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Abstract

In this paper, lateral stability analysis of fiber-metal laminated (FML) doubly-symmetric tapered I-beams with symmetrical lay-up for 

all section walls is perused by presenting a new finite element solution. Vlasov’s thin-walled beam theory is utilized to consider the 

bending–twisting coupling effect. Based on the classical lamination theory as well as the energy method, the total potential energy is 

derived for the flexural displacements and the twist angle. Using an auxiliary function, the variational formulation is then constructed 

only in terms of the twist angle. To precisely determine 4*4 elastic and buckling stiffness matrices, Hermitian cubic polynomial is 

applied as the shape functions into the resulting variational statement. The most beneficial feature of the present finite element 

model is to provide a two-node laminated I-beam element with a low number of degrees of freedom. Lateral buckling strength of thin-

walled FML profile having varying I-section has been calculated for E-glass/epoxy as composite and aluminum as metal. The obtained 

results are compared with finite element solutions using ANSYS software and showed excellent agreement with them. Also, the 

effects of different consequential parameters such as fiber orientation, lay-up sequence, metal volume fraction, web tapering ratio, 

and transverse load height position on lateral stability resistance of fixed-free FML tapered I-beams subjected to uniformly distributed 

load are comprehensively investigated.
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1 Introduction 
The use of thin-walled structural components in the most 
innovative engineering fields including aircraft wings, tur-
bine blades, steel frames and decks of bridge has become 
increasingly common throughout the years. Although 
thin-walled open cross-sections have some features such 
as high ratios of stiffness-to-weight and strength-to-
weight, they have some drawbacks such as local buck-
ling, poor torsion rigidity and low out-of-plane bending 
resistance. As a result of these disadvantages, a laterally 
unbraced thin-walled beam subjected to bending about 
its strong axis may buckle in a flexural–torsional mode. 
Hence, this situation results in a lower stability strength. 
Moreover, in recent years, the thin-walled beams with 
variable cross-section have been extensively adopted in 
aeronautical, mechanical, and civil engineering applica-
tions due to the importance of having an optimum distri-
bution of weight and strength. With the development of 
fabrication processes specifically pultrusion, the use of 

thin-walled structural components made up of fiber-rein-
forced composite materials in aeronautical and mechan-
ical installations has become increasingly common 
throughout the years. The main reason for this increase is 
the desirable features of composites, such as high fatigue 
resistance, durability, corrosion resistance, and optimiza-
tion of structural weight. Engineers can produce structural 
components with favorable mechanical responses and 
endurable buckling resistance by using innovative mate-
rials. Fiber metal laminations (FMLs) are a new class of 
hybrid materials that are built from several thin sheets of 
metal alloys and fiber-reinforced epoxy composite plies. 
These laminates simultaneously possess the desirable fea-
tures of metal such as ductility, damage tolerance, excel-
lent resistance to impact and environmental conditions, as 
well as advantages of the reinforced polymeric composite. 
Due to the conspicuous characteristics of FMLs, the use 
of fiber-metal hybrid composite structures in the design of 
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submarine and aircraft industries has become increasingly 
common throughout the years. A review in the literature 
displays that several investigations have been conducted 
by different research to peruse the mechanical responses 
of laminated composite structural components. In the fol-
lowing, a short description of a few of those is presented.

Nam et al. [1] used a genetic algorithm to optimize the 
arrangement of metal-fiber multilayer composite shells 
under different loading cases. They indicated that metal-fi-
ber multilayer shells made of carbon fiber-reinforced poly-
mer laminates are more resistant to random and unforeseen 
forces in most loading conditions. Andrade et al. [2, 3] pre-
sented some useful works about the lateral-torsional stabil-
ity analysis of thin-walled beams with doubly and singly 
symmetric I-section under different boundary conditions. 
Taking into account small deformations and large displace-
ments, Mohri et al. [4] analyzed the lateral-torsional sta-
bility strength of thin-walled beams under transverse-ax-
ial loadings employing Galerkin's method. Ravishankar 
et al. [5] reported the influence of type fiber-reinforced 
epoxy composite materials, Metal Volume Fraction (MVF), 
and angular velocity on the free vibrational response of 
rotating beams made of FMLs and or functionally graded 
materials using finite element software. In addition, the 
mechanical response of laminated composite thin-walled 
memebers with uniform cross-section subjected to differ-
ent loading cases and end conditions was completely stud-
ied in [6–16]. Using the finite difference method, Secer 
and Uzun [17] performed the inelastic ultimate load anal-
ysis of steel frames subjected to transverse distributed 
loads was performed by considering the lateral-torsional 
buckling effect in the load increment steps. Ghasemi and 
Mohandes [18, 19] and Ghasemi et al. [20] presented some 
useful works about analysis fiber-metal laminate (FML) 
cylindrical shells under different boundary conditions. 
Within the context of first-order shear deformation theory, 
a novel finite element technique was recently introduced by 
Ton-That and Nguyen-Van [21] to investigate the mechani-
cal behavior of laminated plate and shell.

A literature review indicates that the vibration and buck-
ling responses of prismatic laminated composited thin-
walled members have been performed by a large number 
of authors, whereas the lateral stability analysis of the same 
structure with varying cross-section is not studied a lot. 
Due to the application of laminated composite thin-walled 
beams in civil and architecture industries, aircraft and 
spacecraft structures and the blades of wind turbines, there 
is a general lack of studies focusing on the lateral buckling 

analysis of transversely loaded tapered sandwich composite 
thin-walled beams. Based on these facts, an efficient finite 
element model is developed for linear lateral stability anal-
ysis of hybrid fiber-metal laminates sandwich web and/or 
flanges tapered I-beams. The present finite element model 
is inspired by the two-noded 4degree-of-freedom element, 
recently introduced by Soltani et al. [22] for the lateral 
buckling analysis of non-prismatic thin-walled beams with 
axially varying materials. The main advantage of the new 
approach is facilitating lateral stability analysis of tapered 
thin-walled FML I-beams due to the application of the pro-
posed element with a low number of degrees of freedom. 
The above task is performed, through the following stages:

In Section 2, based on the classical lamination theory 
assumption and Vlasov's model for thin-walled cross-sec-
tions, the total potential energy for the tapered thin-walled 
balanced laminated beam with I-section is firstly derived 
within the framework of elastic behavior. It is assumed that 
all section walls (the web and both flanges) are composed 
of two metal layers at the outer sides of the fiber-reinforced 
polymer laminates and laminated symmetrically concern-
ing its mid-plane. Considering the flexural-twist coupling 
effects, the expression of potential energy is obtained in terms 
of the lateral deflection and the angle of twist. Following the 
method presented by Soltani et al. [22], Asgarian et al. [23] 
and Soltani et al. [24], the variational statement is finally 
derived only in terms of the twist angle. In Section 3, the ele-
ments of structural stiffness matrices, including elastic and 
buckling ones, are then determined using the expressions of 
the cubic Hermitian shape functions. Eventually, the lateral 
buckling loads can be calculated by solving the eigenvalue 
problem. This methodology is capable of precise estima-
tion of the lateral buckling strength of laminated composite 
I-section beams with different types of variation in geomet-
ric features along the longitudinal direction and subjected 
to different end conditions and loading cases. Finally, an 
exhaustive illustrative example is performed to assess 
the influence of noticeable parameters such as metal vol-
ume fraction, fiber angle, lay-up arrangement, load height 
parameter and tapering ratio on the lateral stability resis-
tance of FML I-shaped beam with variable cross-section. 
Lastly, the best probable lay-up is chosen to enhance the 
endurable lateral-torsional buckling load. One of the avail-
able commercial FMLs is GLARE (glass reinforced alumi-
num laminate), which is considered in this study. GLARE 
has good resistance to moisture and corrosion, high tensile 
and compressive strength, high failure strain, low weight, 
as well as good adhesion between glass fiber and resin.
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2 Variational formulations
A schematic of thin-walled FML beam with of length L 
varying I-section subjected to uniformly distributed load is 
shown in Fig. 1. The orthogonal right-hand Cartesian coor-
dinate system (x, y, z) is adopted, wherein x denotes the lon-
gitudinal axis and y and z are the first and second principal 
bending axes parallel to the flanges and web, respectively. 
The origin of these axes (O) is located at the centroid of the 
cross-section. As presented in Fig. 1, all section walls of 
the considered tapered bam consist of two metal sheets at 
the outer sides of fiber reinforced epoxy composite layers. 
Based on small displacements assumption and Vlasov's 
thin-walled beam theory for non-uniform torsion, the dis-
placement fields can be expressed as [25]:

U x y z u x y dv x
dx

z dw x
dx

y z d x
dx

V x y z v
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In these equations, U is the axial displacement and dis-
placement components V and W represent lateral and ver-
tical displacements (in direction y and z). The term ω(y,z) 

signifies a cross-section variable that is called the warping 
function, which can be defined based on Saint-Venant's 
torsion theory and θ is twisting angle.

Using the displacement field given in Eq. (1) and taking 
into account for tapering, the non-zero constituents of lin-
ear and non-linear parts of strain-displacement are respec-
tively expressed as [12]
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where εi
l
j and εi

*
j are dedicated to denotes the linear parts 

and the quadratic non-linear ones, respectively. In addi-
tion, the term r2 in Eq. (3) represents y2 + z2.

Here, the variational statement of equilibrium equations 
is derived as

� � � �� � � � �U U Wl e0 0 . (4)

In this formulation, δ denotes a variational operator. 
Ul and U0 represent the elastic strain energy and the strain 
energy due to effects of the initial stresses, respectively. 
We denotes work done by external applied loads. δUl could 
be computed using the following equation.
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in which, L expresses the element length. δεi
l
j is the vari-

ation of the linear parts of strain tensor. Substituting the 
variation of the linear part of strain tensor components 
Eq. (2) into relation Eq. (5) yields: 
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 (6)Fig. 1 FML beam with variable doubly symmetric I-section 
under external distributed loads: Coordinate system, notation for 

displacement parameters, definition of load eccentricities, and web and 
flanges lay-up arrangement
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The expression of the elastic strain energy variation 
can be formulated in terms of section forces acting on 
cross-sectional contour of the elastic member in the buck-
led configuration. The resultants of classical stresses for 
beams with doubly-symmetric I-section can be expressed 
as follows [6, 7].
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where N is the axial force. My and Mz denote the bending 
moments about major and minor axes, respectively. Bω is 
the bi-moment. Msv is the St-Venant torsion moment. In 
this stage, by integrating Eq. (6) over the cross-section 
area of the beam and using relations Eq. (7), the variation 
form of the elastic strain energy is acquired as [24]: 
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The present model is applied in the case of balanced and 
symmetrical lay-ups of the web and both flanges. In the 
context of classical laminated plate theory and substitution 
the expressions of linear strain tensor (εi

l
j ) presented in 

Eq. (2) into Eq. (7), the stress resultants of symmetrically 
balanced laminates are derived in terms of displacement 
components as [12]
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where (EA)com denotes axial rigidity. (EIy )com and (EIz )com 
represent the flexural rigidities of the y- and z-axes, respec-
tively. (EIω )com and (GJ)com are, respectively, warping and 
torsional rigidities of composite thin-walled beams with 
doubly symmetric I-section, defined by [6, 7]:
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That indexes f and w refer to the web and the flange 
of the beam cross-section, respectively. Aij and Dij are the 
matrices of extensional and bending stiffness, respec-
tively, which are calculated as
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where Qij
f and Qij

w are the transformed reduced stiffness 
related to the flanges and web, respectively. The configu-
ration of lamination is shown in Fig. 2.

Substituting Eq. (9) into Eq. (8), the final form of the 
variation of the strain energy can be written as following:
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Also, the variation form of strain energy due to initial 
stresses can be stated as:
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In Eq. (13), σx
0
y and σx

0
z indicate the mean values of the 

shear stress and σx
0
x signifies initial normal stress in the 

cross-section. According to Fig. 1, it is contemplated that 
the external bending moment occurs about the major prin-
cipal axis (My

*). Therefore, the magnitude of bending 
moment with respect to z-axis is equal to zero. Regarding 
this, the most general case of normal and shear stresses 
associated the external bending moment My

* and shear 
force Vz are considered as:
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(a)                                                 (b)
Fig. 2 Web and flanges laminate configuration: (a) FML composite 

web, (b) FML composite flanges



982|Soltani and Soltani
Period. Polytech. Civ. Eng., 66(3), pp. 978–989, 2022

Substituting Eqs. (3) and (14) into relation Eq. (13), the 
final form of the variation of strain energy due to the ini-
tial stresses is expressed as [22]

� �� ��U M v M v dxy y

L

0
0

� � �� � ��� �� * * . (15)

The first variation of external load work (We) of the 
beam under distributed vertical forces qz applied along 
a line (PP′) on the section contour (Fig. 1) can be written 
in the form of
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In Eq. (16), wP is the vertical displacement of point P. 
According to kinematics used in Asgarian et al. [23], the 
external work due to transverse loading is defined as 
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Here, zP is used to imply the eccentricity of the applied 
loads from the centroid of the cross-section. After insert-
ing Eqs. (12), (15) and (17) in Eq. (4), the expression of the 
first variation of total potential energy can be written as
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In these equations, the first and second ones are uncou-
pled and stable, and they do not affect the lateral buckling 
behavior of FML I-beam subjected to transverse loading. 
The equilibrium Eqs. (19) and (20) have a coupled nature 
due to the presence of the lateral deflection v and torsion 
component θ. Based on the straightforward methodology 
presented by by Soltani et al. [22], Asgarian et al. [23] and 
Soltani et al. [24], Eq. (21) can be rewritten in the follow-
ing form for any acceptable lateral buckled configuration:
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whose substitution in Eq. (22) enables its redefinition in an 
uncoupled form just dependent on the twist angle θ, inde-
pendently from the lateral displacement v, i.e.,
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In the current study, we use the finite element method 
for linear lateral-torsional stability analysis of thin-walled 
FML I-shaped beams with varying web and/or flanges, 
whose details are presented in the next part.

3 Finite element formulation
According to the authors' knowledge, the lateral-torsional 
stability behavior of doubly-symmetric thin-walled com-
posite beams with symmetric laminations under bending 
moment about the strong principal axis of the cross-section 
is usually governed by two fourth-order differential equa-
tions coupled in terms of the lateral displacement and the 
torsion angle [6, 7]. Accordingly, the 8*8 static and buck-
ling stiffness matrices are formulated based on eight dis-
placement parameters, namely: lateral translation, twist, 
rotation, and warping at each end node. Whereas in the 
current finite element model, there are two nodes with two 
degrees of freedom per node for each element [22]. The two 
nodes by which the element can be assembled into struc-
ture are located at its ends. 

According to finite element rules, it is also essential to 
use local coordinate (ε = x/Le ). Le is the length of each seg-
ment. The local e-axis is directed from node 1 to node 2. 
The considered degrees of freedom at the left and right 
nods of each element are: θ1, θ2 (the twist angle), and θ'1, θ'2 
(the rate of change twist, ∂θ/∂ε) [22]. The nodal displace-
ments of the beam element in the local coordinate at ε = 0 
and ε = 1 are illustrated in Fig. 3. Within the frame of finite 

Fig. 3 The nodal displacements of a thin-walled beam
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element methodology, the general displacement fields of 
the considered element with length Le in the local coordi-
nate can be expressed in terms of nodal degrees of freedom 
and shape functions for each displacement parameter as

� �( ) [ ]{ }� N D . (25)

In Eq. (25), {N} is the vector of shape functions for the 
twist angle and {D} is the vector of nodal degrees of free-
dom as pictured in Fig. 3, which are described by Eq. (26):
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where Ni, i = 1,2,3,4 are the shape functions for the four 
degrees of freedom and commonly called the cubic Hermitian 
interpolation functions, which are defined by [22]:
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Substituting the interpolation shape functions (Eq. (27)) 
into Eq. (24), the terms of elastic and buckling stiffness 
matrices of FML tapered beam with doubly symmetric 
I-section in the non-dimensional coordinate are derived as:
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where [K*] and [KG] are respectively the usual elastic stiff-
ness and the buckling stiffness matrices. It is necessary to 
note that in the context of stability analysis, the buckling 
stiffness matrix is proportional to the initial stress forces.  

Based on the finite element instructions and construct-
ing the total stiffness matrices of considered member, the 
following relation are finally obtained: 

( )*K KG�
�

�
� � � � � � �� �� � 0 . (30)

In which λ are the eigenvalues and {Δ} are the related 
eigenvectors. After implementation of the boundary con-
ditions at two ends, not only the lateral buckling loads are 
computed from the eigenvalue solutions of Eq. (30), but 
also the twist angle of tapered thin-walled FML beam can 
be determined.

4 Results and discussion
In the preceding section, an efficient finite element tech-
nique has been formulated to calculate the lateral-torsional 
buckling loads of thin-walled fiber metal laminates beam 
with varying I-section. In this section, a comprehensive 
example is conducted to show the effects of significant 
parameters such as lay-up arrangement, fiber alignment, 
metal volume fraction, loading position, and web taper-
ing ratio on the lateral buckling capacity of multi-layered 
composite tapered I-beam. In this regard, the linear lateral 
buckling analysis is performed for a fixed-free 16-layer 
FML web tapered I-beam with a span of 5 m under uni-
formly distributed load. All section walls (both flanges and 
web) are laminated symmetrically concerning its mid-plane 
and made of Aluminum alloy 2024-T3 (outer metal layers) 
and E-glass/epoxy material (fourteen inner composite lay-
ers). The material features of the lamina are as follows [18]: 
for the aluminum plies, E = 72.4 GPa and υ = 0.33; and 
for the fiber-reinforced composite layers, Ex = 38.6 GPa, 
Ey = 8.27 GPa, Gxy = 4.14 GPa, and υxy = 0.26.

As shown in Fig. 4, at the left end section, both flanges 
are assumed to be 100 mm wide (bf), and the web of the 
I-shape is 300 mm deep (dL). It is also supposed that the 
web height of the I-section at the left end (dL) is made to 
diminish linearly to (dR) at the right one. Therefore, the web 
tapering ratio is defined as α = dR / dL. Note that this param-
eter (α) is a non-negative variable and can change from 0.1 
to 1.0. Moreover, I-beam with a uniform cross-section is 
achieved when the mentioned parameter (α) equals one. 

Fig. 4 Cantilever FML I-beam with varying cross-section subjected to 
uniformly distributed load: Geometrical properties and loading position
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In this benchmark example, it is also supposed that uni-
formly transverse load is applied at three different posi-
tions: the top flange, the centroid (shear center), and the 
bottom flange. It is noteworthy that, to ensure that the lat-
eral buckling mode is overall and there is no local buck-
ling of the flanges and the web, the width-to-thickness 
ratio for all section walls was checked.

The next part is divided into two different subsections; 
the first one for cheking the convegence and verification 
of the formulation proposed herein, and the latter aims to 
peruse the influence of the above-mentioned factors on the 
linear lateral buckling behavior of the considered member. 

4.1 Verification 
The aim of the first section of the current example is to 
define the needed number of segments along the longitu-
dinal direction while using the finite element methodology 
proposed herein, to obtain the converged results. To this 
target, the lowest values of the lateral buckling load of 
the contemplated thin-walled FML profile (MVF = 0.2) 
with variable I-section for two different loading positions 
and various values of tapering ratios (α = 0.5, 0.8 and 1.0) 
by considering the stacking sequence of [Al, (0)7]S for all 
section walls, are evaluated versus the number of meshes 
adopted in FE methodology and the outcomes are pre-
sented in Fig. 5. It is seen from Fig. 5 that by increasing 
the number of elements (n) from 6 to 8, the predicted lat-
eral buckling load converges. In the following computa-
tions, we take n = 10 to calculate the first lateral buckling 
loads, unless otherwise stated.

In the next step, the lowest values of the lateral buckling 
loads of the selected tapered FML I-beam with MVF = 0.45 
for top flang loading, various values of tapering ratios 
(α = 0.2, 0.4, 0.6, 0.8 and 1.0) and two different lay-up 
arrangements are evaluated and tabulated in Table 1. The 
accuracy and exactness of the predicted results by the for-
mulation presented herein are checked with those acquired 
via finite element method (FEM) using commercial soft-
ware package ANSYS. Additionally, the relative errors (Δ) 
associated with present approach are presented in Table 1.  

Based on the available literature [13–16], SHELL281 
is generally adopted to develop FML thin-walled profile 
using ANSYS, and the lateral-torsional buckling load is 
estimated by the eigenvalue buckling analysis. SHELL281 
has eight nodes with six degrees of freedom at each node: 
translations in the x, y, and z axes, and rotations about the 
x, y, and z-axes [26]. In all simulated ANSYS models, 

the applied aspect ratio of the mesh (length-to-maxi-
mum width) was close to unity at the bigger cross-sec-
tion. Therefore, the size of meshes is approximately equal 
to 5 mm in length (Fig. 6). In this example, the bound-
ary condition at the left end is fixed support. Therefore, 
all displacements and rotations of the end cross-section 
are restrained and fixed. 

As shown in Table 1, the efficiency and performance of 
the proposed finite element solution are thus confirmed. 
Fig. 7 shows the overall lateral-torsional buckling mode 
shape of two of the considered stacking sequences. In the 
FEM models, local buckling of the web and both flanges 
is not observed.

Fig. 5 Estimated lateral buckling load of a fixed-free tapered FML 
I-section ([Al, (0)7]S) beam vs. Number of elements

Table 1 The lateral buckling loads comparison between the present 
methodology and ANSYS for distributed load applied at the top flange 

when MVF = 0.45

Stacking 
sequence α Proposed 

solution ANSYS Δ (%)

[Al, (0)7]S

0.2 478.139 472.840 1.121

0.4 427.550 405.770 5.368

0.6 387.719 357.240 8.532

0.8 356.590 326.930 9.072

1 331.972 309.470 7.271

[Al, (90)7]S

0.2 385.898 377.580 2.155

0.4 351.903 335.960 4.530

0.6 323.908 303.150 6.409

0.8 301.185 280.220 6.961

1 282.679 265.280 6.155
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4.2 Parametric study
After validating and verifying the methodology proposed 
herein, the impact of metal volume fraction on lateral sta-
bility capacity will be assessed in the following section. 
The main objective of the next part is also to find out the 
lay-up arrangement of the inner composite layers of can-
tilever FML web-tapered I-beam under uniformly distrib-
uted load that gives the highest lateral-torsional buckling 
resistance. In this regard, three different layer sequences 
are considered.

The first case is that the web and flanges plates are made 
of 16 plies, including two aluminum sheets and fourteen 
E-glass/epoxy internal layers, with unidirectional [Al,(0)7]S 

lay-up for the web, while the top and bottom flanges are 
assumed to have balanced and symmetrical lay-ups [Al,(0)7]S. 
For this case, the influence of metal volume fraction on the 
variations of the lateral buckling load (qcr) of the laminated 
web-tapered thin-walled beam with α = 0.4 related to fiber 
angle of its flanges (varying from 0 to 90) is plotted in Fig. 8 
for the two different loading positions. Load position of uni-
formly transverse load is on the top flange and mid-height. 
It is observed from the figures that the endurable lateral 
buckling load diminishes gradually with an increment in 
the lamina orientation (θ), where the impact of fiber angle 
is more perceptible when θ varies in the range of 0 to 60. 

It can be stated that in the first lateral-torsional buckling 
mode, the thin-walled FML beam becomes weaker and less 
stable as the fiber angle increases. The greatest resistance 
to lateral-torsional buckling is thus obtained with unidirec-
tional [Al,(0)7]S lay-up for both flanges. 

(b)
Fig. 6 View of mapped mesh used for the selected member using 

ANSYS: (a) Web-tapered beam (α = 0.2), (b) Prismatic beam (α = 1)

(a)

(b)
Fig. 7 The FEM result using ANSYS for the first lateral-torsional 

buckling mode shape: (a) Web-tapered beam (α = 0.2) with [Al, (0)7]S 
lamination, (b) Prismatic beam (α = 1) with [Al, (90)7]S lamination

(a)

(b)
Fig. 8 Variation of the lateral buckling load versus lamina orientation 

of both flanges for different metal volume fractions: (a) Top flange 
loading, (b) Centroid loading

(a)
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In the second case, it is assumed that all section walls 
(both flanges and the web) are made of fourteen internal 
layers of E-glass/epoxy and two outer plies of aluminum. 
The discrepancy between the first two cases is that the fiber 
of glass/epoxy layers is aligned at zero-degree between 
the two aluminum sheets in the top and bottom flanges 
([Al(0)7]S), while symmetric angle-ply lay-up arrangement 
([Al(±θ)7]S) is used in the web. To examine the influence 
of fiber orientation in the web of FML doubly-symmet-
ric I-section, the fiber angle of each inner ply in the FML 
hybrid composite web plate is changed with a step of five 
degrees in the range of 0 ≤ θ ≤ 90. In this case, Fig. 9 
exhibits the effect of metal volume fraction (MVF) on the 
variation of the lateral buckling loads of sandwich fiber-
metal laminated web-tapered I-beam related to fiber angle 
change (θ). The effect of load height position from the 
cross-section centroid on the lateral buckling resistance 
is also considered. According to these diagrams, for all 
values of metal volume percentage, it can be concluded 
that as the fiber angle is rotated off-axis, the lateral buck-
ling capacity is maximized at θ = 45° and then minimized 
sharply at θ = 90°. The highest lateral stability capacity for 
I-beam is thus obtained by aligning the fiber orientation in 
the web around 45°. Besides, the lateral buckling behavior 
is very similar for the two different loading positions.

In the third case, it is again assumed that both flanges 
and web of FML profile with I-section composed of six-
teen layers consist of two aluminum sheets and four-
teen layers of E-glass/epoxy. The fiber layers in all sec-
tion walls are placed with the symmetrical and balanced 
arrangement between the two metal sheets ([Al(±θ)7]S). 
The impact of changing the volume fraction of aluminum 
and the fiber alignment on the lateral buckling behavior of 
web-tapered thin-walled tapered beam (α = 0.4) for vari-
ous MVFs (MVF = 0.25, 0.3, 0.35 and 0.4) and consider-
ing two different loading positions are presented in Fig. 10. 
The distributed transverse load can be applied on the top 
flange, and the centroid. 

As can be seen in Fig. 10, the lateral stability decreases 
steadily as the lamina orientation increases. Besides, this 
decrease is more pronounced when the fiber angle changes 
in the range of 0 ≤ θ ≤ 60.

Based on the results presented in Figs. 8–10, we conclude 
that the endurable lateral buckling increases significantly 
with increasing the volume fraction of the metal. This result 
is predictable based on the material properties of E-glass/
epoxy and aluminum. Also, according to these illustrations, 
it can be stated that as the percentage of aluminum increases, 
the effect of the lamina orientation on the lateral stability 
of the FML web-tapered I-beam decreases significantly. 
This consequence is due to thickening aluminum sheets 
and thinning fiber-reinforced epoxy composite layers.

(b)
Fig. 9 Variation of the lateral buckling load versus lamina orientation of 
the web for different metal volume fractions: (a) Top flange loading, (b) 

Centroid loading

(b)
Fig. 10 Variation of the lateral buckling load versus lamina orientation 

of the web and both flanges for different metal volume fractions: (a) 
Top flange loading, (b) Centroid loading

(a)

(a)
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Based on the results presented in Figs. 8–10, it can be 
concluded that the optimum fiber angles for achieving the 
highest lateral buckling resistance of cantilever FML web 
tapered beam under distributed load are ±45° in the web and 
0° both flanges. This statement is reasonable since the flex-
ural stiffness (EIz)com and the warping rigidity (EIω)com are 
expressed in unidirectional stiffness A11 and D11 (Eq. (10)). 
These two components achieve their maximum magnitude 
by aligning the constituent fibers of the web and both flanges 
at zero along the beam length. Since the flanges should 
resist most bending and warping moments and the two 
above stiffness quantities ((EIz)com and (EIω)) are typically 
controlled by the fiber angle in the top and bottom flanges; 
hence the fiber orientation should be placed 0° in both 
flanges to increase the lateral-torsional stability capacity. 
Based on Eq. (10), the laminate torsional stiffness (GJ)com 
is presented in twisting stiffness of both flanges D6

f
6 and the 

web D6
w
6. These two parameters usually reach their maxi-

mum value by placing the fibers of the composite layers 
along 45°. Since the web of the I-section withstands shear 
stresses and has to transmit vertical shear force, the web 
fiber must be placed at an angle of ±45° to achieve the 
maximum shear capacity for the cross-section. 

Considering the optimal stacking sequence, the magni-
tude of lateral-torsional buckling loads for various com-
binations of web tapering ratio and MVFs, with different 
loading positions are listed in Table 2.

Table 2 shows that the web non-uniformity parameter 
has a considerable impact on the endurable lateral-tor-
sional buckling load. The tapering parameter weakens the 

beam loaded on the shear center and bottom flange due to 
decreasing the member stiffness, while the other results 
relating to cantilever web tapered I-beams under top 
flange loading do not follow the same trajectory. This may 
indicate that the lateral stability resistance corresponding 
to the top is enhanced with tapering ratio. For instance, 
the lateral buckling loads of FML cantilevers with con-
stant cross-section are smaller than those of web-tapered 
with tapering ratio equal to 0.4. This interesting reason is 
attributed to the fact that the torsion moment due to lateral 
load height (qzzP) is decreased by descending the taper ratio 
(α) from 1. Finally, it can be stated that this phenomenon 

Table 2 Lateral buckling load for FML tapered I-beam with different 
tapering ratios, metal volume fractions and loading position

Lo
ad

in
g 

po
si

tio
n

α
Metal volume fraction

0 0.2 0.4 0.6 0.8

To
p 

fla
ng

e 1 161.217 259.223 324.219 368.458 398.722

0.8 173.116 278.207 347.765 395.659 428.994

0.6 188.948 302.467 377.508 430.052 467.519

0.4 210.972 334.032 415.540 474.062 517.243

C
en

tro
id

1 493.217 659.840 793.056 907.721 1009.834

0.8 480.239 643.463 773.723 885.755 985.495

0.6 466.594 626.398 753.625 862.908 960.132

0.4 452.146 608.539 732.660 839.056 933.585

B
ot

to
m

 fl
an

ge 1 860.062 1069.447 1265.684 1452.685 1633.506

0.8 811.449 1011.493 1197.912 1374.807 1545.332

0.6 759.799 950.232 1126.372 1292.586 1452.166

0.4 703.924 884.497 1049.775 1204.534 1352.263

(c)
Fig. 11 The FEM result using ANSYS for the three first lateral-

torsional buckling mode shapes for web-tapered beam (α = 0.6) with 
MVF = 0.4: (a) Top flange loading, (b) Centroid loading, (c) Bottom 

flange loading

(b)

(a)
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is more predominant on lateral buckling resistance of can-
tilever beam subjected to transverse load than that of web 
non-uniformity ratio. Because of space limitations, only 
the first three lateral buckling modes of cantilever FML 
web-tapered beam (α = 0.6) with MVF = 0.4 having the 
best stacking sequences is depicted in Fig. 11. As shown 
in this figure, the influence of active and passive torsional 
moments due to the transverse load height parameter is 
respectively observed for the loading cases on the top and 
bottom flanges. Again, no local buckling of both flanges 
and the web is observed for three loading positions.

5 Conclusions 
Lateral buckling of sandwich fiber-metal laminate tapered 
I-beams subjected to transverse loading has been investi-
gated in the present work by the finite element approach. 
It is assumed that all section walls (the web and both 
flanges) are laminated symmetrically concerning its mid-
plane and consist of two metal layers at the outer sides of 
fiber-reinforced epoxy composite laminates. To derive the 
total potential energy, Vlasov's theory of open thin-walled 
beams in conjugate with the classic lamination theory is 
employed. The effect of load position on the lateral stabil-
ity strength of the beam is also included in the formulation. 
Then the weak form expression of the governing equation 
is constructed in terms of the twist angle using an auxil-
iary equation. Finally, the structural stiffness matrices are 
formulated throughout two-node Hermitean finite beam 
elements with two degrees of freedom per node. The supe-
riority of the proposed approach is to provide a two-node 
laminated I-beam element with a low number of degrees 
of freedom. Therefore, the present finite element model 
can simplify and decrease the essential computational 
efforts to calculate the lateral buckling load of thin-walled 
FML beams with varying cross-sections. In this research, 

E-glass/epoxy is considered for composite plies and alu-
minum for metal sheets. After verification with ANSYS 
software, the influence of fiber angle, staking sequence, 
metal volume fraction, transverse loading position, and 
web tapering ratio on lateral-torsional stability of cantile-
ver composite 16-layer FML tapered I-beam is thoroughly 
measured. The results of this research can be expressed as:

• For all transverse loading positions, it was found that 
the lateral buckling parameter of hybrid fiber-metal 
laminates beam with tapered I-section decreases as 
the fiber orientation in both flanges is rotated off-axis.

• The maximum lateral buckling load for cantilever 
FML web tapered I-beam subjected to uniformly 
distributed load is obtained by placing the fiber angle 
of each inner composite ply at ±45° in the web and 0° 
in both flanges.

• The results show that increasing the metal volume 
fraction leads to enhance linear buckling strength of 
glass-reinforced aluminum laminate I-beam under 
transverse loading.

• For the optimal layer arrangement, the lateral buck-
ling load increases approximately 30% by raising the 
metal volume percentage from 0% to 20% when the 
load is applied at the bottom flange.

• As aluminum volume fraction increases, the effect 
of changing the fiber angle on the lateral stability 
of FML web-tapered I-beam under transverse load 
decreases significantly

• The effect of metal volume fraction (MVF) on the 
lateral buckling capacity is more than the web taper-
ing parameter.

• It is observed that the buckling capacity of cantilever 
FML beam with doubly-symmetric I-section is best 
when the uniformly distributed load is applied on the 
bottom flange.
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