP @ IoU = {0.5,0.55,…,0.95}, 
i.e., an AP at specified IoU. Here we interpret the thresh-
old in two folds, thus, (1) as confidence threshold for clas-
sifying the object, and (2) as IoU to measure the predicted 
location of the object from the ground-truth bounding box 
(polyline region, 2D box, or circular region). Briefly, in the 
context of AP, the precision-recall curve (precision mea-
sures false positive rate and recall measures false-nega-
tive rate) is used to compute the AP of each of the object 
instances (classes) at specified thresholds. Afterward, aver-
aged to adduce the AP for a detection model (CG-DSOD, 
YOLOv3, and Faster R-CNN). Using an 11 point interpo-
lation, AP is expressed as:

AP Precision Recall

Recall
Recall

i

i

i

= ( )

= …

∑1
11

0 0 1 0 2 1where , . , . , , .. .0[ ]
 (15)

In measuring the predicted location of an object based 
on the specified thresholds, the IoU is given as:

IoU area of overlap
area of union

= . (16)

Based on the IoU and precision-recall curve which leads 
to the computation of APs, we report the performance of 
the detection models used in this study.

Table 4 is a statistical representation of APs adduced 
for each detection model used in the study under the vari-
ant thresholds. Vividly from Table 4, it can be seen as the 
threshold increases there is a drop in the AP connoting the 
detection models are more stringent about the true posi-
tives. The steepness of the precision-recall curve as seen 
in Fig. 7 which computes the APs under variant thresholds 
varies across the detection models (CG-DSOD, YOLOv3, 
and Faster R-CNN). Fig. 7 gives a graphical insight into 
the performance of each detection model under increas-
ing thresholds. Using both Table 4 a numerical view, and 
Fig. 7 a graphical view, comparatively CG-DSOD shows 
a steadier drop in the precision-recall curve as opposed to 
the comparators. As the threshold increases from 0.8 to 
0.95, the volatility of CG-DSOD increases yet is advan-
tageous over the two comparators which attains much 
higher volatilities at higher thresholds. To this end, we are 
of the view a reflection of the training and testing accura-
cies and losses can be seen in the precision-recall curves 
which leads to APs and finally a mAP for each detection 
model. Percentage-wise, there is nearly a 2% apart dif-
ference adduced among the three detection models under 
a mean training and testing accuracies. A similar infer-
ence is deduced in the mAP which is represented in Fig. 8 
graphically, and in the last column of Table 4. As such, this 
analytical insight buttresses our initial view of the link-
age of a reflection of training and testing accuracies in 
the mAP for the detection models (CG-DSOD, YOLOv3, 

Table 4 Numerical representation of detection models under specified IoUs

Model AP .50 AP .55 AP .60 AP .65 AP .70 AP .75 AP .80 AP .85 AP .90 AP .95 mAP

CG-DSOD 0.9909 0.9805 0.9793 0.9462 0.9379 0.9016 0.8663 0.7934 0.6840 0.3367 0.8417

YOLOv3 0.9899 0.9771 0.9757 0.9397 0.9233 0.8912 0.8232 0.7325 0.6001 0.2672 0.8120

Faster R-CNN 0.9903 0.9871 0.9768 0.9039 0.8841 0.8593 0.7984 0.7031 0.5701 0.2395 0.7913

Fig. 7 The precision-recall curve adduced for the detection models under specified thresholds (a) CG-DSOD, (b) YOLOv3, (c) Faster R-CNN
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and Faster R-CNN). All in all, CG-DSOD records a mAP 
of 84.17%, YOLOv3 records 81.20%, and Faster R-CNN 
records 79.13% in the building component detection task.

5.2.3 Computational cost
In this section, we measure the computational resources 
utilized by each detection model during training to infer 
the computational consumption. We employ a modi-
fied version of the computational cost procedure in [38] 
by introducing a parameter windows_bias to account for 
resources being utilized by the background process and 
windows processes during training. The computational 
parameters entail:

• Runtime: time used in training of each model sepa- 
rately.

• GPU Load: the current supplied to the GPU cores 
during training given in the form of voltage.

• GPU Mem.: the total amount of GPU memory con- 
sumed.

• DataTrans: this is a measure of the amount of data trans-
ferred between the cores of the GPU during training.

• Windows_bias: the new parameter introduced to 
account for GPU and memory usage for windows 
processes (Client Server Runtime Process, Desktop 
Window Manager, Registry, etc.) and background 
processes (Networkcap, IntelAudioService, etc.) 
during training.

Numerical measures for the aforementioned compu-
tational parameters are via the NVIDIA profiling tools 
(NSIGHT tools, NVVP, and NVML). The computational 
cost during training can then be obtained as:

modelE runtime gpuload gpumem datatrans= × × × , (17)

Computation t E windows bias
number of epoches

al cos model
=

− . (18)

Fig. 9 shows the normalized plotting of the computa-
tional parameters which also serve as standalone evalua-
tion metrics and the computational cost by each detection 
model (CG-DSOD, YOLOv3, and Faster R-CNN). From 
Fig. 9, it can be seen that CG-DSOD can conserve variation 
of a little over 20% on the normalized values for Runtime, 
GPU load, GPU mem., and DataTrans as opposed to both 
YOLOv3 and Faster R-CNN. As such in the overall compu-
tational cost derived using Eq. (10), CG-DSOD conserves 
nearly 30% of the compute resources required during train-
ing as opposed to the two comparators. The computational 
reduction is much attributed to the use of Gabor filters in 
the lower blocks of CG-DSOD architecture. It must be 
included that, color Canny edge convolutions introduced 
also contributes to the reduction of computation required 
in the training of CG-DSOD. Besides in [39], the authors 
designed circuits in Verilog mapped onto a 45 nm field-pro-
grammable gate array board to measure the computational 
consumption of a DCNN model. It occurred the first two 
convolutional blocks consume nearly 47% of the compu-
tational resource required to train a DCNN. The architec-
tures of YOLOv3 and Faster R-CNN reflect on the com-
putational cost by the two detection models, respectively. 
With YOLOv3 having 106 convolutional layers and Faster 
R-CNN having 50 convolutional layers as their base archi-
tectures, the high computational requirements adduced 
during training indicate the depth of a DCNN architecture 
contributes to the high computations.

Fig. 8 mAP results for CG-DOSD, YOLOv3, and Faster R-CNN 
detectors under diverse thresholds, i.e., 0.5 ≤ IoU ≤ 0.95 

Fig. 9 Computational cost by the CG-DSOD, YOLOv3, and Faster 
R-CNN
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5.3 Online evaluation
In this section, we give an account of an online evalua-
tion of CG-DSOD together with the comparators. A low-
cost MAV, a DJI Tello drone together with a ground sta-
tion control equipped with an NVIDIA Geforce RTX 2070 
with Max-Q Design and 16GB of memory is used for the 
online experiment. Due to range limitations, a Xiaomi 
wifi 2 repeater is used to extend the range. An insight 
into the real-world experimentation setup is visualized in 
Fig. 10(a). The DJI Tello drone operates on an Intel 14 core 
processor with a default frame rate of 30 frames per second 
(fps) and has an extremely low compute power which pre-
vents direct DCNN model implementation on the DJI Tello 
drone. To control the DJI Tello drone, the djitellopy mod-
ule is used to implement a navigation controller feasible 
with a computer keyboard. As such, keys w, s, a, d denotes 
changes in altitude and orientation and keys up, down, 
left, right denotes changes in the aspect of pitch and roll, 
respectively. Readers are to refer to Fig. 10(b) for graphi-
cal understanding. Through the setup described, a human 
pilot flies the DJI Tello within the hallways and outskirts 
of a dormitory building within the localities of the authors 
of this study whiles the detection models process the video 

feed from the DJI Tello in real-time. Since there are no 
ground truth labels in the real-world environment, we eval-
uate the detectors with the confidence scores and the frame 
processing rate. The report for the two environmental sce-
narios is based on similar detections within similar frames 
by the three detectors for comparative reasons. First, an 
account is given for environment 1 which has no objects 
obstructing the percept of the DJI Tello drone, Fig. 11(a). 
Here, random sample frames are selected, then we compute 
average confidence avgC for each frame f1,…,fn afterward, 
we take the mean confidence mC of all the average confi-
dence avgC. CG-DSOD records a higher mean confidence 
score using a threshold of 0.6 compared to YOLOv3 and 
Faster R-CNN. Moreover, CG-DSOD has higher accuracy 
and mAP as opposed to both comparators which reflect in 
the estimated confidence scores.

In the second scenario, environment 2, a human poses as 
an obstruction to infer the performance of the detectors. The 
human pilot flies the DJI Tello through the occluded envi-
ronment for the detection of objects of interest. We observed 
that in the occluded environment, the confidence scores 
estimated by all three detectors decrease for similar 
objects detected in environment 1 which has no obstacles. 
Regardless of the decrease in confidence scores, CG-DSOD 
has much better confidence than both comparators as seen in 
Fig. 11(b). We are of the view, the presence of occlusion con-
tributes to the decrease in the confidence scores. For brev-
ity, we report a handful of correct detection frames for 
both environments in Fig. 11 excluding the acknowledged 
false detections. For detection speed, YOLOv3 achieves 
the best result at a processing rate of 65.6fps while our 
detector CG-DSOD attains a promising frame processing 
rate of 42.7fps and Faster R-CNN records 9.4fps.

5.4 Ablation study
We infer the contribution of Gabor filters and color Canny 
edge convolution in CG-DSOD detector by removing the 
generic Gabor filters and color Canny edge convolution 
hence leaving us with the DSOD detector with reduced 
parameters as in Table 2, herein DSOD-small. The focus 
is on the computational consumption, how fast the detector 
(DSOD-small) learns as well as the accuracies recorded. 
CG-DSOD has total training parameters of 0.83M as com-
pared to the DSOD-small which has 0.96M. After train-
ing for 100 iterations using the same dataset we observe 
DSOD-small fails to attain early convergence as seen 
from Fig. 12(b). DSOD-small attains training and testing 
accuracies of 97.58% and 97.13 % with losses 0.9641 and 

Fig. 10 (a) schematic of real-time experiment setup and (b) illustration 
of DJI Tello controller
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(a)

(b)
Fig. 11 (a) represents detection results in environment 1 and (b) denotes detection results for environment 2 where a human poses as a weak obstruction

Fig. 12 Ablation study aiming at convergence, and accuracies (a and b) and computational cost (c) of CG-DSOD and DSOD-small
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0.01482, respectively which trails the accuracies and losses 
of CG-DSOD, refer to Table 3. From Fig. 12(b), it can be 
seen that DSOD-small starts to converge somewhere after 
the 40th epoch compared to CG-DSOD which is some-
where after the 10th epoch, refer to Fig. 12(a). The com-
putational cost computation follows the same approach in 
Section 5.2.3. After training DSOD-small for 100 epochs, 
we observed DSOD-small uses about 12% more com-
pute resources as compared to CG-DSOD. The computa-
tional cost depicted in Fig. 12(c) correlates CG-DSOD and 
DSOD-small, respectively.

6 Conclusions 
In this study, we have presented a lightweight detec-
tion model dubbed CG-DSOD. Our detection model 
(CG-DSOD) is a variant of the DSOD detector coupled 
with Gabor filters and color Canny edge detectors in 
the lower blocks with reduced parameters for comput-
ing reduction and faster learning. We train CG-DSOD 
on building structural components and also introduce 
domain randomization, a much better data augmentation 
technique. We investigated the capabilities of CG-DSOD 
over three main axes: accuracy, mAP, and computational 

cost. We conduct two extensive experiments, offline and 
online (real-world) with a resource-constrained edge node 
for verification of CG-DSOD. Basing our conclusion on 
the experiments, CG-DSOD outperforms the two compar-
ators in the study. CG-DSOD attains a nearly 2% advan-
tage in accuracy over its comparators, somewhere around 
3% mAP higher, and nearly a 30% reduction in compu-
tational resources as opposed to YOLOv3 and Faster 
R-CNN. An online verification using a DJI Tello drone 
shows the detection speed of CG-DSOD is enough for 
real-time detection tasks. CG-DSOD shows promising 
detection results in occluded environments which is a sign 
of CG-DSOD having the urge to overcome complexity 
within environments and making use of partial percept of 
objects of interest. Last, as future work, using Gabor fil-
ters as a convolutional modulator and using a DCNN to 
attain autonomous navigation of a MAV is a step towards 
autonomous SHM.
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