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Abstract

Despite the importance and accuracy of empirical models, most of the existing models are only accurate on the collected experimental 

data. Adding new data, or even considering noise or variance in the data leads to loss of model accuracy. The objective of this paper 

is to alleviate overfitting and develop a more accurate and reliable alternative method using a decision-tree-based ensemble Machine 

Learning algorithm that uses a gradient boosting framework for the prediction of the ultimate shear strength of FRP-reinforced 

concrete beams without stirrups. To enhance the robustness of the results, make full use of training samples (without the validation 

set), and alleviate the randomness in selecting test samples, the K-Fold Cross Validation method is employed. Using a dataset including 

205 samples, results show that the extreme gradient boosting framework (XGBoost) providing better prediction. In fact, XGBoost 

results have higher precision and higher generalization in comparison with the empirical equations, the current design codes of 

practice, Least Absolute Shrinkage and Selection Operator model (LASSO), and Random Forest model (RF).
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1 Introduction
The use of fiber-reinforced polymer (FRP) composites 
in strengthening reinforced concrete beams have been 
widely utilized for external flexural or shear reinforce-
ment in construction. These materials are used as an alter-
native material for producing reinforcing bars. Some FRPs 
are non-conductive and non-corrosive helping durabil-
ity in aggressive environments. Due to their mechanical 
properties including high longitudinal tensile strength and 
high fatigue endurance, and lightweight, in recent years, 
a large number of experimental tests have been conducted 
by researchers to determine the ultimate strength of rein-
forced concrete beams reinforced by FRPs. 

The shear strength of FRP-reinforced concrete beams 
may differ from that of members reinforced with steel due 
to the difference in mechanical properties between FRP 
and steel reinforcement [1]. Shear failures were reported 
in several flexure tests for FRP-reinforced concrete beams 
including Michaluk et al. [2]. 

Razaqpur et al. [3] tested seven beams in bending to 
determine the concrete contribution to their shear resis-
tance; they concluded that the ACI recommendations are 

extremely conservative whereas the Canadian and Japan 
Society of Civil Engineers (JSCF) recommendations, albeit 
still conservative, are in closer agreement with the experi-
mental data. The same conclusion is mentioned about ACI 
recommendations in [4]. Ashour [5] reported an inconsis-
tency for the shear capacity calculation of GFRP-reinforced 
concrete beams between experimental results with those 
mentioned in ACI 318-99.

From a mechanics-based segmental approach, Zhang 
et al. [6]  derived a generic closed-form solution for quan-
tifying the shear capacity of RC beams and one-way slabs 
without stirrups. 

Nowadays, Metaheuristics are used as a powerful tool 
for engineering prediction problems [7–10]. 

Some researchers used Artificial Neural Network (ANN) 
to solve prediction problems. For example, Kaveh et al. [11] 
used a deep learning approach for predicting the ultimate 
buckling load of variable-stiffness composite cylinders. 

Because of the advancement of Machine Learning 
Regression methods (MLRs), in this paper, shear strength 
prediction of FRP-reinforced concrete beams has been 
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investigated using the most recent powerful MLRs includ-
ing Least Absolute Shrinkage and Selection Operator 
(LASSO), Random Forest (RF), and extreme gradient 
boosting framework (XGBoost). 

The remainder of this article is organized into five sec-
tions, as follows. Section 2 presents the basics of the Shear 
strength of FRP-RC beams and the dataset developed 
in this research. Section 3 is devoted to introducing the 
MLRs. This section includes a brief review of the K-Fold 
Cross Validation method. The results and discussion of the 
empirical equations, the current design codes of practice, 
and MLR results are presented in Sections 4. Finally, the 
conclusions are drawn in Section 5.

2 Shear strength of FRP-RC beams
Cracked reinforced concrete members resist the applied 
shear stresses by the following five mechanisms [12]:

•	 Shear stresses in uncracked concrete i.e., the flexural 
compression zone;

•	 Interface shear transfer (aggregate interlock/crack 
friction)

•	 Dowel action of the longitudinal reinforcing bars
•	 Arch action

•	 Residual tensile stresses transmitted directly across 
cracks

Researchers proposed several equations based on var-
ious experimental studies and the principles of structural 
mechanics. A summary of some shear design equations 
for FRP-reinforced members is provided in Table 1. As 
these equations have been empirically derived there are 
still gaps in selecting the main parameters affecting Vcf.

In this study, we utilized 24 datasets including 205 FRP 
reinforced concrete beams to benchmark our approach. 
These datasets are summarized in Table 2. 

The dataset consists of 8 attributes including 7 input 
data features and 1 output. Table 3 and Fig. 1 present the 
summary of the statistical range of features and their cor-
responding correlations, respectively. In this figure rela-
tionships between random variables are provided. It can 
be inferred that the width of the web and the effective 
depth of the cross-section have the highest correlations 
with shear capacity. 

Furthermore, the distribution of the parameters and 
corresponding shear strength included in the database is 
shown in Fig. 2.

Table 1 Shear design formulas for FRP-reinforced concrete beam without shear reinforcement

Author(s)/Code Formula Note

ACI440.1R-15 [13]

CSA S806-02 [14]

Tureyen and Frosch [15]

El-Sayed et al. [1]
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Table 2 Database of 205 FRP reinforced concrete beams

Reference Specimen

Nagasaka et al. [17] AN0090M, AN0090L

Nakamura and Higai [18] G01, G02

Zhao et al. [19] 1, 2, 3

Duranovic et al. [20] GB2, GB6

Swamy and Aburawi [21] F3-GF

Deitz et al. [22] GFRP1, GFRP2, GFRP3, Hybrid1, Hybrid2

Yost et al. [23] 1FRPa, 1FRPb, 1FRPc, 2FRPa, 2FRPb, 2FRPc, 3FRPa, 3FRPb, 3FRPc, 4FRPa, 4FRPb, 4FRPc, 5FRPa, 5FRPb, 
5FRPc, 6FRPa, 6FRPb, 6FRPc

Alkhrdaji et al. [24] BM7, BM8, BM9

Massam [25] LB/8/0.5/0, LB/4/0.5/0, LB/2/0.5/0, LB/8/2/0, LB/4/2/0, LB/2/2/0

Tureyen and Frosch [4] V-G1-1, V-G2-1, V-A-1, V-G1-2, V-G2-2, V-A-2

Tariq and Newhook [26] G07N1, G07N2, G10N1, G10N2, G15N1, G15N2, C07N1, C07N2, C10N1, C10N2, C15N1, C15N2

Gross et al. [27]
FRP-1a-26-NS, FRP-1b-26-NS, FRP-1c-26-NS, FRP-2a-26-NS, FRP-2b-26-NS, FRP-2c-26-NS, FRP-3a-36-NS, 
FRP-3b-36-NS, FRP-3c-36-NS, FRP-4a-46-NS, FRP-4b-46-NS, FRP-4c-46-NS, FRP-5a-37-NS, FRP-5b-37-NS, 

FRP-5c-37-NS, FRP-6a-37-NS, FRP-6b-37-NS, FRP-6c-37-NS

Razaqpur et al. [3] BR1, BR2/BA2, BR3, BR4, BA1, BA3, BA4

El-Sayed et al. [28] S-C1, S-C2B, S-C3B, S-G1, S-G2, S-G2B, S-G3, S-G3B

Ashour [5] Beam1, Beam3, Beam5

El-Sayed et al. [29] CN-1, GN-1, CN-2, GN-2, CN-3, GN-3

Guadagnini et al. [30] GB43, GB44, GB45

Matta et al. [31] S1-1, S3-2, S3-3, S6-2, S6-3, S1B-1, S1B-2

Jang et al. [32]

C-1.5-R1-1-2, C-1.5-R2-1-2, C-1.5-R3-1-2, C-2.0-R1-1-2, C-2.0-R2-1-2, C-2.0-R3-1-2, C-2.5-R1-1-2, C-2.5-R2-1-2, 
C-2.5-R3-1-2, C-3.5-R1-1-2, C-3.5-R2-1-2, C-3.5-R3-1-2, C-4.5-R1-1-2, C-4.5-R2-1-2, C-4.5-R3-1-2, G-1.5-R1-1-2, 
G-1.5-R2-1-2, G-1.5-R3-1-2, G-2.0-R1-1-2, G-2.0-R2-1-2, G-2.0-R3-1-2, G-2.5-R1-1-2, G-2.5-R2-1-2, G-2.5-R3-1-2, 

G-3.5-R1-1-2, G-3.5-R2-1-2, G-3.5-R3-1-2, G-4.5-R1-1-2, G-4.5-R2-1-2, G-4.5-R3-1-2

Bentz et al. [33] M05-0, S05-0, M20-0, S20-0, l05-0, l20-0

Olivito and Zuccarello [34] SI-1, SI-2, SI-3, SI-4, SI-5, SII-1, SII-2, SII-3, SII-4, SII-5, SIII-1, SIII-2, SIII-3, SIII-4, SIII-5, SIV-1, SIV-2, SIV-3, 
SIV-4, SIV-5

Abed et al. [35] B1FRP, B2FRP, B3FRP, B4FRP, B5FRP, B6FRP, B7FRP

Alam and Hussein [16] G-2.5, G-3.5, C-2.5, C-3.5, G-500, G-650, G-800, C-500, C-650, C-800, G-2.5-350, G-2.5-350, G-0.5-500, G-2.5-500, 
C-0.5-350, C-2.5-350, C-0.5-500, C-2.5-500

Matta et al. [36] S1-0.12-1A, S1-0.12-2B, S3-0.12-1A, S3-0.12-2A, S6-0.12-2A, S6-0.12-3A, S1-0.24-1A, S1-0.24-2B, S3-0.24-1B, 
S3-0.24-2B, S6-0.24-1B, S6-0.24-2B

Table 3 Statistical range of material and geometric properties

Property Minimum Maximum Mean Standard deviation

b (mm) 114.00 1000.00 260.92 177.54

d (mm) 146.00 938.00 286.27 169.28

a/d 1.00 6.50 3.59 1.23

fc' (MPa) 22.70 50.00 34.98 5.63

ρfrp (%) 0.18 3.43 1.12 0.63

Fsy (MPa) 397.00 2250.00 1209.56 615.88

Ef (GPa) 22.70 30.40 26.47 1.59

Vexp (KN) 12.50 232.00 64.81 51.60
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3 Machine Learning prediction
3.1 Least Absolute Shrinkage and Selection Operator 
(LASSO)
LASSO [37] is an MLR analysis method. In this method, 
in order to avert overfitting, the linear model is trained 
with L1 prior as a regularizer. In other words, LASSO adds 
an absolute value of the magnitude of coefficient as a pen-
alty term to the loss function. In this model, the optimiza-
tion function defined as:

Loss function = − + +
= = =
∑ ∑ ∑
i

n

i
j

p

j ij
j

p

jy x
1

0

1

2

1

( ( )) ,β β λ β 	 (1)

where xij is the training data and yi is the observation. 
In  the above loss function, the first part is the residual 
sum of squares and the remaining is the sum of the abso-
lute value of coefficients. In addition, λ is the penalty 
parameter providing a trade-off between the first and sec-
ond parts. lasso imposes an L1 penalty on the β. That is, 
lasso finds an assignment to β0 and β  that minimize the 
loss function.

3.2 Random Forest (RF)
Random Forest regression as a supervised machine learn-
ing algorithm uses an ensemble learning method for pre-
diction. The RF model for regression can be described in 
Algorithm 1.

An illustration of ensemble learning for RF is shown in 
Fig. 3. The RF algorithm is not biased and it improves stabil-
ity and accuracy because of the combination of several trees. 
Further details of the RF algorithm can be found in [38].

3.3 Extreme gradient boosting framework (XGBoost)
XGBoost is an efficient implementation of gradient boost-
ing that can be used for regression predictive modeling.

XGBoost as a gradient boosting decision tree adds mod-
els sequentially; however, random forest adds multiple 
predictors in parallel. It utilizes regularized learning and 
cache-aware block structure tree learning. This method is 
based on function approximation and optimizing specific 
loss functions expressed as follows [39]:

t

i
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i i
t

t i tl y y f x f= + ( )( ) + ( )
=

−( )∑
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1
, Ω̂ ,	 (2)

Ω f T( ) = +γ λ
1

2

2ωω ,	 (3)

where l is a differentiable convex loss function measur-
ing the difference between the ŷ i and the yi. The second 
term Ω penalizes the complexity of the model in order 
to prevent overfitting. T is the number of leaves and ω is 

Fig. 1 Correlation of the features

Fig. 2 The relationship between the seven input variables and the nominal shear strength provided by concrete in the data set

Algorithm 1 Random Forest for regression

For i = 1 to T:
(a) Take a bootstrap sample of size k from the training data.
(b) Grow an RF tree to the bootstrapped data:

i. Select m variables at random out of all M 
ii. Find the best split on the selected m variables
iii. Grow the trees

(c) Average the results from all the T trees
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the vector of scores on leaves. By using the second-order 
Taylor approximation, Eq. (2) can be expressed as follows:

t
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2 1
, ̂̂ .	 (6)

To avoid overfitting, XGBoost integrates multiple weak 
predictors rather than strong ones. XGBoost uses scalabil-
ity in all scenarios and handles sparse data using a tree 
learning algorithm. Further details about this algorithm 
can be found in [39]. 

3.4 K-Fold Cross-Validation
In a supervised machine learning problem, holding out 
part of the data as a validation set is prevalent. However, 
to avoid overfitting and the need to make full use of sam-
ples that can be used for training the model, the K-Fold 
Cross Validation [40] is used in this paper. By applying 
this method, the validation set is no longer needed. Here, 
the data set is split into 10 folds. In the first iteration, the 
first fold is used to test the model and the remainder is 
used to train the model. This process is repeated until each 
fold of the 10 folds has been used as the testing set. Fig. 4 
illustrates the general structure of the 10-Fold Cross-
Validation used in this investigation. The flowchart for the 
ML model is illustrated in Fig. 5.

4 Results of Prediction models
For our investigation, the entire dataset is divided into two 
parts, 80% for training and 20% for testing. In this paper, 
the width of the web, effective depth of cross-section, shear 
span to effective depth ratio, the specified compressive 
strength of concrete, FRP reinforcement ratio, modulus 
of elasticity of flexural FRP reinforcement, and yielding 
strength of the reinforcement have been taken as the input 
variables.

4.1 Performance measures
The results of the ML models are compared using the root-
mean-square error (RMSE), mean absolute error (MAE), 
and R-squared (R2). Definitions of these statistical indica-
tors are given as follows:
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n

y y
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where N is the number of testing samples, ŷ   i and the yi are 
the target and the prediction of the i-th sample, respec-
tively; y̅ is the average of the predicted outputs.

Fig. 3 Illustration of ensemble learning for random forest
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4.2 Comparison with previous Modeling Approaches
A feature importance analysis is performed for the XGBoost 
model to break down the seven input variables for the shear 
strength of FRP-reinforced concrete beams, and the results 

are shown in Fig. 6. As it can be seen, the four variables 
determined to have high feature importance, i.e., the width 
of the web, effective depth of cross-section, shear span to 
effective depth ratio, and specified compressive strength of 
concrete. In this analysis, the modulus of elasticity of flex-
ural FRP reinforcement has the smallest relative importance. 

Fig. 7 Shows the comparison of prediction models for 
shear capacity with experimental data. By comparing the 
experimental and the theoretical model for 40 test samples, 
it is inferred that current guidelines provide conservative 
values. On the other hand, the XGBoost and RF model 
outperforms LASSO and the other empirical models.

The values of the RMSE, R2, and MAE are presented 
in Fig.  8. Results indicate that the XGBoost predicts the 
experimental shear capacity relatively accurately. In addi-
tion, it can be inferred that XGBoost outperforms other 
MLR methods; on the basis of the RMSE and MAE, the 

Fig. 4 Illustration of 10-Fold Cross-Validation

Fig. 5 Implementation of ML model

Fig. 6 Feature importance of the seven input variables using XGBoost
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(a)

(b)

(c)

(d)

Fig. 7 Comparison of predicted shear capacity with experimental shear resistance (Figs. (a) to (d))
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Fig. 7 Comparison of predicted shear capacity with experimental shear resistance (Figs. (e) to (h))

(e)

(f)

(g)

(h)
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Fig. 8 Results comparison between all test samples for shear strength prediction of FRP-reinforced concrete beams: (a) RMSE; (b) MAE; (c) R2

(a)

(b)

(c)
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XGBoost model obtains RMSE of 10.66 KN, and MAE of 
6.67 KN which are lower than RF, LASSO, empirical equa-
tions, and the design codes of practice used in this paper.

The differences between the experimental values and 
the predicted values for the XGBoost model are shown in 
Fig.  9. The residuals plot shows the difference between 
residuals on the vertical axis and the predicted value on 
the horizontal axis. Due to the lack of sufficient experi-
mental data, it can be inferred that regions with a shear 
strength of larger than  are susceptible to more error.

5 Conclusions
The primary aim of this study is to use the ensemble learning 
framework to improve the shear strength prediction of FRP-
reinforced concrete beams without stirrups. A relatively 
large dataset with over 205 samples is collected from differ-
ent research papers and used to train the predictive models. 

The paper details the feasibility of using MLR methods 
including LASSO, RF, and XGBoost algorithm for predic-
tion problems. The 10-Fold Cross-Validation technique is 
used to improve the robustness of the results, make full 

use of training samples, and alleviate the randomness in 
selecting test samples. Results of different performance 
metrics are taken into account. Results show that the 
extreme gradient boosting framework has successfully 
predicted the shear strength with a high degree of accu-
racy and outperforms the other previously developed mod-
els. On the other hand, it is inferred that current guidelines 
provide conservative values of the concrete shear strength 
of FRP-reinforced concrete beams. 
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Nomenclature
a shear span

bw width of the web

d the effective depth of the cross-section

Ec modulus of elasticity of concrete

fc' specified compressive strength of concrete

c distance from extreme compression fiber to the  
neutral axis

fsy yielding strength of the reinforcement

Ef modulus of elasticity of flexural FRP 
reinforcement

Vcf nominal shear strength provided by concrete

ρf reinforcement ratio

λ modification factor for the density of concrete

β1 the depth reduction factor of the equivalent 
rectangular stress blockFig. 9 Residual values in regression analysis for the XGBoost model
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