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Abstract

The study of forced oscillations in open cylindrical channel under precession is extended to include the shear effect, that is induced by 

inertial waves in such systems. The linear part of the problem led to two equations for stability one for the viscous part similar to Orr-

Sommerfeld equation and one for the inviscid part similar to Rayleigh equation, the second was solved and discussed depending on 

the stream function observation. The linear part also led to relationship that connects between the stream velocity and the disturbance 

one is derived in a form similar to Burns conditions for open flows under normal conditions. Experimentally measuring the horizontal 

velocity distribution with depth showed that this distribution is sinusoidal one. Burns condition was solved based on this assumption. 

The nonlinear part of the problem led to a new version of Koteweg De-Vries (KdV) equation that is solved numerically by applying the 

leapfrog method for time discretization, Fourier transformation for the space one, and the trapezoidal rule for solving the integrals 

with depth, the results showed that the shear has no specific impact on the wave form which is similar to the classical results obtained 

by the theories under normal conditions.
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1 Introduction
Most of the waves theories focus on the cases where the 
flow is irrotational one, from which the effect of stream 
vorticity is negligible. However, in real streams this is not 
the case, the shear effect induced by the friction effect 
due to water motion along the sides and the channel bot-
tom modifies the whole stream velocity distribution with 
depth and makes it rotational one. Generally, due to the 
rotational action a thin layer called the "critical layer" may 
take place, this layer has thickness of order the amplitude 
of the wave [1], that is propagating along the stream, such 
layer only occurs when the disturbance velocity equals to 
the stream's one, that are connected with each other in the 
form of the famous condition introduced by Burns in [2]:

1

0
2g

dz

U z c

z
=

( ) −( )∫ , (1)

where U(z) the stream velocity distribution as a function 
of depth Z, c the wave velocity. The direct integration of 
Eq. (1) leads to the fact that wave velocity relative to the 
bottom of the stream has two values, of which one is always 
less that the minimum stream velocity (i.e., the velocity 
of the slip Umin), and the other is always greater than the 

maximum stream velocity (i.e., the velocity at the surface 
Umax), from which one can find directly that if the slip veloc-
ity is zero, then the wave velocity relative to the bottom has 
a negative value, so that is always upstream propagation of 
waves, which contradicts the shooting flow theory, in which 
all disturbances are swept downstream [2]. The variation of 
wave speed was noticed earlier in [3] by Thompson when 
the current is not uniform horizontally, the wave speed var-
ies accordingly and distorts the wave fronts in a refrac-
tion pattern, thus the topography near the shore (which is 
considered shallow) is highly important on wave form as 
the shallow currents are essentially rotational ones, other 
important result he extracted that the phase speed veloc-
ity of waves in a current whose shear is constant differs 
from that of irrotational wave depending on the magnitude 
of shear. Busse [4] stated that the change in depth or any 
slight modification of uniform flows causes stretching of 
vortex lines similar to the effect of varying Coriolis force, 
the author discussed theoretically the case when small dis-
turbance deviated from the solid-body rotation on shear 
flow, where a critical value of Rossby number (the defi-
nition can be found in [5]) over which the flow becomes 
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unstable where the inertial forces overcome the friction in 
Ekman boundary layers and the constraints imposed by the 
variation in depth of the container. The stream velocity vari-
ation with depth is varied, Hunt [6] for instance assumed 
that the steady stream velocity to vary as the one-seventh 
power of the relative height above the bed. Johnson [7] pre-
sumed several shear functions including linear, Poiseuille, 
and Cubic parabolic profiles with discontinuous vorticity 
U', where he solved Eq. (1) accordingly through the direct 
integration, with discussion of critical layer formation and 
the corresponding critical depth. Yih [8] discussed the dif-
ferent results of Burns condition and proved the case where 
the disturbance velocity is smaller than the slip one or the 
velocity at the bottom, the cases he discussed depended on 
the derivatives of the assumed stream velocity function, for 
instance he stated that it is impossible to get singular neutral 
mode from which c = U, where c the disturbance velocity, 
if and only if the second derivative of U does not change 
sign and U is monotonic in the field of flow. Drazin and 
Howard [9] presented as well many schemes for the stream 
velocity distribution including the sinusoidal form, which 
is similar to the case in the present flume under study, also 
they discussed the rectangular jet form, plane Couette flow. 
Their starting point was the modified version of Navier-
Stokes equations that takes the perturbation effects, from 
which they discussed boundary layer formation for inertial 
waves, and different cases of instability and the correspond-
ing solutions. Fenton [10] tried to discuss the problem in 
different manner from which he expanded the kinematic 
and dynamic conditions in terms of the stream function and 
solved the problem numerically from which a new disper-
sion relationship between the wave number and celerity 
was extracted in the dimensionless form in terms of Froude 
number that was assumed in terms of shear velocity. As the 
conclusion of Burns was the importance of viscous effect 
to be included, other team Velthuizen and Wijngaarden [11] 
figured out that the condition that looked physically unac-
ceptable can be accepted if the wave velocity is complex 
one, which implies damping or growth of the waves, which 
may be caused by viscous effects. They tried to derive the 
condition of Burns in different way by connecting wave 
kinematic and potential energies using the linearization 
of Bernoulli equation after stream flow velocity inclusion. 
Johnson [1] derived the main equations in three regions 
inside the critical layer (which occurs when U = c), above 
and below it. He assumed initial configuration to contain 
no closed streamlines so that the vorticity can presumably 
be assigned from the undisturbed conditions at infinity. He 

justified the nonlinear approach inside the layer if the ampli-
tude parameter is greatly in excess of the inverse Reynolds 
number. Assuming irrotational effects to study the solitary 
wave without invoking the shear flow looks as a shortcom-
ing that was first amended by Brooke Benjamin [12] who 
was the first in deducing the solitary wave over long chan-
nel of a nonuniform parallel stream when vorticity produced 
by frictional action at the boundary becomes diffused over 
the whole cross section. The author suggested that instead 
of zero vorticity everywhere (irrotational flow), there is 
constant vorticity along each streamline, provided the lim-
itations due to stagnation effects. Later both Freeman and 
Johnson [13] also provided the derivation of solitary wave 
and its solution taking the shear flow into consideration. 
The aim of this work is to extend the previous linear and 
nonlinear work that was carried out by the present author 
to add the shear effect. To add the proper distribution of 
velocity with depth measurements were carried out using 
Vectrino Profiler (ADV) at specific point in the channel 
with depth, it turned out that the form vertically is sinu-
soidal one. This function was inserted into the new version 
of Burns condition that was derived for the linear case and 
solved accordingly, similar to the normal flows the wave 
velocity relative to the bottom has two values negative and 
positive. The nonlinear part of the problem aims first on 
deriving new KdV model that includes the shear effect and 
then to figure out what is the possible effect of the shear on 
the wave form, is it like the normal cases derived in [12] 
where the potential flow still valid? Or does the shear here 
force us using different formulae? It turned out that no 
impact appears. 

The paper is divided as follows in the §2 a deep expla-
nation about the experimental setup and the governing 
equations, in §3 a dedicated discussion on the linear peri-
odic case and the stability using Rayleigh equation is elu-
cidated. In §4 the nonlinear part of the problem and the 
new KdV model is derived. In §5 discussion on the numer-
ical scheme using Fourier transformation and the leapfrog 
methods. In §6 the main conclusion and summarization of 
the whole results. 

2 Experiment setup
The structure of the apparatus is shown in Fig. 1. The walls 
of the circular wave flume are two coaxial cylinders both 
made of Plexiglas. They are based on a round shaped plas-
tic bottom plate, which is fixed to a rigid wooden round 
support table of the same radius (60 cm). We refer this as 
the tilting table because the center of this table is mounted 
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on a support column through a Cardano type universal 
ball joint. The joint contains two, mutually perpendicular 
horizontal axles, around which the table can freely tilt in 
any direction, but it prevents any rotation around the ver-
tical axis. This type of joint is used to transmit torque in 
between two nonaligned shafts in different machineries 
(like automobiles). Right below the tilting table there is 
another horizontally positioned round table of the same 
size, which is capable of free rotation around the verti-
cal axis. The tilting table is partially supported also by 
the rotating table on three points arranged in 120° apart 
from each other. Each of this support consist of a verti-
cal adjustable length spreader screw mounted vertically on 
the rotating table and a roller on top of the screw, on which 
the tilting table rests. By carefully adjusting the spreader 
screws, the tilt angle and the direction of the tilt can be 
set. When the lower table turns, the tilt direction in which 
upper table - together with the water flume - tilts also turns 
around (the vertical axis) without changing its slope or 
turning around (the vertical axis). This motion is called 
precession in classical mechanics and is well known, 
e.g., in celestial mechanics. The final bit of the apparatus 
is an adjustable speed direct current (DC) electric motor, 
which drives the rotating table via a belt transmission sys-
tem and a vertical cylinder shaft turning on two bearings 
coaxially around the main support column. We note that 
currently the rotating table can be turned only in the coun-
terclockwise sense. The main sizes and the crucial param-
eters of the system are summarized in Table 1. 

The cylinders rotate about their common axis (O, k̂ ) 
with precession rate Ω2 = τΩ, where τ the slope of the base 
table. The lower table is able to rotate about an axis (O, z) 

with rotation rate Ω. The angle between the local axis k̂  
and the inertial one z is the angle of precession ψ. The cyl-
inders are filled with water of different volumes, the inner 
cylinder has higher height than the outer one. The cylin-
drical coordinates suit the geometry of the flume but with 
proper conversions between the inertial laboratory floor 
coordinates to the tilting table should be taken into con-
sideration so that the final system of Navier-Stokes equa-
tions is given as:

dV
dt

V V G P t V v V
�
��
�
��

�
��

� �+ ∇( ) = −
∇

− ( )× + ∇′′.
ρ

2
2Ω Ω , (2)

where V͂  the velocity vector, Ω͂  the angular velocity vec-
tor, the tilde over the variables indicates to their values in 
the tilting rotating frame, P the pressure, t the time, G the 
gravity force, ρ the density, v the kinematic viscosity. With 
continuity equation: 

Fig. 1 Sketch of experimental setup. The camera system in front of the flume almost at the same level of the water level inside the tank

Table 1 Geometrical information of the channel

Notation Value Description

R = rmax 223 mm Outer Radius

βR = rmin 125 mm Inner Radius

b = rmax – rmin 98 mm Channel Width

β = rmin/rmax 0.5605 Radial Ratio

h 260 mm Maximum Wall Height

A 10.71 dm2 Base Area

∀ 27.5 dm3 Maximum Volume

τ 0.005… 0.12 Tilt

h̅ 20… 140 mm Mean Water Level

Ω 1.5… 8 rad/s Angular Velocity

zo ≈ 50 mm Elevation of Flume Bottom
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∇ =V 0 . (3)

The impermeability boundary conditions on the outer 
and inner radii, and the bottom:

V = 0 . (4)

The motion inside the flume is assumed to be two-di-
mensional with predominant direction the azimuthal one, 
where Katsis and Akylas [14] stated that in a channel of 
finite width b b

1
2

=  three dimensional effects are negligible 
if b1 ≤ h̅ 2/a, where h̅  the average depth of water, a the typ-
ical wave amplitude. Table 2 shows results from the exper-
iment about this ratio, where the experiments focused on 
relatively big amount of water inside, those are the cases 
where the solitary wave was noticed, as the final aim in 
this work is to compare the extracted KdV equation under 
shear effect with the experiment. The tilt angle character-
ized by the slope τ also was small. It was noticed during 
the whole experiments that the shallowness condition is 
satisfied, or we can assume that the wave motion is prop-
agating into a shallow water as in Table 2, where the shal-
lowness parameter is given as: δ = 








H
R

2

1 . where H =  h̅  
represents the depth scale, R = rmax represents the length 
scale or the horizontal scale. The vertical range of the flow 
takes place from the bottom where z0 = 0, till the free sur-
face where when no disturbance applied to the surface is 
assumed to be the average depth of water z =  h̅ , by which 
we satisfy the mean water level constraint:

V rdz dr d h r r
r

r h
max min

min

max
= = −( )∫ ∫ ∫

0

2

0

2 2
π

θ π. . . (5)

3 Periodic linear case
The mean velocity is assumed in the main flow direction 
and a function of water depth, so that the final linearized 
version of Navier-Stokes equations:       (6)

u
Uu
r

wU g t
P
r

t w

u
r

u
r

u

t z

zz

+ + = −( ) − − −( )

+ − +

θ θ

θθ

τ θ
ρ

τ θ

ϑ

sin cosΩ Ω Ω2

2 2





 ,

 (7)

w
Uw
r

P t u U
w
r

wt
z

zz+ = − + −( ) +[ ]+ +









θ θθ

ρ
τ θ ϑ2

2
Ω Ωcos ,

where u, w the azimuthal and axial velocities, respectively.  
P the pressure. With mass conservation:

u rwzθ + = 0 . (8)

The boundary conditions on both the bottom and the free 
surface can be written as:

w
U
r

wt= + =η
ηθ
; ,0  (9)

where η(θ,t) the free surface function. U the stream velocity. 
Other condition related to the assumption of steady con-
stant vorticity at specific streamline, thus as we assumed 
two-dimensional motion the stream functions are given as: 
u = φz, w r

= −
1
ϕθ . So that the vorticity dynamical condition is:   

1

2r zzϕ ϕ ξθθ + = − , (10)

where ξ θ
=

∂
∂

−
∂
∂









1
r
w u

z  the constant vorticity. By cross-dif-
ferentiating the Eq. (6) and Eq. (7) pressure may be elimi-
nated to reduce the system into final equation:    (11)

∂
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−
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zz z
zzz

z
3 2 2

0+ + − −







 = .

Equation (11) shows an additional sinusoidal term that 
appears because of the axial Coriolis force, as the azi-
muthal one was cancelled in the derivation, the number of 
primes over the unknown quantities indicates to the order 
of derivatives in the vertical direction of the flow 

∂
∂z . Let's 

assume some stream function of Fourier mode that has 
azimuthal decay as follows: φ(θ, z, t) = ϕ(z)eik(θ–Ωt), where 
k the wavenumber, Ω the solid-body rotation velocity pro-
jected at the outer radius of the channel from which any 
disturbance is assumed to move with it. Substituting into 
Eq. (11) will give:

W i
k

t k
r
W U

ir
k

k
r

′′ + −( ) ′ − + ′′




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



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=

′′′′ + −

φ
τ

θ φ φ

ϑ
φ φ

2

2

2

2

4

4

Ω
Ωsin

kk
r

2

2
1+( ) ′′











φ
,

 (12)

where W = U – rΩ. This equation is the forced Orr- 
Sommerfeld equation under precession conditions. 
Equation (12) is fundamental for stability of laminar flows 
in cylindrical channel under precession. When assuming 
inviscid conditions like the case under study where water 

Table 2 Two-dimensional and shallowness effects in the channel

V(ml) a(m) h̅  (m) b1 (m) h̅ 2/a (m) τ δ

10000 0.112 0.0933 0.049 0.078 0.0167 0.175

12000 0.0886 0.112 0.049 0.142 0.0117 0.252

14000 0.1024 0.131 0.049 0.167 0.0233 0.344
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used in the experiment, the right-hand side of this equa-
tion can be neglected, the equation can be written: 

W i
k

t k
r
W U′′ + −( ) ′ − +













=′′φ
τ

θ φ φ
2

0

2

2

Ω
Ωsin  (13)

Equation (13) is called the Rayleigh stability equa-
tion that takes the precession effect in the closed circular 
flume. This equation has variable coefficients in z, θ, t.

3.1 Stream function observations
The measurements of velocity stream profile with depth 
was done by the help of Acoustic Doppler Velocimeter 
(ADV), the probe has four receiver arms and central one 
called the transmit transducer, during the experiment it 
was approximately in the middle of the channel where it 
was hold on a metal rod that is supported on other metal 
procedure that is fixed to the laboratory floor, the Vectrino 
while measuring does not feel the effects of rotation or tilt. 
In order to avoid the bad bed effects it is better to rise the 
Vectrino from the channel bed about three centimeters, 
thus the lowest depth where the measurements started was 
about 3 cm. The Vectrino also should stay far from the free 
surface where the air effect makes the signal chaotic and 
not true, thus also we left about 1–2 cm from the top, so that 
the effective depth is about 5–7 cm, but this also depends 
on the average amount of water in the channel, as we tried 
to measure for relatively big amounts of water to tackle 
the problems from the bottom and the surface. Sediment 
material like sand were also seeded so that we enhance the 
echo. (Details of Vectrino measurements can be found in 
a previous work by the present author [15]) The cases were 
tracked are three: the first is when the free surface just sim-
ple closed circles that rotate and tilt with slow energy pro-
vided to the system the profile has sinusoidal form as it is 
clear in Fig. 2(a), the second case is when the single Kelvin 
solitary wave appears with high power provided to the sys-
tem (resonance conditions) as it is clear in Fig. 2(b), it even 
has more or less Gaussian function form, and finally the 
case of simple sinusoidal waves appear (three of them) as in 
Fig. 2(c). In the first case the wave motion is slow thus the 
horizontal velocity goes to and fro many times crossing the 
vertical line with relatively equal amplitudes in the posi-
tive and negative directions of motion with many inflection 
points, on the contrary for the second case where the wave 
motion is faster the wave phase is small thus the amplitude 
is bigger in the positive direction of the flow with many 
smaller amplitudes in the negative direction and many 
inflections in the curve. The stability can be studied based 

on the stream function and of course Rayleigh equation, 
where the final solution will give us information if the flow 
is stable or not. The cases in Fig. 2 all can be covered by the 
following assumption of the stream function:

U z U mz( ) = ( )1
sin , (14)

where m the axial wave number. U1 the amplitude. By 
substituting the function into Forced Rayleigh stability 

(c)
Fig. 2 (a) Stream velocity distribution with depth in case no motion on 

the surface h̅  = 11.2 cm, Ω = 1.15 rad/s, τ = 0.005; (b) in resonance case,  
h̅  = 13.07 cm, Ω = 6.48 rad/s, τ = 0.01333; (c) case of sinusoidal waves 

on the surface, h̅  = 9.333 cm, Ω = 4.18 rad/s

(a)

(b)
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Eq. (13) we get:

U sin mz r M

k
r
U sin mz r m U sin mz

1 1

2

2 1

2

1

( ) −( ) ′′ +

− ( ) −( ) − ( )



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

′Ω

Ω

φ φ





=φ 0,
 (15)

where M
i

k
t

1

2
= −( )Ω

Ω
τ

θsin . To simplify the problem, 
we assume a balance between the phase of tilt and the azi-
muthal angle so that we get rid of the Coriolis terms, and 
we get a simple homogeneous equation:

U sin mz r

k
r
U sin mz r m U sin mz

1

2

2 1

2

1

( ) −( ) ′′

− ( ) −( ) − ( )












=

Ω

Ω

φ

φ 00.

 (16)

Second, we assume long wave approximation so that 
k → 0, then the final simplified version takes the form:  

U sin mz r m U sin mz
1

2

1
0( ) −( ) ′′ + ( ) =Ω φ φ . (17)

The vertical depth is confined between the bottom 
z = z1 = 0, and the free surface which is the average depth 
of water in case of no motion z = z2 = h̅ , although the whole 
channel is wobbling, so the observer can also see the sedi-
ment particles that were added to enhance the echo signal 
moving to and fro at the bottom of the channel but their 
velocity is relatively small in comparison with bigger ones 
close to the free surface, thus if we assume zero  bottom 
conditions and neglect rΩ, the equation is reduced into:

′′ + =φ φm2
0 . (18)

Which can be solved using the elementary methods to 
get the solution:

φ = ( ) + ( )A mz A mz
1 2
cos sin , (19)

where A1, A2 some constants, that can be determined from 
the boundary conditions, at z = 0, ϕ(0) = 0, thus A1 = 0, at 
z = h̅ , ϕ(h̅ ) = 2πrΩh̅  in case no waves on the surface thus 
the final solution:

φ
π

=
( ) ( )2 r h
mh

mzΩ

sin

sin . (20)

However, for the case where k ≠ 0, and assuming that the 
depth velocity almost zero then Eq. (16) can be written as:

U sin mz D m U sin mz
1

2 2 2

1
0( ) −( ) + ( ) =α φ φ , (21)

where α 2
2

2

2

2

2
= =

∂
∂

k
r

D
z

, . Following the way introduced 
in [6] we take:

D U z U sin mz2

1
0 0( ) = ( ) =, , (22)

z z n
m

ns= = = ± ± …( )π
, , , ,0 1 2 , (23)

where zs the depth accords with inflection point existence. 
Now depending on the number of inflection points the 
flow can be either stable or unstable and this depends on 
the length of the axial domain where the motion exists. 
The stability solution that satisfies Eq. (21) then is given:

φ
π

s
n
m
z
h

= 





sin , (24)

α
π

s m n
m h

= −2
2 2

2 2
, (25)

where αs k
r

= , which is for long waves αs = 0, then we 
can write n m h

=
2

π
. If m2h̅  > π the flow is unstable, and sta-

ble if m2h̅  < π. If we assume that m = 1, then only if 
h̅  < π the flow is stable where no inflection point can 
appear in this case, but this contradicts the experimental 
results as even when taking small depth the inflection 
points appear, the reason is that the channel all the time 
wobbling thus, we cannot insure this. When assuming the 
whole vorticity Eq. (13) and assume fixed time and azi-
muthal angle, we find:

W W U M′′ − +



 + ′ =′′φ α φ φ2

0 , (26)

where M i
k

t const= −( ) =2Ω
Ω

τ
θsin . If we apply the equation on 

the free surface where z = h̅ , the coefficients will be all 
constants and taking Eq. (14). Then the equation is written:

A B C′′ + ′ + =φ φ φ 0  (27)

A = W, B = M, C = –[α2W + U''], this is quadratic equa-
tion, the delta is given by:

∆ Ω Ω= − −( ) + + ′′4
4 4

2

2 2 2 2 2

K
sin t W WUτ θ α . (28)

If ∆ > 0, the solution at the free surface:

φ = +C e C eD h D h
1 2

1 2 . (29)

If ∆ < 0, the solution is:

φ β β ϖ= ( ) + ( )



C h C h e h

1 2
cos sin , (30)

where the complex roots are: ϖ ± iβ. The stability con-
dition in this case shows that if ϖ < 0, any disturbance 
or perturbation on the free surface will vanish with time, 
and it is stable, on the other hand if ϖ > 0 the solution will 
grow up with time, and it will be unstable [16].
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3.2 Burns condition and its solution
The previous analysis was carried out on assuming that the 
disturbance velocities and their derivatives are all small 
quantities from which all nonlinear terms were neglected. 
By introducing the dimensionless variables to the system 
of Euler equations (assuming that the fluid is inviscid) this 
will factor out all Coriolis forces at the leading order of the 
problem as follows:

t t r Rr H z Hz

u R u U w H w

P P H za

→ → → →

→ +[ ] → →

= + −( ) +

Ω

Ω Ω

, , , ,

, , ,

η ε η

ε ε τ δτ

γ ερΩΩ Ω Ω2 2r P, , ,θ θ→ →

 (31)

where ε = AH , the amplitude parameter. On assuming steady 
case where the coordinates move with the wave, and as the 
final aim is to derive the KdV equation which is used to 
describe the waves of permanent form, and those waves 
undergo slow changes in form thus slow time evolution we 
introduce the following:

∂
∂
= −

∂
∂

+
∂
∂t T

Ω
θ

ε . (32)

Then Euler equations will be written after introducing 
the shear effect and dropping the primes:
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 (33)
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 (34)

u rwzθ + = 0,  (35)

w u
r

U r
rT= +







 + −( )ε η

η ηθ θΩ .  (36)

Fr is Froude number of the problem that is assumed: 
F H

gr =
Ω2

. The prime in Eq. (33) indicates derivative in 
terms of the vertical direction ∂

∂z . It is worth to mention 
up to this point that the tilt angles in this system are in gen-
eral small ones, and that the cases where the solitary wave 
were noticed corresponded to very small tilt character fac-
tor: τ, (cf. Table 1, and Table 2), thus it is assumed that if 
ε → 0 (which is the solution we are interested in for small 
wave amplitude) then τ → 0, so that at the leading order of 
the problem the forced terms can be neglected: 
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The azimuthal equation after substituting the stream 
function will give: 

′ −( ) − = −′φ φ ηU r UΩ . (38)

Which is similar to the one derived by in [2] in Eq. (25) 
in the dimensionless form. After substitution of the value 
of the axial velocity into the azimuthal momentum, we get 
a new version of Burns condition, that connects between 
the stream velocity with the solid-body rotation of the flow 
c = rΩ. We have to mention that the speed of inertial sin-
gle oscillations that occur in this system have close value 
to the one of long wave speed, this was proposed in [17], 
in terms of the amplitude parameter ε by:

c gh= +





1

1

2
ε , (39)

0

2
1

z
dz

U r∫ −( )
=

Ω
. (40)

Equation (40) is the dimensionless Burns Condition in 
case of channel system under precession. It is well known 
that this integral equation for c = rΩ, certainly admits 
two solutions, as suggested in [7], for c if U(z) satisfies 
U'(z) > 0, and U''(z) < 0: one solution gives c < U(0) at the 
bottom, and the other c > U(1) at the dimensionless free 
surface at the leading order. To solve Burns condition we 
substitute the sinusoidal form Eq. (14) into Eq. (40) we get:

0 1

2
1

z
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U sin mz c∫ ( ) −( )
= . (41)

By assuming mz = x, we assume also from trigonometric 
case that: x = 2.arctan(t), t x
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tan
2

. From which we can write:
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After some mathematical manipulation we get an equation: 
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where:
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 (44)

where β =
U
c
1 , also it was assumed that m = 1. Equation 

(43) has no solution when β = 0, 1, and has single solution 
if β > 0, or if β < 0. By giving several values for U1 and c 
Eq. (43) can be solved accordingly as it is clear in Fig. 3:

4 Periodic nonlinear case
The final system of Euler equations after scaling Eqs. (33) 
to Eq. (36) will give at the zeroth order:
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where W = U – rΩ, I
dz

U r
2

0

1

2
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=∫ Ω . 

At the first order of the problem, all nonlinear terms 
appear again, which are all in terms of the zeroth order. 
So, we can write:
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By applying the zeroth solutions into the azimuthal 
momentum and balancing the kinematic condition of the 
free surface with the azimuthal momentum. Then the final 
equation we get similar to the one extracted in [13] which 
suits the cylindrical geometry under study with additional 
forcing terms come from Coriolis and gravity forces:
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Which is the KdV version that takes the shear flow 
into consideration in an open cylindrical channel under 
precession. This equation will be solved numerically and 
compared with the experimental results. Before applying 
the stream function into the equations, we can do some 
proper integrations we find finally that the equation will 
take the form:
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The vertical integrals will be solved numerically using 
the trapezoidal rule. The final equation can be written in 
its dimensional form as: 

A B
r

C
r

D
r

E
r
Ftη

ηη η η ηθ θθθ θ+ + + + + =
3

0 , (49)Fig. 3 The solution for c against surface speed U1 for the sinusoidal 
profile, including 0 ≤ U1 ≤ 2
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where:
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5 Numerical solution
KdV equation appeared so far in the analysis consists of 
nonlinear simple quadratic term, and dispersion term of 
the third order, that is evolving with time. For linear PDEs 
Fourier analysis is often used to obtain solutions or per-
form theoretical analysis. This is because the functions: 
eiξx = cos(ξx) + isin(ξx) are essentially eigenfunctions of 
the differentiation operator ∂ =

∂
∂x x . Differentiation of this 

function gives a scalar multiple of the function, and hence 
simple differential equations are simplified and can be 
reduced to algebraic equations as stated in [18]. The base 
function in case of Eq. (49) for example, is the free surface 
η(θ,t). Thus, we can write Fourier transform:  

η θ
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The domain in which the motion is taking place is the 
outer circumference of the cylinder which forms the cir-
cle of 360̊, thus the domain between: [0, 2π], with periodic 
boundary conditions, will be considered, thus the surface 
function satisfies the periodicity condition: η(θ + 2π) = η(θ). 
Let us apply Eq. (56) into Eq. (49) we find for instance: 
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By substituting into Eq. (49) we get:
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(59)

The simple finite difference methods use forward Euler 
equation to discretize the time, which is one-step method, 
this means that all ηn+1 are determined from ηn alone, we are 
going to divert from this case and use multistep method that 
involves other previous values. LeVeque [18] stated that the 
leapfrog method is midpoint method that mainly comes from 
Taylor expansion, for instance using the approximation:

η η
η η

t dt t dt
dt

dt t O dt
+( ) − −( )

= + ( ) + ( )′ ′′′
2

1

6

2 3 , (60)

which can be written as:

η η ηq q qdtf+ −= + ( )1 1
2 , (61)

where the subscripts q indicates to the time order. Which 
is a second order accurate explicit 2-step method, and it 
was also proposed in [19], they stated that the method is 
accurate for low enough wave numbers, but it loses accu-
racy rapidly for increasing wave numbers. At the leading 
order of the problem, we assume the other condition and 
discretize it in terms of the backward Euler difference to 
get rid of the values at the previous time:
η = h̅  = const at t = 0, thus:

∂
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=
−η η η

t t
i
n

i
n 1

0
∆

. (62)

This leads to elimination of the value ηi
n–1 as:

η ηi
n

i
n− =1 . (63)
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Concerning the integrations in the z-direction as men-
tioned are going to be integrated using the trapezoidal rule, 
one can find the information given in [20] for instance, 
where the integration is going to be written as:

a

b

i i
i
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f z dz W f z∫ ∑( ) ≈ ( )
=

−

0

1

, (64)

where Wi are weights and zi the elevation points. The 
Trapezoidal method has the points:

z a ih h b a
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And the weights:
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Now the core function in Fourier transform is going to 
be converted into discrete Fourier space as used in [19]:
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And then to get the inversion formula: 

η θ η θ
j

j

N
ikt k t e j Nj

, , ,( ) = ( ) ≤ ≤ −
=

−
−∑

0

1

0 1̂ . (69)

Studying the stability using the leapfrog with Fourier 
discretization can be found in many references like in 
[19, 21]; the condition for the present KdV is deduced by 
taking the linearized version of KdV equation as follows:
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where A, B, C, D, are the coefficients introduced in Eq. (49). 
By assuming the base function of the form:

η θ θ, t f e
t
t ik( ) = ∆ . (71)

And then substitute it into Eq. (49) where the domain 
under study is already about the outer circumference , and 
the maximum wave number k = π

θ∆
, thus we get:

∆
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C rθ π( )

<
3 3 3

. .
. (72)

Now we are going to use data from the experiments 
where the wave was noticed. In the cases of relatively high 
volumes of water the noticed wave was smooth and sym-
metric in form but degenerated easily either flattened or 
broken, the cases here accord with volumes 12000 ml, and 

14000 ml, and for tilts: τ = 0.0117, τ = 0.0233. However, in 
the cases of relatively small amounts of water the noticed 
wave was permanent single Kelvin wave that preserves 
its form for several rounds about the outer periphery, but 
we could not get the measurements of velocity with depth 
as the volume of water two small with the restriction of 
depth that are assumed for using the Vectrino. Fig. 4 and 
Fig. 5 show the real waves, it is clear that for relatively 
small water the wave crest appears little flattened, while 
increasing water amount the wave crest becomes more 
sharpened. The assumed scheme will take several cases 
including only big volumes, the initial value problem will 
be assumed based on the experiment using Gaussian func-
tion fit depending on the experimental data. 

η
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2
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−
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


A em

avg
st

. , (73)

where avg the average of azimuthal data points, st their 
standard deviation, Am the wave amplitude. We assume grid 
in the azimuthal direction consists of m points, the ampli- 

Fig. 5 Single Kelvin wave, h̅  = 0.0933 m, τ = 0.0167, Ω = 6.84 rad/s

Fig. 4 Single Kelvin wave, h̅  = 0.056 m, τ = 0.0117, Ω = 5.34 rad/s
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tude has an angle about π/2, thus condition Eq. (72) is halved, 
for instance we present here case of volume 10000 ml, 
m = 749, ∆θ = 0.001778, τ = 0.01667, Ω = 6.84 rad/s, 
∆t = 2.866 × 10–06 s, the result in Fig. 6, where the other one 
in Fig. 7 is for the case of 12000 ml volume, m = 899, 
∆θ = 0.001594, τ = 0.0117, Ω = 6.02 rad/s, ∆t = 6.1735 × 10–06 s. 
Fig. 8 is for the case of 14000ml volume, m = 649, 
∆θ = 0.00224, τ = 0.02333, Ω = 6.82 rad/s, ∆t = 1.753 × 10–05 s. 
On tracking the wave with time, it turned out that the 
shear effect has only extinction effect on the wave ampli-
tude that vanished gradually until it disappeared, however 
the shape of the wave was totally preserved to the starting 
guess, but never dispersed. 

The images went first under image processing steps start-
ing from the calibration, and then pixel tracking, from which 
we could extract the exact pixels, which were connected 
with the real geometrical coordinates on the outer periphery 
of the cylinder, where there is created grid of small square 
paper clips in Fig. 4 and Fig. 5 those are benchmark points 
after interpolation and extrapolation techniques the pixels 
are fitted in between the real points and the real coordinates 
were extracted. For details about the image processing and 
other information can be found in [15].

This result is similar to the one extracted by the present 
author in other work still under revise taking the poten-
tial effect where it turned out that the shear effect has no 
implication on the shape of solitary kelvin wave moving in 
a frame of reference at the outer radius of the 

cylinder, Teles Da Silva and Peregrine [22] stated that 
to the solitary wave of high amplitudes and large Froude 
numbers encloses large regions of closed circulations and 
their shape appears to be insensitive to the vorticity distri-
bution. In addition to this Brooke Benjamin [12] also men-
tioned that the vorticity in the stream has little effect on the 
wave in many circumstances typical of real open-channel 
flows, so that the results according to the potential theory 
which represents the stream as having a uniform veloc-
ity equal to the mean of the actual distribution, will often 
apply with good accuracy. 

6 Conclusions
In this paper the shear effect on the flow in an open cylin-
drical channel under precession is discussed thoroughly. 
The treatment theoretically discussed the linear and the 
nonlinear parts of the problem, the linear case led to what 
we called the forced Rayleigh stability equation, for the 
inviscid version and to the forced Orr-Sommerfeld for the 
viscous one, as we use water in the experiment Rayleigh 

Fig. 6 Single Kelvin wave taking the shear effect in the background, 
h̅  = 0.0933 m

Fig. 7 Single Kelvin wave taking the shear effect in the background, 
h̅  = 0.0112 m

Fig. 8 Single Kelvin wave taking the shear effect in the background, 
h̅  = 0.1307 m
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equation was discussed based on the stream function obser-
vation, as Coriolis force appeared in the equation we solved 
the equation at constant specific time and distance, which 
finally led to simple quadratic equation that had two dif-
ferent roots either complex or real, in any case the sign of 
those in the exponential part determines whether any distur-
bance will increase with time or simply vanish. The linear 
part of the problem also discussed other case after scaling 
the equations where new Burns' condition is derived, this 
connects between the stream velocity with the solid-body 
rotation one. Experimentally it turned out that the shape 
of the stream velocity distribution with depth is sinusoidal 
one, based on the control parameters of the problem which 
are the water volume in addition to the tilt angle and the 
rotation rate. By including this into the new forced Burns 
condition, the solution of any disturbance velocity has two 
different values relative to the bottom, similar to the nor-
mal conditions. Experimentally we could not access all vol-
umes, because using the Vectrino needed effective depth to 
get good echo, but for the solitary wave only big amounts 

of water was needed, thus it was in our favor. On carrying 
on the derivation of the nonlinear part a new KdV model is 
derived, where the coefficients are all in terms of the shear 
function of the zeroth order. It was a question whether this 
shear affected the wave form or not, it turned out that the 
shear effect is limited and similar results to the extracted by 
the author in other work under irrotational conditions were 
extracted, which pour in favor other work like in [12, 22]. 
The solution for the new model of KdV depended on differ-
ent discretizations, like in time it was the leapfrog method, 
and in distance the Fourier transform methods. Inserting the 
shear led to many integral with depth that were integrated 
using the simple trapezoidal rule.
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