
516|https://doi.org/10.3311/PPci.18689
Creative Commons Attribution b

Periodica Polytechnica Transportation Engineering, 66(2), pp. 516–531, 2022

Cite this article as: Agyemang, I. O., Zhang, X., Adjei-Mensah, I., Arhin, J. R., Agyei, E. "Lightweight Real-time Detection of Components via a Micro Aerial
Vehicle with Domain Randomization Towards Structural Health Monitoring", Periodica Polytechnica Civil Engineering, 66(2), pp. 516–531, 2022. https://
doi.org/10.3311/PPci.18689

Lightweight Real-time Detection of Components via a Micro
Aerial Vehicle with Domain Randomization Towards Structural
Health Monitoring

Isaac Osei Agyemang1*, Xiaoling Zhang1, Isaac Adjei-Mensah1, Joseph Roger Arhin1,
Emmanuel Agyei1

1 School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu
610054, China

* Corresponding author, e-mail: ioagyemang@std.uestc.edu.cn

Received: 01 June 2021, Accepted: 02 February 2022, Published online: 17 February 2022

Abstract

Civil structural component detection plays an integral role in Structural Health Monitoring (SHM) pre and post-construction. Challenges

including but not limited to labor-intensiveness, cost, and time constraints associated with traditional methods make it a less opti-

mal approach in SHM. Despite the success of deep convolutional neural networks in diverse detection problems, the required

computational resources are a challenge. This has led to rendering a chunk of resource-constrained edge nodes less applicable with

deep convolutional neural networks. In this paper, a computational-efficient deep convolutional neural network is presented based

on Gabor filters and a color Canny edge detector. Generic Gabor filters are generated and used as initializers in the computational-

efficient deep convolutional neural network presented, afterward trained on building components data. Next, extensive offline and

online experimentation with a resource-constrained edge node is conducted and evaluated using diverse metrics. The computational-

efficient detection model demonstrates to be effective in detection and via NVIDIA GPU profiler, we observe conservation of around

30% of computational resources during training. The computational-efficient detection model adduces almost a 3% mean average

precision higher than two state-of-the-art detectors and records a promising frame processing rate during the online experimentation.

Keywords

Gabor filters, color Canny edge detector, micro aerial vehicle, structural health monitoring, deep convolutional neural network

1 Introduction
With the advancement of urban life, the continuous
requirement to provide shelter for humanity over natu-
ral occurrences (rain, strong winds, intense sunlight, etc.)
keeps on rising with diverse construction standards before
and post-construction of an infrastructure [1]. Primarily,
the construction of buildings that come in variant dimen-
sions, architectural designs, and construction materials
addresses the problem of shelter but at a cost (corrosion,
deterioration, cracks, etc.). To this end, periodic inspec-
tion of the structural health of civil infrastructures such as
buildings is knee to aid the prevention of accidental struc-
tural collapse. At present, Structural Health Monitoring
(SHM) is the branch in civil engineering denoted to inspect
the health condition of civil structures [2]. SHM entails an
array of diagnostic tools and analyzing techniques that seek
to offer timely and accurate diagnoses and analyzes a wide
range of civil structures (e.g., buildings, bridges, etc.), and

report their health status. Detection of structural parts pre-
cedes the diagnostic and analysis aspect of SHM since the
different parts of an infrastructure (e.g., building.) require
varying maintenance. Besides, detecting the various com-
ponents of infrastructure is peculiar to the interpretation of
damages, health evaluation of the structure, and the opti-
mal maintenance required.

SHM has seen the integration of deep learning which
at present is the backbone of many vision-based tasks
under categories of classification, detection, and segmen-
tation [3] with contact and non-contact sensors. Contact
sensors (fiber optic sensors, strain gauges, etc.) are asso-
ciated with erroneous readings, costly installation, and
maintenance. As a result, non-contacting sensors (high-
speed cameras, unmanned aerial vehicles, etc.) are being
utilized due to advantages including easy deployment,
reliability in data acquisition, and cost-effectiveness [4].

https://doi.org/10.3311/PPci.18689
https://doi.org/10.3311/PPci.18689
https://doi.org/10.3311/PPci.18689
mailto:ioagyemang%40std.uestc.edu.cn?subject=

Agyemang et al.
Period. Polytech. Civ. Eng., 66(2), pp. 516–531, 2022|517

A non-contacting sensor such as an Unmanned Aerial
Vehicle (UAV) categorically is in two groups, macro and
micro UAVs [5]. The majority of macro UAVs support the
integration of extra sensing modalities (flight comput-
ers, etc.) to provide extra computing power to meet com-
pute demands of deep learning. Such cannot be said for
resource-constrained edge nodes such as Micro Aerial
Vehicles (MAVs). This has rendered the majority of MAVs
redundant in the civil engineering domain. Tasks such
as site monitory, infrastructure inspection (analogous
inspections, data collection, etc.) can be accomplished
via MAVs together with deep learning before deployment
of costly macro UAVs. However, the challenge faced by
many civil engineers is the computational requirements of
deep learning technologies.

Whence, as a contribution to the SHM domain, we put
forward a computational-efficient detector for building
components detection task. We present a variant Deeply
Supervised Object Detector (DSOD) [6] integrated with
a variant Canny edge detector [7] and Gabor filters [8] and
introduce the domain randomization technique to miti-
gate compute requirements without compromising perfor-
mance. The remaining content of the paper is structured
as follows: Sections 2 and 3 present related works and data
acquisition and preparation, respectively. The computa-
tional-efficient detector is described in Section 4 followed
by extensive experiments in Section 5. Section 6 draws the
conclusions and future works.

2 Related works
2.1 Deep learning-based SHM
Classification, localization, detection, and segmentation
problems in SHM are being mitigated via the use of deep
learning technologies [9]. In [10], a pre-trained state-of-
the-art classifier VGG-16 is used in the classification of
building detrimental (mold, stain, deterioration, etc.)
caused by dampness. The authors used VGG-16 to extract
features from building data, fed to the network, and with
the aid of fully connected layers and a softmax, classifi-
cation of building damages was attained. An accuracy of
87.50% was adduced in classifying defects of buildings.
The authors' approach is promising yet feature specifics
related to the training data are not learned since there is
no retraining of convolutional blocks. A combination of
Convolutional Neural Network (CNN) and conventional
machine learning methods (random forest and support vec-
tor machine) is presented in [11] for the detection of cracks
in concrete building structures. A conclusion drawn by the

authors indicates CNNs with conventional machine learn-
ing methods such as SVM as a classifier comparative to
CNNs with softmax as a classifier, the former outperforms
the latter. The experimental results reported support the
conclusion of the authors' claims yet generalization of the
presented approach is not established.

In another SHM task, corrosion detection is studied
in [12] by the proposition of a classifier based on a slid-
ing window and 4 color spaces (RGB, YCbCr, CbCr, and
grayscale). Conversion of images to the 4 aforementioned
color spaces before input to the Deep Convolutional Neural
Network (DCNN) adds up to the computational bottle-
neck of DCNN. Reference [13] investigates an SHM task
based on vibrations to detect defects associated with a civil
structure. The authors claim a 100% accurate prediction
of defects ranging from minor to extensive damage, this is
open to discussion. A one-dimensional CNN is used in the
detection of defects associated with civil structures, how-
ever, the challenge of requiring large measurements of civil
structures to form training data is a limitation to the one-
dimensional CNN proposition in [14, 15]. As a result, a non-
parametric CNN method is proposed in [16] to address the
challenge in [14, 15]. Autoencoders and layer-wise train-
ing which constitutes a computer vision merged with deep
learning method is used in the classification of a six-class
anomaly on a civil structure. An accuracy of 87% was
attained including acknowledging the limitation of too
many manual representations of anomalies [17]. A fusion
CNN for detecting cracks in a steel box girder of bridges is
presented in [18] with a classification accuracy of 96.38%.
The fusion CNN classifier follows a binary conversion
and optimal entropy threshold process in detecting cracks.
Crack detection by the fusion CNN classifier has a lim-
itation at certain distances to objects. The introduction of
hyperparameters in CNN to alleviate overfitting is pre-
sented in [19] in the analysis of a truss bar planar. The con-
clusions drawn by the authors indicate the success of their
proposition, it must be noted the hyperparameters intro-
duced are task-specific and not generic.

2.2 Deep learning-UAV-based SHM
Kang and Cha [20] proposed a DCNN beacon system with
geo-tagging for SHM. The authors' proposition consti-
tutes an ultrasonic beacon system for mapping and posi-
tion localization of the UAV based on a mission planner
equipped with navigation maps. A Pixhawk 2.1 flight con-
troller serves as means of controlling the UAV guided by
the beacon routers together with a ground station computer

518|Agyemang et al.
Period. Polytech. Civ. Eng., 66(2), pp. 516–531, 2022

for compute processing. The UAV was flown over the
region of interest, and a DCNN running on the ground sta-
tion computer estimated cracked and non-cracked regions.
A 97.7% specificity with a sensitivity of 91.9% was attained.
A wall-climbing Unmanned Aerial System (UAS) cou-
pled with CNN is proposed in [21] for crack assessment.
Through a wireless data transmission, data captured from
the UAS is sent to an Android platform for crack detection
based on CNN. The authors' UAS CNN-based system for
crack detection is made up of the UAS (flight controller,
a camera with undistorted lens, soft wheel, data transmitter,
battery, and horizontal and vertical motors) and a ground
station. The conclusions drawn by the authors indicate an
accuracy of 94.48% for crack detection together with less
than 5% error in detection of cracks with width measured
below 0.1mm. A UAV-based thermographic encoder-to-de-
coder for segmentation of a bridge deck delamination
towards SHM is given in [22]. A DJI Matrix 600 equipped
with a thermal camera (FLIR A8300) with an orthogonal
field of view medication is used for a deck delamination
assessment. An onboard computer together with a cus-
tomized MATLAB algorithm running off the DJI Matrix
600 was used in the processing of the data before the deep
learning-based encoder-to-decoder is applied for segmen-
tation. In [23], a U-Net CNN-based UAV assessment of the
serviceability of pavements is presented. Based on UAV
photogrammetry data, the authors employed a well-known
architecture (U-Net) in the biomedical domain for the seg-
mentation task, 95% accuracy is reported by the authors.
DJI Phantom 4 pro, control points, a Topcon ISO1 Robotic
Total Station detector, and GPS antennas formed part of
the UAV system used. Lee et al. [24] in a field test, applied
Recurrent Neural Network (R-CNN) to photographs
acquired via a variant EX-drone (Korea) equipped with an
HDR-PER 790V and FDR 3000r cameras using a custom-
ized MATLAB application.

An identity running through the reiterated works indi-
cates the dominance of macro UAVs in SHM tasks. Based
on the reiterated works, by far at the time of writing, this
paper would be the first deep learning-based micro UAV
SHM attempt with promising signs.

3 Data acquisition and preparation
At the time of writing this paper, there is no established
and open structural image databank such as the ImageNet
for scientific and engineering studies within the civil con-
struction set [25]. As such, structural data related to build-
ings are collected to constitute a mini-structural databank

for this study. First, an internet data gathering is conducted
using structural digital libraries (National Information
Service for Earthquake Engineering (NISEE), Design and
Safe) and generic digital libraries (Google Image, Baidu
Image, and Yahoo). To add up to the surfed data, a DJI
Phantom 3 and a smartphone were used to take pictures
within the localities of the authors of this paper. Next,
image annotation is key in object detection tasks, as such
we manually annotate the sampled images via the use of
the VGG Image Annotator tool [26]. Circular region shape,
2D bounding box, Elliptical region shape, Polygon region
shape, Polyline region shape, and Point region shape are
the annotation shapes available in the VGG Image anno-
tator tool at the time of access. Due to the asymmetrical
shapes of the components of buildings, three annotation
shapes (2D bounding box, Circular, and Polyline region
shapes) were used for the annotation. A synopsis of the
databank reposited at [27] is tabulated in Table 1.

4 Lightweight detector
4.1 DSOD overview
The DSOD combines the Single Short Detector (SSD) [28]
which is multi-scale proposal-free and DenseNet [29]
which introduced deep supervision via dense CNN con-
nections. DSOD network has two main parts, the back-
bone network for feature extraction and the front-end
(detection layers) for object detection. The backbone net-
work comprises a stem block, four dense blocks, two tran-
sition layers, and two transition layers without pooling.
The front-end contrary to the plain structure of SSD uses
an elaborated dense connection to fuse multiscale pre-
dicting maps. DSOD is advantageous over other detectors
which dwell on pre-trained models. We conjecture that
features learned from ImageNet may differ from features
of structural imagery (e.g., bridges, etc.). As such training
from scratch with few data samples places DSOD ahead
of other detectors within this context. However, the net-
work configuration of DSOD overwhelms resource-con-
strained edge nodes. Reducing the network parameters is

Table 1 Details of building components used in the study

Building
components
(classes)

Quantity Source Annotation type

Door,
Window,
Pillar, Beam,
Shear wall/
Wall, Roof,
and Staircase

6,675

Google
image, Baidu
image, Yahoo,
smartphone,

NISEE, and DJI
Phantom 3

2D bounding
box, Circular

region shape, and
Polyline region

shape

Agyemang et al.
Period. Polytech. Civ. Eng., 66(2), pp. 516–531, 2022|519

a step towards adducing a computational-efficient detec-
tor but performance may be compromised. Hence mean-
ingful feature extraction is required to compliment the
performance.

4.2 Color Canny edge detector
Canny edge detectors [30] have the advantage of detect-
ing edges with minimum computation yet it is limited to
grayscale images. The Canny edge detector operates on
a four-stage module; (1) noise reduction, (2) gradient com-
putation, (3) non-maximum suppression, and (4) hystere-
sis thresholding. An improved color Canny edge detector
approach is adopted. In [7] the authors replace the first
stage (noise reduction via a Gaussian function) with a qua-
ternion weighted filter which extends a two-dimensional
array. As such an RGB image can be expressed in a pure
quaternion as:

Q r i g j b kx y x y x y x y, , , ,= + + , (1)

where x, y represents coordinates of a color pixel, i, j, k
denotes an imaginary part and r, g, b ∈ {0,1,2,…,255} rep-
resents the real part. In the second stage, a Sobel kernel
operates on an RGB image expressed in a three-dimen-
sional vector I = rx,y, gx,y, bx,y given in a row and column as:

∆∆H = ()− +H H0 , (2)

∆∆V =

−

+

V

V

0 , (3)

to compute gradients that detect edge intensity within an
RGB color space between 0 to 255. H +, H –, V + and V – are
given as:

H x y
I x y I x y

I x y
+ () =

+ −() + +()
+ + +()

0 0

0 0 0 0

0 0

1

4

1 1 2 1

1 1
,

, ,

,
, (4)

H x y
I x y I x y

I x y
− () =

− −() + −()
+ − +()

0 0

0 0 0 0

0 0

1

4

1 1 2 1

1 1
,

, ,

,
, (5)

V x y
I x y I x y

I x y
+ () =

− +() + +()
+ + +()

0 0

0 0 0 0

0 0

1

4

1 1 2 1

1 1
,

, ,

,
, (6)

V x y
I x y I x y

I x y
− () =

− −() + −()
+ + −()

0 0

0 0 0 0

0 0

1

4

1 1 2 1

1 1
,

, ,

,
, (7)

where x0, y0 denotes coordinates of a color pixel. Then fol-
lows the magnitude G and slope θ which are expressed as:

G x y x yx y, , ,= () + ()∆∆ ∆∆H V
2 2

, (8)

θ =
()
()

arctan

x y
x y

∆∆
∆∆
V
H

,
,

. (9)

Non-maximum suppression is performed to intensify
the edges (thin out thick and thin edges, i.e., uniform
RGB values) followed by double thresholding which con-
nects the detected edges based on strong and weak pix-
els. In Fig. 1, we show a non-maximum suppression tech-
nique. From Fig. 1, the pixel within the dotted red box is
being processed and being compared with pixels within
the green dotted box in the direction of an edge, blue dot-
ted arrow. If one of the pixels (a, b + 1) or (a, b – 1) is more
intense than the pixel (a, b) being processed, then the more
intense pixel (a, b + 1) is kept and the RGB values of the
other pixels (a, b – 1) and (a, b) are reduced by the prod-
uct of the Sobel kernel (i.e., a 3 × 3 = 9). This results in
an RGB image where the edges of objects are intensified.
To produce a monochrome image, the RGB values of the
most intense pixel are replaced with 0 and the less intense
pixels with 255.

Fig. 1 Illustration of non-maximum suppression within color Canny edge detector

520|Agyemang et al.
Period. Polytech. Civ. Eng., 66(2), pp. 516–531, 2022

4.3 Gabor filters
Filters are important in image analysis as it is through fil-
ters content of an image is understood via transformation
of the image into some other domain to detect the pres-
ence of a feature. Several image analysis filters such as
mean, median, min-max, gaussian, bilateral, Gabor, and
convolutional filters do exist with varying pros and cons.
Gabor filters, a novel contribution from Denis Gabor are
orientation-sensitive filters with capabilities of feature
extraction, texture analysis, and disparity estimations of
an image. A multiplication of a Gaussian envelope func-
tion with a complex oscillation and an extension of the
aforementioned functions results in two-dimensional fil-
ters. Primarily, Gabor filters are mathematically structured
to cope with diverse feature sizes, orientation, shape, and
texture within a given image. There have been some stud-
ies suggesting the use of Gabor filters in place of convo-
lutional filters [31]. Krizhevsky et al. [32] experimentally
show features extracted using convolutional filters have
high similarity to that of features extracted using Gabor
filters. To some extent, convolved features from convolu-
tional filters share some similarities with color blobs as
well. As a result, Gabor filters have been used in some
vision-based problems together with CNNs [33, 34]. Gabor
filters defined by parameters orientation, wavelength,
phase offset, bandwidth, and aspect ratio are some of the
key advantages Gabor filters have over convolutional fil-
ters. Programmatically using OpenCV-Python, Gabor fil-
ters generation follows the structure: cv.getGaborKer-
nel(ksize, theta, lambda, gamma, psi, ktype), where ksize
= Gabor kernel size, sigma = bandwidth, theta = orienta-
tion, lambda = wavelength, gamma = aspect ratio, psi =
phase offset, and ktype = range of values each Gabor filter
can hold. The computational advantage of Gabor filters is
attributed to their kernel size, ksize = (a, b) (i.e, a × b pixels)
as opposed to mostly an odd-sized convolutional kernel,
k (e.g., 3 × 3, 5 × 5, etc.) with the kernel being squared, k2.

To this end, we employ Gabor filters in the lower layers
of a DCNN to mitigate compute demands during the train-
ing of the DCNN model. Reference to [33, 34], through
a Gabor filter bank, we generate generic Gabor filters as
initializers for a DCNN model. Gabor function has param-
eters as follows:

g x y= (), , , , , ,λ θ ϕ σ γ , (10)

where x, y denotes Gabor kernel size, λ is the wavelength,
θ is the orientation, φ represents phase offset, σ denotes
bandwidth, and γ is the aspect ratio. A Gabor function is
given based on the aforementioned parameters as:

g x y i x
= −

+

 +

′
exp

' '

exp

2 2 2

2
2

2
γ
σ

π ϕ
λ

, (11)

where ′ = +x x cos y sinθ θ , ′ =− +y x sin y cos�� θ θ , and i
denotes an imaginary parameter. However, since we use
real values for Gabor filters, the expression unfolds in two
phases: (1) real, given as:

g x y cos x
= −

+

 +

′
exp

' '2 2 2

2
2

2
γ
σ

π ϕ
λ

, (12)

and (2) the imaginary, given as:

g x y sin x
= −

+

 +

′
exp

' '2 2 2

2
2

2
γ
σ

π ϕ
λ

. (13)

A Gabor filter has a valid orientation θ between 0 and
2π which is given as:

θ
π

m m m= −() =
2

1 1 2 8; , , , , (14)

and an associated wavelength λ being either 2 or >2,
a phase offset φ with valid values in the range of –π to π,
an aspect ratio γ between 0 and 1, and a bandwidth σ > 0.
In Fig. 2 are randomly generated generic Gabor filters
via a Gabor filter bank, random data samples processed
through the generic Gabor filters, and a visualization of
an image processed through an intermittent generic Gabor
filter kernel sizes.

4.4 Domain randomization
CNN/DCNN models generalize well as a result of train-
ing on diverse data characterized by varying environmen-
tal parameters, but in the real world, such data is hard to
come by and expensive to produce. For some time now,
augmenting training data has been one of the approaches
in aiding CNN/DCNN models to attain good generaliza-
tion. Domain Randomization herein DR can be said to
offer an enhanced version of data augmentation. Data aug-
mentation primarily introduces noise such as hue, satura-
tion, rotation, flips, and other image renderings which in
a hierarchical level falls within a moderate measure with
regards to image rendering techniques. On the other hand,
DR offers advanced image renderings including, posi-
tioning and orientation of objects of interest, environment
control, texture control, lighting control, camera field of
view control, and random noise addition, which data aug-
mentation provides. To this end, we adopt DR in the study
by utilizing Blender [35], a computer graphics application
suitable for rendering. Using diverse 3D models of build-
ings with varying architectural plans, lighting, camera

Agyemang et al.
Period. Polytech. Civ. Eng., 66(2), pp. 516–531, 2022|521

Fig. 2 (a) Generic Gabor filters with varying parameters (orientation, wavelength, phase offset, aspect ratio, and bandwidth), (b) Random selected
building components filtered through generated generic Gabor filters, and (c) sample image processed through generic Gabor filters at incremental

kernel sizes

field of view, positioning, and orientation of the object of
interest, intensity, texture, and random noise parameters,
respectively are randomized to create the most varied data
in addition to the real data gathered. Dwelling on the auto-
mated annotation feature Blender provides, key building
components are annotated and cropped to generate syn-
thetic data. By randomizing the parameters less import-
ant for detecting and localizing a building component,
the DCNN model is intended to learn to generalize faster.
Using DR, 1000 varied synthetic data is generated in addi-
tion to the collected data. For brevity, randomly selected
3D buildings and cropped annotated building components
are visualized in Fig. 3.

4.5 Network configuration
Inspired by the variant tiny DCNN models, we construct
a lightweight DSOD herein CG-DSOD. Our approach in
adducing a computational-efficient detector is to reduce

the parameters of DSOD yet have an efficient backbone
for feature extraction. We conjecture that detecting the
edges of objects is paramount to the overall detection of
the object. As such we fuse the color Canny edge detector
given in Section 4.2 as a convolutional layer in the stem
block of CG-DSOD. To further reduce compute resources,
we introduce Gabor filters generated in Section 4.3 as
a replacement and for feature extraction in the stem block.
In principle, the computational complexity of a convolu-
tional filter kernel is (N × N)2 and that of the Gabor fil-
ter kernel is N × N, which gives it a computational urge
over the convolutional filter. With these design principles
in place, we reduce the parameters of the original DSOD
detector and describe the variant CG-DSOD architecture.
Similar to DSOD, CG-DSOD is composed of a backbone
and a front-end sub-network, respectively. The stem block
in CG-DSOD starts with a 3 × 3 color Canny edge con-
volution with a stride of 1 which is meant to enhance the

(a)

(b)

(c)

522|Agyemang et al.
Period. Polytech. Civ. Eng., 66(2), pp. 516–531, 2022

edges of objects. This is followed by two Gabor convolu-
tional layers for feature extraction at a low computational
rate. Afterward, a convolutional layer follows, then a pool-
ing layer before dense blocks and transition layers with
reduced parameters.

Lastly comes the front-end which comprises 6 scales as
in the original DSOD but with reduced parameter configu-
ration. CG-DSOD configuration parameters are tabulated
in Table 2 followed by a graphical illustration of the archi-
tecture CG-DSOD in Fig. 4.

5 Experiments
The presented detector CG-DSOD is extensively evaluated
in two categories, offline and online mode under diverse
evaluation metrics. The offline mode entails the use of
allocated testing data and the online mode uses a low-cost
MAV, a DJI Tello drone in the real world for a detection task.
Accuracy and loss, mean Average Precision (mAP), and
computational consumption are used as evaluation metrics
in the offline mode. A confidence score and frame process-
ing rate is used as a metric in the online mode under two

Table 2 CG-DSOD configuration, "cceconv" denotes color canny edge convolution, and "gconv" denotes Gabor convolution

Block Layer Output Size CG-DSOD

- Input 3 × 300 × 300 -

Stem Block

Color Canny Edge Conv. 64 × 300 × 300 3 × 3 cceconv, stride 1

Gabor Conv. 64 × 150 × 150 3 × 3 gconv, stride 2

Gabor Conv. 64 × 150 × 150 3 × 3 gconv, stride 1

Convolution 128 × 150 × 150 1 × 1 conv, stride 1

Pooling 128 × 75 × 75 2 × 2 max pool, stride 2

Dense Blocks with
transition layers

Dense 0 256 × 75 × 75

Transition 0 128 × 38 × 38 1 × 1 conv
2 × 2 max pool, stride 2

Dense 1 416 × 38 × 38

Transition 1 128 × 19 × 19 1 × 1 conv
2 × 2 max pool, stride 2

Dense 2 512 × 19 × 19

Transition 2 256 × 19 × 19 1 × 1 conv

Dense 3 736 × 19 × 19

Transition 3 64 × 19 × 19 1 × 1 conv

Prediction block CG-DSOD Prediction - Plain/Dense

1 1

3 3
4

×
×

 ×

conv
conv

1 1

3 3
6

×
×

 ×

conv
conv

1 1

3 3
6

×
×

 ×

conv
conv

1 1

3 3
6

×
×

 ×

conv
conv

Fig. 3 Randomly selected (a) 3D building models and (b) cropped annotated building components

(a)

(b)

Agyemang et al.
Period. Polytech. Civ. Eng., 66(2), pp. 516–531, 2022|523

environmental conditions. We also demonstrate the com-
putational efficiency of the presented approach in an abla-
tion study with a focus on computational complexity and
early convergence. Faster R-CNN [36] and YOLOv3 [37]
are selected as comparators to CG-DSOD.

5.1 Training of CG-DSOD
CG-DSOD is trained from scratch using a higher ratio of
the building component data which is augmented to attain
a total of 6,675 images and tested with 20% of the unseen
data. Caffe framework is used as the machine learning
platform and an NVIDIA Geforce RTX 2070 with Max-Q
Design serves as the computing resource. We follow the
training technique used to train DSOD, such as the use
of SGD Solver, smooth Loss L1 to penalize deviation of
estimated bounding box by CG-DSOD from the ground
truth, and cross-entropy loss for classification. We set the
learning rate at 10–3, using a batch size of 32 and train
CG-DSOD for 100 epochs.

5.2 Offline evaluation
5.2.1 Detection accuracy and loss
Both comparators, Faster R-CNN and YOLOv3 go through
a similar fine-tuning configuration and both are initialized
with ImageNet weights before retraining for feature spe-
cifics. Faster R-CNN is trained using ResNet-50 as the

backbone and YOLOv3 is trained using DarkNet 19 as the
backbone network.

CG-DSOD records a training accuracy of 98.44%
accompanied by a loss of 0.0506 and a testing accuracy of
98.01% with a loss of 0.0540 after the 100th epoch. From
Fig. 5(a), CG-DSOD shows a steady training and testing
pattern on the building component dataset. There are nearly
no sudden drifts of both training and loss curves which con-
notes CG-DSOD attains strong robustness. An observation
from Fig. 5(a) shows incorporating Gabor filters and color
Canny edge convolution aids the variant model, CG-DSOD
to learn faster hence early convergence is adduced. A pro-
gressive accuracy of 90% is recorded for both training
and testing somewhere into the 10th epoch during training
for CG-DSOD (refer to Fig. 5(a)) as opposed to YOLOv3
which records 90% plus of accuracy somewhere beyond
the 40th epoch (refer to Fig. 5(b)) and Faster R-CNN which
is after the 50th epoch (refer to Fig. 5(c)). It must be noted
that despite CG-DSOD progressive accuracy rise at an ear-
lier epoch, it experiences downward accuracy spikes at
some epochs yet it rises and is more stable compared to
both comparators. Clearly from Fig. 5(a), CG-DSOD has
not fitted to the building component data. There is almost
nearly no overfitting which indicates good generalization
of CG-DSOD. Besides, the rapid depreciation in the loss
curves as seen in the subplot of Fig. 5(a) around the 10th

Fig. 5 Graphical comparison of training and testing accuracies and losses for (a) CG-DSOD, (b)YOLOv3, and (c) Faster R-CNN

Fig. 4 The architecture of CG-DSOD detector

524|Agyemang et al.
Period. Polytech. Civ. Eng., 66(2), pp. 516–531, 2022

epoch reflects possibly the absence of further relevant fea-
tures for CG-DSOD to utilize to improve the accuracies.
As such, the configuration of CG-DSOD is efficient and
training for further epochs may lead to overfitting.

YOLOv3 which is the first runner-up in detecting build-
ing components in this study records training and testing
accuracies of 97.56% and 97.94% with losses of 0.1072
and 0.0792, respectively. Faster R-CNN records an accu-
racy of 96.29% and a loss of 0.1097 during training and at
testing records 95.02% as accuracy and 0.1371 as a loss.
Both comparators attain good generalization as it can be
seen from Fig. 5(b) and 6(c), little overfitting is attained by
both comparators as compared to CG-DSOD. Although all
three detection models (CG-DSOD, YOLOv3, and Faster
R-CNN) records training and testing accuracies above
95%, YOLOv3 and Faster R-CNN lag behind CG-DSOD.
CG-DSOD surpasses YOLOv3 and Faster R-CNN con-
cerning accuracy, loss, and early convergence. Table 3 is
a tabulation of training and testing accuracies and losses
of the detectors followed by visualization of the perfor-
mance of each model in Fig. 5.

Using Intersection over Union (IoU) at a threshold of
0.6 and Per-Class Regression (PCR) which designates
separate predicted bounding boxes for the classes, ran-
domly selected correct and incorrect detection of building

components by CG-DSOD is presented in Fig. 6 excluding
that of the comparators for reasons of brevity. Besides, it
must be noted the accuracies adduced by each detection
model do reflect on the detection of the object of interest in
the test data. IoU here is the intersection of bounding box
estimations by the detectors (CG-DSOD, YOLOv3, and
Faster R-CNN) against the ground truth, more details are
given in Section 5.2.2. Interpretation of detection results
in Fig. 6 is read from left to right in corresponding rows a,
b, and c. Correct detected results are given in rows a and
b with the incorrect detections in row c. Incorrect results
in Fig. 6 fall within the False Positive (FP) and False
Negative (FN) categories. The former, FP denotes cor-
rect classification and localization but IoU is less than the
given threshold 0.6, and the latter, FN denotes an instance
such as images 1, 3, and 4 in row c where wrong classifica-
tions are assigned by CG-DSOD.

Table 3 Training and testing accuracies and losses for the three
detection models used in this study

Detection
model

Training
accuracy

Training
loss

Testing
accuracy

Testing
loss

CG-DSOD 98.44% 0.0506 98.01% 0.05040

YOLOv3 97.56% 0.1072 97.94% 0.0792

Faster R-CNN 96.29% 0.1097 95.02% 0.1371

Fig. 6 Random selection of correct detections by CG-DSOD in rows (a) and (b) and incorrect detections in row (c) based on IoU threshold at 0.6

(a)

(b)

(c)

Agyemang et al.
Period. Polytech. Civ. Eng., 66(2), pp. 516–531, 2022|525

5.2.2 Mean average precision
We employ the evaluation approach used in the MS COCO
2014 challenge to measure the performance of each detec-
tion model (CG-DSOD, YOLOv3, and Faster R-CNN).
As such, we compute the Average Precision (AP) of the
7 classes (refer to Table 1) over specified IoU thresholds
and average the adduced APs. Afterward, the mean of the
averaged APs at specified thresholds are taken, hence the
mean Average Precision (mAP) is attained. The threshold
used in the benchmark is AP @ IoU = {0.5,0.55,…,0.95},
i.e., an AP at specified IoU. Here we interpret the thresh-
old in two folds, thus, (1) as confidence threshold for clas-
sifying the object, and (2) as IoU to measure the predicted
location of the object from the ground-truth bounding box
(polyline region, 2D box, or circular region). Briefly, in the
context of AP, the precision-recall curve (precision mea-
sures false positive rate and recall measures false-nega-
tive rate) is used to compute the AP of each of the object
instances (classes) at specified thresholds. Afterward, aver-
aged to adduce the AP for a detection model (CG-DSOD,
YOLOv3, and Faster R-CNN). Using an 11 point interpo-
lation, AP is expressed as:

AP Precision Recall

Recall
Recall

i

i

i

= ()

= …

∑1
11

0 0 1 0 2 1where , . , . , , .. .0[]
 (15)

In measuring the predicted location of an object based
on the specified thresholds, the IoU is given as:

IoU area of overlap
area of union

= . (16)

Based on the IoU and precision-recall curve which leads
to the computation of APs, we report the performance of
the detection models used in this study.

Table 4 is a statistical representation of APs adduced
for each detection model used in the study under the vari-
ant thresholds. Vividly from Table 4, it can be seen as the
threshold increases there is a drop in the AP connoting the
detection models are more stringent about the true posi-
tives. The steepness of the precision-recall curve as seen
in Fig. 7 which computes the APs under variant thresholds
varies across the detection models (CG-DSOD, YOLOv3,
and Faster R-CNN). Fig. 7 gives a graphical insight into
the performance of each detection model under increas-
ing thresholds. Using both Table 4 a numerical view, and
Fig. 7 a graphical view, comparatively CG-DSOD shows
a steadier drop in the precision-recall curve as opposed to
the comparators. As the threshold increases from 0.8 to
0.95, the volatility of CG-DSOD increases yet is advan-
tageous over the two comparators which attains much
higher volatilities at higher thresholds. To this end, we are
of the view a reflection of the training and testing accura-
cies and losses can be seen in the precision-recall curves
which leads to APs and finally a mAP for each detection
model. Percentage-wise, there is nearly a 2% apart dif-
ference adduced among the three detection models under
a mean training and testing accuracies. A similar infer-
ence is deduced in the mAP which is represented in Fig. 8
graphically, and in the last column of Table 4. As such, this
analytical insight buttresses our initial view of the link-
age of a reflection of training and testing accuracies in
the mAP for the detection models (CG-DSOD, YOLOv3,

Table 4 Numerical representation of detection models under specified IoUs

Model AP .50 AP .55 AP .60 AP .65 AP .70 AP .75 AP .80 AP .85 AP .90 AP .95 mAP

CG-DSOD 0.9909 0.9805 0.9793 0.9462 0.9379 0.9016 0.8663 0.7934 0.6840 0.3367 0.8417

YOLOv3 0.9899 0.9771 0.9757 0.9397 0.9233 0.8912 0.8232 0.7325 0.6001 0.2672 0.8120

Faster R-CNN 0.9903 0.9871 0.9768 0.9039 0.8841 0.8593 0.7984 0.7031 0.5701 0.2395 0.7913

Fig. 7 The precision-recall curve adduced for the detection models under specified thresholds (a) CG-DSOD, (b) YOLOv3, (c) Faster R-CNN

526|Agyemang et al.
Period. Polytech. Civ. Eng., 66(2), pp. 516–531, 2022

and Faster R-CNN). All in all, CG-DSOD records a mAP
of 84.17%, YOLOv3 records 81.20%, and Faster R-CNN
records 79.13% in the building component detection task.

5.2.3 Computational cost
In this section, we measure the computational resources
utilized by each detection model during training to infer
the computational consumption. We employ a modi-
fied version of the computational cost procedure in [38]
by introducing a parameter windows_bias to account for
resources being utilized by the background process and
windows processes during training. The computational
parameters entail:

• Runtime: time used in training of each model sepa-
rately.

• GPU Load: the current supplied to the GPU cores
during training given in the form of voltage.

• GPU Mem.: the total amount of GPU memory con-
sumed.

• DataTrans: this is a measure of the amount of data trans-
ferred between the cores of the GPU during training.

• Windows_bias: the new parameter introduced to
account for GPU and memory usage for windows
processes (Client Server Runtime Process, Desktop
Window Manager, Registry, etc.) and background
processes (Networkcap, IntelAudioService, etc.)
during training.

Numerical measures for the aforementioned compu-
tational parameters are via the NVIDIA profiling tools
(NSIGHT tools, NVVP, and NVML). The computational
cost during training can then be obtained as:

modelE runtime gpuload gpumem datatrans= × × × , (17)

Computation t E windows bias
number of epoches

al cos model
=

− . (18)

Fig. 9 shows the normalized plotting of the computa-
tional parameters which also serve as standalone evalua-
tion metrics and the computational cost by each detection
model (CG-DSOD, YOLOv3, and Faster R-CNN). From
Fig. 9, it can be seen that CG-DSOD can conserve variation
of a little over 20% on the normalized values for Runtime,
GPU load, GPU mem., and DataTrans as opposed to both
YOLOv3 and Faster R-CNN. As such in the overall compu-
tational cost derived using Eq. (10), CG-DSOD conserves
nearly 30% of the compute resources required during train-
ing as opposed to the two comparators. The computational
reduction is much attributed to the use of Gabor filters in
the lower blocks of CG-DSOD architecture. It must be
included that, color Canny edge convolutions introduced
also contributes to the reduction of computation required
in the training of CG-DSOD. Besides in [39], the authors
designed circuits in Verilog mapped onto a 45 nm field-pro-
grammable gate array board to measure the computational
consumption of a DCNN model. It occurred the first two
convolutional blocks consume nearly 47% of the compu-
tational resource required to train a DCNN. The architec-
tures of YOLOv3 and Faster R-CNN reflect on the com-
putational cost by the two detection models, respectively.
With YOLOv3 having 106 convolutional layers and Faster
R-CNN having 50 convolutional layers as their base archi-
tectures, the high computational requirements adduced
during training indicate the depth of a DCNN architecture
contributes to the high computations.

Fig. 8 mAP results for CG-DOSD, YOLOv3, and Faster R-CNN
detectors under diverse thresholds, i.e., 0.5 ≤ IoU ≤ 0.95

Fig. 9 Computational cost by the CG-DSOD, YOLOv3, and Faster
R-CNN

Agyemang et al.
Period. Polytech. Civ. Eng., 66(2), pp. 516–531, 2022|527

5.3 Online evaluation
In this section, we give an account of an online evalua-
tion of CG-DSOD together with the comparators. A low-
cost MAV, a DJI Tello drone together with a ground sta-
tion control equipped with an NVIDIA Geforce RTX 2070
with Max-Q Design and 16GB of memory is used for the
online experiment. Due to range limitations, a Xiaomi
wifi 2 repeater is used to extend the range. An insight
into the real-world experimentation setup is visualized in
Fig. 10(a). The DJI Tello drone operates on an Intel 14 core
processor with a default frame rate of 30 frames per second
(fps) and has an extremely low compute power which pre-
vents direct DCNN model implementation on the DJI Tello
drone. To control the DJI Tello drone, the djitellopy mod-
ule is used to implement a navigation controller feasible
with a computer keyboard. As such, keys w, s, a, d denotes
changes in altitude and orientation and keys up, down,
left, right denotes changes in the aspect of pitch and roll,
respectively. Readers are to refer to Fig. 10(b) for graphi-
cal understanding. Through the setup described, a human
pilot flies the DJI Tello within the hallways and outskirts
of a dormitory building within the localities of the authors
of this study whiles the detection models process the video

feed from the DJI Tello in real-time. Since there are no
ground truth labels in the real-world environment, we eval-
uate the detectors with the confidence scores and the frame
processing rate. The report for the two environmental sce-
narios is based on similar detections within similar frames
by the three detectors for comparative reasons. First, an
account is given for environment 1 which has no objects
obstructing the percept of the DJI Tello drone, Fig. 11(a).
Here, random sample frames are selected, then we compute
average confidence avgC for each frame f1,…,fn afterward,
we take the mean confidence mC of all the average confi-
dence avgC. CG-DSOD records a higher mean confidence
score using a threshold of 0.6 compared to YOLOv3 and
Faster R-CNN. Moreover, CG-DSOD has higher accuracy
and mAP as opposed to both comparators which reflect in
the estimated confidence scores.

In the second scenario, environment 2, a human poses as
an obstruction to infer the performance of the detectors. The
human pilot flies the DJI Tello through the occluded envi-
ronment for the detection of objects of interest. We observed
that in the occluded environment, the confidence scores
estimated by all three detectors decrease for similar
objects detected in environment 1 which has no obstacles.
Regardless of the decrease in confidence scores, CG-DSOD
has much better confidence than both comparators as seen in
Fig. 11(b). We are of the view, the presence of occlusion con-
tributes to the decrease in the confidence scores. For brev-
ity, we report a handful of correct detection frames for
both environments in Fig. 11 excluding the acknowledged
false detections. For detection speed, YOLOv3 achieves
the best result at a processing rate of 65.6fps while our
detector CG-DSOD attains a promising frame processing
rate of 42.7fps and Faster R-CNN records 9.4fps.

5.4 Ablation study
We infer the contribution of Gabor filters and color Canny
edge convolution in CG-DSOD detector by removing the
generic Gabor filters and color Canny edge convolution
hence leaving us with the DSOD detector with reduced
parameters as in Table 2, herein DSOD-small. The focus
is on the computational consumption, how fast the detector
(DSOD-small) learns as well as the accuracies recorded.
CG-DSOD has total training parameters of 0.83M as com-
pared to the DSOD-small which has 0.96M. After train-
ing for 100 iterations using the same dataset we observe
DSOD-small fails to attain early convergence as seen
from Fig. 12(b). DSOD-small attains training and testing
accuracies of 97.58% and 97.13 % with losses 0.9641 and

Fig. 10 (a) schematic of real-time experiment setup and (b) illustration
of DJI Tello controller

528|Agyemang et al.
Period. Polytech. Civ. Eng., 66(2), pp. 516–531, 2022

(a)

(b)
Fig. 11 (a) represents detection results in environment 1 and (b) denotes detection results for environment 2 where a human poses as a weak obstruction

Fig. 12 Ablation study aiming at convergence, and accuracies (a and b) and computational cost (c) of CG-DSOD and DSOD-small

Agyemang et al.
Period. Polytech. Civ. Eng., 66(2), pp. 516–531, 2022|529

0.01482, respectively which trails the accuracies and losses
of CG-DSOD, refer to Table 3. From Fig. 12(b), it can be
seen that DSOD-small starts to converge somewhere after
the 40th epoch compared to CG-DSOD which is some-
where after the 10th epoch, refer to Fig. 12(a). The com-
putational cost computation follows the same approach in
Section 5.2.3. After training DSOD-small for 100 epochs,
we observed DSOD-small uses about 12% more com-
pute resources as compared to CG-DSOD. The computa-
tional cost depicted in Fig. 12(c) correlates CG-DSOD and
DSOD-small, respectively.

6 Conclusions
In this study, we have presented a lightweight detec-
tion model dubbed CG-DSOD. Our detection model
(CG-DSOD) is a variant of the DSOD detector coupled
with Gabor filters and color Canny edge detectors in
the lower blocks with reduced parameters for comput-
ing reduction and faster learning. We train CG-DSOD
on building structural components and also introduce
domain randomization, a much better data augmentation
technique. We investigated the capabilities of CG-DSOD
over three main axes: accuracy, mAP, and computational

cost. We conduct two extensive experiments, offline and
online (real-world) with a resource-constrained edge node
for verification of CG-DSOD. Basing our conclusion on
the experiments, CG-DSOD outperforms the two compar-
ators in the study. CG-DSOD attains a nearly 2% advan-
tage in accuracy over its comparators, somewhere around
3% mAP higher, and nearly a 30% reduction in compu-
tational resources as opposed to YOLOv3 and Faster
R-CNN. An online verification using a DJI Tello drone
shows the detection speed of CG-DSOD is enough for
real-time detection tasks. CG-DSOD shows promising
detection results in occluded environments which is a sign
of CG-DSOD having the urge to overcome complexity
within environments and making use of partial percept of
objects of interest. Last, as future work, using Gabor fil-
ters as a convolutional modulator and using a DCNN to
attain autonomous navigation of a MAV is a step towards
autonomous SHM.

Acknowledgement
This work was supported in part by the National Natural
Science Foundation of China under Grants 61571099,
61501098.

References
[1] Kong, Q., Allen, R. M., Kohler, M. D., Heaton, T. H., Bunn, J.

"Structural health monitoring of buildings using smartphone sen-
sors", Seismological Research Letters, 89(2A), pp. 594–602, 2018.

 https://doi.org/10.1785/0220170111
[2] Vardanega, P. J., Webb, G. T., Fidler, P. R. A., Middleton, C.

R. "Assessing the potential value of bridge monitoring sys-
tems", Proceedings of the Institution of Civil Engineers: Bridge
Engineering, 169(2), pp. 126–138, 2016.

 https://doi.org/10.1680/jbren.15.00016
[3] Djenouri, D., Laidi, R., Djenouri, Y., Balasingham, I. "Machine

learning for smart building applications: Review and taxonomy",
ACM Computing Surveys, 52(2), Article number: 24, 2019.

 https://doi.org/10.1145/3311950
[4] Sony, S., Dunphy, K., Sadhu, A., Capretz, M. "A systematic review

of convolutional neural network-based structural condition assess-
ment techniques", Engineering Structures, 226, Article number:
111347, 2021.

 https://doi.org/10.1016/j.engstruct.2020.111347
[5] Ramezani Dooraki, A., Lee, D.-J. "An innovative bio-inspired

flight controller for quad-rotor drones: Quad-rotor drone learning
to fly using reinforcement learning", Robotics and Autonomous
Systems, 135, Article number: 103671, 2021.

 https://doi.org/10.1016/j.robot.2020.103671
[6] Shen, Z., Liu, Z., Li, J., Jiang, Y.-G., Chen, Y., Xue, X. "DSOD:

Learning Deeply Supervised Object Detectors from Scratch", In:
2017 IEEE International Conference on Computer Vision (ICCV),
Venice, Italy, 2017, pp. 1937–1945.

 https://doi.org/10.1109/ICCV.2017.212

[7] Xin, G., Ke, C, Xiaoguang, H. "An improved Canny edge detection
algorithm for color image", In: IEEE 10th International Conference
on Industrial Informatics, Beijing, China, 2012, pp. 113–117.

 https://doi.org/10.1109/INDIN.2012.6301061
[8] Gabor, D. "Theory of communication. Part 1: The analysis of

information", Journal of the Institution of Electrical Engineers -
Part III: Radio and Communication Engineering, 93(26), pp. 429–
441, 1946.

 https://doi.org/10.1049/ji-3-2.1946.0074
[9] Cha, Y.-J., Choi, W., Suh, G., Mahmoudkhani, S., Büyüköztürk, O.

"Autonomous Structural Visual Inspection Using Region-Based
Deep Learning for Detecting Multiple Damage Types", Computer-
Aided Civil and Infrastructure Engineering, 33(9), pp. 731–747,
2018.

 https://doi.org/10.1111/mice.12334
[10] Perez, H., Tah, J. H. M., Mosavi, A. "Deep Learning for Detecting

Building Defects Using Convolutional Neural Networks", Sensors,
19(16), Article number: 3556, 2019.

 https://doi.org/10.20944/preprints201908.0068.v1
[11] Cha, Y.-J., Choi, W., Büyüköztürk, O. "Deep Learning-Based

Crack Damage Detection Using Convolutional Neural Networks",
Computer-Aided Civil and Infrastructure Engineering, 32(5), pp.
361–378, 2017.

 https://doi.org/10.1111/mice.12263
[12] Atha, D. J., Jahanshahi, M. R. "Evaluation of deep learning approaches

based on convolutional neural networks for corrosion detection",
Structural Health Monitoring, 17(5), pp. 1110–1128, 2018.

 https://doi.org/10.1177/1475921717737051

https://doi.org/10.1785/0220170111
https://doi.org/10.1680/jbren.15.00016
https://doi.org/10.1145/3311950
https://doi.org/10.1016/j.engstruct.2020.111347
https://doi.org/10.1016/j.robot.2020.103671
https://doi.org/10.1109/ICCV.2017.212
https://doi.org/10.1109/INDIN.2012.6301061
https://doi.org/10.1049/ji-3-2.1946.0074
https://doi.org/10.1111/mice.12334
https://doi.org/10.20944/preprints201908.0068.v1
https://doi.org/10.1111/mice.12263
https://doi.org/10.1177/1475921717737051

530|Agyemang et al.
Period. Polytech. Civ. Eng., 66(2), pp. 516–531, 2022

[13] Khodabandehlou, H., Pekcan, G., Fadali, M. S. "Vibration-based
structural condition assessment using convolution neural net-
works", Structural Control and Health Monitoring, 26(2), Article
ID e2308, 2019.

 https://doi.org/10.1002/stc.2308
[14] Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M., Inman, D. J.

"Real-time vibration-based structural damage detection using one-
dimensional convolutional neural networks", Journal of Sound and
Vibration, 388, pp. 154–170, 2017.

 https://doi.org/10.1016/j.jsv.2016.10.043
[15] Avci, O., Abdeljaber, O., Kiranyaz, S., Inman, D. "Structural

damage detection in real time: Implementation of 1D convolu-
tional neural networks for SHM applications", Structural Health
Monitoring & Damage Detection, 7, pp. 49–54, 2017.

 https://doi.org/10.1007/978-3-319-54109-9_6
[16] Abdeljaber, O., Avci, O., Kiranyaz, M. S., Boashash, B., Sodano,

H., Inman, D. J. "1-D CNNs for structural damage detection:
Verification on a structural health monitoring benchmark data",
Neurocomputing, 275, pp. 1308–1317, 2018.

 https://doi.org/10.1016/j.neucom.2017.09.069
[17] Bao, Y., Tang, Z., Li, H., Zhang, Y. "Computer vision and deep

learning–based data anomaly detection method for structural
health monitoring", Structural Health Monitoring, 18(2), pp. 401–
421, 2019.

 https://doi.org/10.1177/1475921718757405
[18] Xu, Y., Bao, Y., Chen, J., Zuo, W., Li, H. "Surface fatigue crack

identification in steel box girder of bridges by a deep fusion convo-
lutional neural network based on consumer-grade camera images",
Structural Health Monitoring, 18(3), pp. 653–674, 2019.

 https://doi.org/10.1177/1475921718764873
[19] Lee, S., Ha, J., Zokhirova, M., Moon, H., Lee, J. "Background

Information of Deep Learning for Structural Engineering",
Archives of Computational Methods in Engineering, 25(1), pp.
121–129, 2018.

 https://doi.org/10.1007/s11831-017-9237-0
[20] Kang, D., Cha, Y.-J. "Autonomous UAVs for Structural Health

Monitoring Using Deep Learning and an Ultrasonic Beacon System
with Geo-Tagging", Computer-Aided Civil and Infrastructure
Engineering, 33(10), pp. 885–902, 2018.

 https://doi.org/10.1111/mice.12375
[21] Jiang, S., Zhang, J. "Real-time crack assessment using deep neural

networks with wall-climbing unmanned aerial system", Computer-
Aided Civil and Infrastructure Engineering, 35(6), pp. 549–564,
2020.

 https://doi.org/10.1111/mice.12519
[22] Cheng, C., Shang, Z., Shen, Z. "Automatic delamination segmen-

tation for bridge deck based on encoder-decoder deep learning
through UAV-based thermography", NDT and E International, 116,
Article number: 102341, 2020.

 https://doi.org/10.1016/j.ndteint.2020.102341
[23] Garilli, E., Bruno, N., Autelitano, F., Roncella, R., Giuliani, F.

"Automatic detection of stone pavement’s pattern based on UAV
photogrammetry", Automation in Construction, 122, Article num-
ber: 103477, 2021.

 https://doi.org/10.1016/j.autcon.2020.103477

[24] Lee, J.-H., Yoon, S.-S., Jung, H.-J., Kim, I.-H. "Diagnosis of crack
damage on structures based on image processing techniques and
R-CNN using unmanned aerial vehicle (UAV)", Sensors and Smart
Structures Technologies for Civil, Mechanical, and Aerospace
Systems, Article number: 1059811, 2018.

 https://doi.org/10.1117/12.2296691
[25] Kim, H., Kim, K., Kim, H. "Data-driven scene parsing method

for recognizing construction site objects in the whole image",
Automation in Construction, 71(Part 2), pp. 271–282, 2016.

 https://doi.org/10.1016/j.autcon.2016.08.018
[26] Visual Geometry Group "VGG Image Annotator (2.0.11)", [com-

puter program] Available at: https://www.robots.ox.ac.uk/~vgg/
software/via/via.html [Accessed: 5 December 2020]

[27] Agyemang, I. O. "Civil Structures/Infrastructures construction
components data", [Online] Available at: https://www.scidb.cn/
en/s/quEJFr [Accessed: 25 December 2020]

[28] Konishi, Y., Hanzawa, Y., Kawade, M., Hashimoto, M. "Fast 6D
Pose Estimation Using Hierarchical Pose Trees", In: Computer
Vision – ECCV 2016, 14th European Conference, Amsterdam, The
Netherlands, 2016, pp. 398–413.

 https://doi.org/10.1007/978-3-319-46448-0_24
[29] Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K. Q.

"Densely connected convolutional networks", In: 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, 2017, pp. 2261–2269.

 https://doi.org/10.1109/CVPR.2017.243
[30] Canny, J. "A computational approach to edge detection", IEEE

Transactions on Pattern Analysis and Machine Intelligence,
PAMI-8(6), pp. 679–698, 1986.

 https://doi.org/10.1109/TPAMI.1986.4767851
[31] Meshgini, S., Aghagolzadeh, A., Seyedarabi, H. "Face Recognition

Using Gabor Filter Bank, Kernel Principle Component Analysis
and Support Vector Machine", International Journal of Computer
Theory and Engineering, 4(5), pp. 767–771, 2012.

 https://doi.org/10.7763/ijcte.2012.v4.574
[32] Krizhevsky, A., Sutskever, I., Hinton, G. E. "ImageNet Classification

with Deep Convolutional Neural Networks", Communications of
the ACM, 60(6), pp. 84–90, 2012.

 https://doi.org/10.1145/3065386
[33] Yuan, Y., Zhang, J., Wang, Q. "Deep Gabor convolution network

for person re-identification", Neurocomputing, 378, pp. 387–398,
2020.

 https://doi.org/10.1016/j.neucom.2019.10.083
[34] Chang, S.-I., Morgan, N. "Robust CNN - based Speech Recognition

With Gabor Filter Kernels", In: Proceedings of Interspeech 2014,
Singapore, 2014, pp. 905–909.

 https://doi.org/10.21437/Interspeech.2014-226
[35] Blender Foundation "Blender 3D creation suite (3.0.1)", [com-

puter program] Available at: https://www.blender.org/download/
[Accessed: 15 March 2021]

[36] Ren, S., He, K., Girshick, R., Sun, J. "Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks",
IEEE Transactions on Pattern Analysis and Machine Intelligence,
39(6), pp. 1137–1149, 2017.

 https://doi.org/10.1109/TPAMI.2016.2577031

https://doi.org/10.1002/stc.2308
https://doi.org/10.1016/j.jsv.2016.10.043
https://doi.org/10.1007/978-3-319-54109-9_6
https://doi.org/10.1016/j.neucom.2017.09.069
https://doi.org/10.1177/1475921718757405
https://doi.org/10.1177/1475921718764873
https://doi.org/10.1007/s11831-017-9237-0
https://doi.org/10.1111/mice.12375
https://doi.org/10.1111/mice.12519
https://doi.org/10.1016/j.ndteint.2020.102341
https://doi.org/10.1016/j.autcon.2020.103477
https://doi.org/10.1117/12.2296691
https://doi.org/10.1016/j.autcon.2016.08.018
https://www.robots.ox.ac.uk/~vgg/software/via/via.html
https://www.robots.ox.ac.uk/~vgg/software/via/via.html
https://www.scidb.cn/en/s/quEJFr
https://www.scidb.cn/en/s/quEJFr
https://doi.org/10.1007/978-3-319-46448-0_24
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.7763/ijcte.2012.v4.574
https://doi.org/10.1145/3065386
https://doi.org/10.1016/j.neucom.2019.10.083
https://doi.org/10.21437/Interspeech.2014-226
https://www.blender.org/download/
https://doi.org/10.1109/TPAMI.2016.2577031

Agyemang et al.
Period. Polytech. Civ. Eng., 66(2), pp. 516–531, 2022|531

[37] Redmon, J., Farhadi, A. "YOLOv3: An Incremental Improvement",
University of Washington, Washington, DC, USA, Tech report,
2018. [online] Available at: http://arxiv.org/abs/1804.02767

[38] Anwar, A., Raychowdhury, A. "Autonomous Navigation via Deep
Reinforcement Learning for Resource Constraint Edge Nodes Using
Transfer Learning", IEEE Access, 8, pp. 26549–26560, 2020.

 https://doi.org/10.1109/ACCESS.2020.2971172

[39] Sarwar, S. S., Panda, P., Roy, K. "Gabor filter assisted energy effi-
cient fast learning Convolutional Neural Networks", presented
at Proceedings of the International Symposium on Low Power
Electronics and Design, Taipei, Taiwan, July, 24–26, 2017.

 https://doi.org/10.1109/ISLPED.2017.8009202

http://arxiv.org/abs/1804.02767
https://doi.org/10.1109/ACCESS.2020.2971172
https://doi.org/10.1109/ISLPED.2017.8009202

	1 Introduction
	2 Related works
	2.1 Deep learning-based SHM
	2.2 Deep learning-UAV-based SHM

	3 Data acquisition and preparation
	4 Lightweight detector
	4.1 DSOD overview
	4.2 Color Canny edge detector
	4.3 Gabor filters
	4.4 Domain randomization
	4.5 Network configuration

	5 Experiments
	5.1 Training of CG-DSOD
	5.2 Offline evaluation
	5.2.1 Detection accuracy and loss
	5.2.2 Mean average precision
	5.2.3 Computational cost

	5.3 Online evaluation
	5.4 Ablation study

