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Abstract

This study introduces an effective hybrid optimization algorithm, namely Particle Swarm Sine Cosine Algorithm (PSSCA) for numerical 

function optimization and automating optimum design of retaining structures under seismic loads. The new algorithm employs the 

dynamic behavior of sine and cosine functions in the velocity updating operation of particle swarm optimization (PSO) to achieve 

faster convergence and better accuracy of final solution without getting trapped in local minima. The proposed algorithm is tested 

over a set of 16 benchmark functions and the results are compared with other well-known algorithms in the field of optimization. 

For seismic optimization of retaining structure, Mononobe-Okabe method is employed for dynamic loading condition and total 

construction cost of the structure is considered as the objective function. Finally, optimization of two retaining structures under static 

and seismic loading are considered from the literature. As results demonstrate, the PSSCA is superior and it could generate better 

optimal solutions compared with other competitive algorithms.

Keywords

retaining structure, seismic load, particle swarm, hybrid algorithm

1 Introduction
Many real world design problems can be considered as opti-
mization problems and appropriate optimization method 
are required for the solution. On the other hand, the design 
problems have become more complicated when disconti-
nuities, incomplete information, dynamicity, and uncer-
tainties are involved. In such a case, classical optimization 
algorithms based on the mathematical principles demand 
exponential time or may not find the optimal solution at all. 
To overcome the mentioned problem, during the last few 
decades, introducing new efficient metaheuristic optimiza-
tion algorithms to deal with the drawbacks of classical tech-
niques have been of great concern. The privileges of these 
algorithms include derivation-free mechanisms, simple 
concepts and structure, local optima avoidance and effec-
tive for discrete and continuous functions. Accordingly, 
there is an increasing interest in presenting new metaheuris-
tic algorithms, which offer higher accuracy and efficiency 
in dealing with complex optimization problems. 

Generally, metaheuristic algorithms are of two types: 
single solution based methods and population based algo-
rithms. As the name indicates, in the former type, only 
one solution is generated (usually at random) and pro-
cessed during the optimization phase until a stopping cri-
terion is satisfied. Some of these methods are Simulated 
Annealing [1], Tabu Search [2], Iterated Local Search [3] and 
Vortex Search Algorithm [4]. In the latter type, a set of solu-
tions (i.e., population) is generated randomly and updated 
iteratively in each iteration of the optimization process 
until satisfying stopping criteria. Some well-known exam-
ples of these algorithms are the Genetic Algorithm [5], Ant 
Colony Optimization [6], Particle Swarm Optimization [7], 
Harmony search [8], and Harris hawks optimization [9]. 

Although all population-based search techniques may 
provide relatively satisfactory results, there is no meta-
heuristic algorithm providing a superior performance than 
others in solving all optimizing problems. In other words, 
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an algorithm may solve some problems better and some 
problems worse than the others [10]. Therefore, several 
studies have been undertaken to propose a novel algorithm 
or improve the performance and efficiency of the exiting 
metaheuristics [7, 11–14]. In the current research, a new 
hybrid optimization technique based on Particle Swarm 
Optimization (PSO) and Sine Cosine Algorithm (SCA) is 
developed. PSO is one of the most practical optimization 
algorithm which, has a simple structure and can be eas-
ily applied [15]. The proposed hybrid algorithm employs 
the advantages of sine and cosine functions in the velocity 
updating formula of the standard PSO algorithm. The pro-
posed particle swarm sine cosine algorithm (PSSCA) 
utilizes a new weighting function as well as oscillation 
behavior of the sine and cosine mathematical functions 
which, can significantly improves the performance and 
provide a well balance between exploration and exploita-
tion of the algorithm. 

Reinforced concrete cantilever retaining structures are 
widely used in the field of civil engineering and frequently 
constructed for a variety of applications. Traditionally, 
in the design of retaining structures, initial assumed dimen-
sions will be checked for stability and other building code 
requirements. If the dimensions could not satisfy the con-
straints, they would change repeatedly until satisfying all the 
requirements. In addition, in this time-consuming iterative 
process, the construction cost is not considered. In the opti-
mum design of retaining structures, the dimensions, which 
provide minimum cost or weight of the structure and satisfy 
all the requirements, are defined automatically. Optimum 
design of these structures is a difficult optimization problem 
especially in case of seismic loading condition. However, 
in the earthquake-prone zone the design of the retaining 
walls under seismic loading should be strongly considered. 
There are numerous studies on the optimization of retaining 
structures under static loads [16–20]. However, the research 
into the optimum design of these structures under seismic 
loading is limited [21–24]. Due to the effectiveness of the 
proposed PSSCA, the applicability of this method for solv-
ing difficult optimization problems will be investigated via 
seismic optimization of retaining structures.

2 Particle Swarm Optimization (PSO)
PSO is a population-based optimization technique intro-
duced by Kennedy and Eberhart [7]. In a PSO system, 
multiple candidate solutions coexist and collaborate simul-
taneously. Each solution called a particle, flies in the prob-
lem search space looking for the optimal position to land. 

A particle, during the generations, adjusts its position 
according to its own experience as well as the experience 
of neighboring particles. A particle status on the search 
space is characterized by two factors: its position (xi) and 
velocity (vi). The new position and velocity of particles 
will be updated according to the following equations [20]:
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where, vi
t is the velocity of particle i at iteration t, xi

t rep-
resents the position of particle i, w is a weighting func-
tion, pbest represents the best previous position of parti-
cle i, gbest is the best solution so far, rand1 and rand2 are 
two independently uniformly distributed random number 
between 0 and 1, C1 and C2 are acceleration coefficients. 
The weighting function w will be obtained using the fol-
lowing equation:

w w w w t t= − − ×
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where wmax and wmin are the maximum and minimum val-
ues of w.

3 Sine Cosine Algorithm (SCA)
SCA is one of the recently developed population-based 
meta-heuristic method based on the mathematical fea-
tures of sine and cosine functions [25]. In this algorithm, 
after generating the random initial solutions, each solution 
dynamically updates the positions according to the follow-
ing equations:
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where, xi
t represents the position of ith solution at iteration 

t, xBest is the best solution in the population, r1 is a random 
numbers in the range of [0, 2π], r2 is a random weight of 
the best solution in the range of [–2, 2], r3 is a random 
number between 0 and 1, and the symbol | . | represents 
absolute value. If the parameter r3 is smaller than 0.5, the 
candidate solution chooses the sine function to update its 
position. The parameter A is a function to help the balance 
between exploration and exploitation of a search space and 
may be defined as follows:
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4 Hybrid PSSCA
In the proposed hybrid algorithm, the candidate solu-
tions (i.e., particles) update their positions using the veloc-
ity parameter of the PSO algorithm. However, instead of 
simple random values in Eq. (2) (rand1 and rand2), the 
PSSCA utilizes sine and cosine functions which, success-
fully applied in the SCA [25]. The oscillation behavior of 
sine and cosine functions allows one solution to be re-posi-
tioned around another one and it can guarantee exploitation 
of the space defined between two solutions. In addition, the 
exploration of the algorithm will be modified by increasing 
the range of sine and cosine functions, which allow a solu-
tion to update its position outside the space between itself 
and another solution. To further improvement of the algo-
rithm, the weighting function (w) of Eq. (2) will be replaced 
by a decreasing exponential function to control the balance 
between global search in early iterations and local search 
in late iterations. 

The proposed PSSCA starts the search process with 
initial random candidate solutions (swarm of particles). 
In every iteration, the algorithm updates the position of the 
particles using a velocity parameter until satisfying some 
termination criteria. The detailed mathematical expres-
sion of PSSCA is presented in Section 4.1.

4.1 Algorithmic steps 
Mathematically, the PSSCA algorithm has three main 
parts including population initialization, population eval-
uation, and updating the current population. Step-by-step 
procedure of the proposed PSSCA is presented as follows. 

Step 1 population initialization 
PSSCA starts the search process with a set of randomly 

generated particles (possible solutions) in the search space 
according to the following equation:

x lb rand ub lb i Ni i i i= + × −( ) = …; , , ,1 2 , (6)

where xi presents the location of ith particle in the search 
space. Moreover, ubi and lbi are the lower and upper 
bounds of the solution, respectively. 

Step 2 population evaluation
In this step, initial population will be evaluated based 

on the objective function and the object with the best fit-
ness value selected as gbesti.

Step 3 golden change
In the third step, the particles will be sorted according 

to their fitness and the particle with the worst fitness will 
be changed by a random solution.

Step 4 velocity evaluation
In each iteration of optimization process, the particles 

are moved toward the best solution using velocity param-
eter (vi). In the first iteration of optimization process, vi 

will be generated randomly according to the following 
equation:

v randni 1
2( ) = , (7)

where randn is a normally distributed pseudorandom num-
ber (obtained using randn function in MATLAB). During 
the iterations, vi will be updated using Eq. (8).
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In Eq. (8), C is a random number between 0 and 2 and 
functions sine and cosine take arguments in radians. In 
order to improve the search performance and controlling 
the balance between global search in early iterations and 
local search in late iterations, w will be evaluated by:
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where tmax is the maximum number of iterations.
Step 5 velocity limitation
In order to clamp the particles movement, a reasonable 

interval is applied according to:

− ≤ ≤v v vi i imax max , (10)

where, vimax is a maximum movement allowed based on the 
following equation:

v ub lbi i imax
.= ×( )−0 1 . (11)

Step 6 update position (generate new population)
In this stage, the particles move toward the global opti-

mum in the search space based on Eq. (1).
The pseudo code of the proposed PSSCA is presented 

in Algorithm 1. 

5 Seismic analysis of retaining structures 
One of the important problems of structural engineering 
is seismic analysis of a retaining structure, especially in 
seismic zones. However, evaluation of accurate behavior 
of these structures will be more complicated while seismic 
loads are applied. Therefore, an effective pseudo-static 
approach will be applied to determine the real behavior 
of the structure under seismic loads. The first step in the 
analysis of retaining structures is evaluation of active and 
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passive earth pressure acting on a wall. One of the most 
commonly used pseudo-static approach for calculating the 
distribution of seismic earth pressure is Mononobe-Okabe 
(M-O) method [26–29]. Fig. 1 depicted general forces act-
ing on one-meter length of retaining structure. In this fig-
ure, PAE and PPE are the active and passive earth pressure 
under seismic loading, respectively. H is total height of the 
wall; β is the backfill slope angle; D is the depth of soil in 
front of the wall; q is the distributed surcharge load; qmax 
and qmin are the maximum and minimum contact pressure.

According to the M-O theory, a total active earth force 
can be evaluated based on the following expression [26]:

P H K KAE V AE= −( )1

2
1

2γ . (12)

In Eq. (12), KV is the vertical acceleration coefficient 
and KAE is the dynamic active earth pressure coefficient 
defined as:
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where, α is angle of the back face of the wall and θ is the 
seismic inertia angle based on the following equation:
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where, Kh and KV are the horizontal and vertical accel-
eration coefficients respectively, and can be defined as 
follows:

Kh =
horizontal earthquake acceleration component

acceleration duee to gravity g( )
 , (15)

KV =
vertical earthquake acceleration component

acceleration due too gravity g( ) . (16)

It should be noted that, the acting point of PAE ( y̅ ), can 
be computed utilizing Eq. (17)
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where, PA is the static component of the active force and can 
be calculated by substituting θ = 0 in Eq. (13). Moreover, 
∆PAE is the difference between dynamic and static active 
earth pressure as shown in the following equation:

∆P P PAE AE A= − . (18)

According to the M-O theory, the total passive earth 
force under seismic load can be obtained using the follow-
ing formula [26]:
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6 Optimization of retaining structures
The aim of the optimum design of retaining structures is 
to define the design variables related to the least possible 
value of the objective function, which may be considered 
as total cost or total weight of the structure while satisfy-
ing some stability and strength constraints. In the current 

Algorithm 1 The pseudo code of PSSCA algorithm

Determine the parameters N, tmax

Generate initial population using Eq. (6)
Generate initial velocity randomly
Calculate vmax from Eq. (11)

t = 1
while t < tmax                           //particles' movement

Evaluate particles' fitness
Update pbesti and gbesti

Change the worst particle with a random one
Determine w from Eq. (9)
Calculate vi using Eq. (8)
Check velocity limitation
Update particles' position based on Wq. (1)

t = t + 1
end while

Output the best solution

Fig. 1 Cross section of retaining structure
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study, the total cost of the structure subjected to static and 
dynamic loads are considered as the objective function 
based on the following equation:

f C W C Vcost s st c c= + , (21)

where, Wst is the weight of the steel bars, Cs and Cc are unit 
cost of steel and concrete, respectively and Wc is the vol-
ume of the concrete. 

The eight continuous design variables considered here, 
include five variables related to the geometry of the struc-
ture and three more variables representing the steel rein-
forcement of different parts of the structures depicted 
graphically in Fig. 1. In this figure, X1 is width of the heel, 
X2 is stem thickness at the top, X3 is stem thickness at the 
bottom, X4 is width of the toe and X5 is thickness of the 
base slab, R1 is the vertical steel reinforcement in the stem, 
R2 is the horizontal steel reinforcement in the toe and R3 is 
the horizontal steel reinforcement in the heel. Finally, the 
design constraints implemented by the American Concrete 
Institute (ACI 318-05) design code [30], considered in the 
optimization of the retaining structures are summarized 
in Table 1.

In Table 1, FSS = required factor of safety against slid-
ing; FSO = required factor of safety against overturning; 
FSb = required factor of safety against bearing capacity; 
∑FR = sum of the horizontal resisting forces; ∑Fd = sum of 
the horizontal driving forces; ∑MR is sum of the moments 
of forces that tends to resist overturning about the toe and 
∑MO is sum of the moments of forces that tends to over-
turn the structure about the toe. ∑V is sum of the vertical 
forces due to the weight of wall, the soil above the base, 
and surcharge load. e is the eccentricity, Vut, Vuh and Vus = 
ultimate shearing force of toe, heel and stem; Vnt, Vnh and 
Vns = nominal shear strength of concrete [30]; Mut, Muh and 
Mus = ultimate bending moment of toe, heel and stem; Mnt, 
Mnh and Mns = nominal flexural strength of concrete [30]. 

7 Comparative analysis of the PSSCA
In this study, the performance of PSSCA is evaluated on 
a set of unimodal, multimodal and fixed-dimension multi-
modal benchmark functions from literature [31, 32] against 
a good combination of some well-known state of the art 
algorithms. All of these functions are minimization prob-
lems, which are useful for evaluating the search efficiency 
and convergence rate of optimization algorithms. The math-
ematical formulation and characteristics of these test func-
tions are available in Table 2. The proposed algorithm is 
coded in MATLAB R2020b programming software.

In this paper, the performance of the proposed PSCA is 
compared with other well-established optimization algo-
rithms such as the Sine-Cosine Algorithm (SCA) [25], 
Gravitational Search Algorithm (GSA) [33], Tunicate 
Swarm Algorithm (TSA) [34] and Grey Wolf Optimizer 
(GWO) [35]. These algorithms have proved their effec-
tiveness and robustness compared with other methods like 
Particle Swarm Optimization [25, 33–35].

It should be noted that the performance and convergence 
of these metaheuristic methods are completely dependent 
on the internal parameters of the algorithms. PSSCA needs 
only two main parameters, N (number of objects) and tmax 
(maximum number of iteration). It is found through exper-
iments that lower value of N results in premature conver-
gence and higher value improves exploration but increases 
elapsed time significantly. The proper value of N is equal to 
30 and the maximum number of iteration is considered as 
1000. In Table 3, the key parameters of the selected meth-
ods are presented. These values have been determined 
using the reference-based parameter identification process 
according to the previously published research papers.

Table 1 Design constraints 

Failure mode Constraints Considerations

Sliding stability FSS ≤ (ΣFR/ΣFd)

Overturning 
stability FSO ≤ (ΣMR/ΣMO)

Bearing 
capacity FSb ≤ (qult/qmax)

Eccentricity 
failure e ≤ (B/6)

Toe shear Vut ≤ Vnt

Toe moment Mut ≤ Mnt

Heel shear Vuh ≤ Vnh

Heel moment Muh ≤ Mnh

Shear at bottom 
of stem Vus ≤ Vns

Moment at 
bottom of stem Mus ≤ Mns

Limitation 
of flexural 
reinforcement
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Table 2 Description of unimodal benchmark functions

Function Range fmin

[–100,100]30 0

[–10,10]30 0

[–100,100]30 0

[–100,100]30 0

[–30,30]30 0

[–100,100]30 0

[–500,500]30 428.98 × n

[–5.12,5.12]30 0

 [–32,32]30 0

[–600,600]30 0

[–50,50]30 0

[–65.53,65.53]30 1

[–5,5]4 0.00030

[–5,5]2 –1.0316

[1,3]3 –3.86

[0,10]4 –10.4028
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Because of stochastic nature of the metaheuristics 
methods, the results of single run might be unreliable and 
the algorithms may obtain better or worse solutions than 
the previously reached one. Therefore, statistical analysis 
should be applied to have a fair comparison and effective-
ness evaluation of the algorithms. Regarding this issue, 
for the selected algorithms, 30 independent runs are per-
formed and statistical results are collected and reported in 
Table 4. (Fig. 2–17).

Results of Table 4 show the Best (Minimum), Worst 
(Maximum), Mean (Average), Median, and Standard 
Deviation (Std) of the solutions obtained from experiments 
using the selected optimization algorithms. The best results 
between the five methods are shown in bold face. 

Unimodal test functions can be considered to investi-
gate the exploitation capability of an optimization algo-
rithm [35, 36]. In this study, to evaluate the ability of 
PSSCA to exploit the promising regions, 6 unimodal 
benchmark functions (F1 to F6) are solved and results are 
compared with four selected optimization methods in 
Table 4. The results of this table show that, for all uni-
modal functions except F6, PSSCA could provide better 
solution. In addition, PSSCA can reach the global mini-
mum for F1–F4. It means that the new algorithm has a large 
potential search space compared with the other optimiza-
tion algorithms. 

Multimodal functions with several local optima can be 
used to evaluate the capability of an algorithm to explore 
the search space [35, 36]. In this study, 10 multimodal 

functions (F7 to F16) are minimized based on the presented 
procedure. According to the results of Table 4, it can be 
observed that the Best and Mean values reached by PSSCA 
for most of the functions (except F11) are significantly better 
than the other methods. However, for F11, the Mean value 
obtained by PSSCA are smaller than the robust GSA and 
results are much better than those obtained by SCA, TSA 
and GWO. The consistent performance of the new method 
for suite of multimodal benchmark functions verifies its 

Table 3 parameter setting of the selected algorithms

Algorithm Parameter Specifications

PSSCA Number of objects
Maximum iteration 

30
1000

GSA 

Search agents 
 Gravitational constant 

 Alpha coefficient 
 Number of generations

50
100
20

1000

GWO
Search agents 

Control parameter ( →α) 
Number of generations

80
[2,0]
1000

SCA
Search agents 

Number of elites 
Number of generations

80
2

1000

TSA

Search agents 
Parameter Pmin 
Parameter Pmax 

Number of generations

80
1
4

1000

PSO

Search agents 
C1 and C2 

wmax

wmin

Number of generations

50
2

0.9
0.4

1000

Table 4 Comparison of different methods in solving test functions 

Function Statistics PSSCA SCA GSA TSA GWO

F1

Best
Worst
Mean

Median 
Std.

0.00
0.00
0.00
0.00
0.00

1.5523e-07
0.0043

2.3458e-04
1.9737e-05
7.9295e-04

1.0013e-17
3.1868e-17
2.1148e-17
2.0077e-17
5.8150e-18

5.1458e-61
1.1586e-54
8.3155e-56
7.1012e-58
2.4905e-55

2.4915e-61
3.8647e-58
4.9162e-59
1.0534e-59
1.0230e-58

F2

Best
Worst
Mean

Median 
Std.

0.00
0.00
0.00
0.00
0.00

1.5005e-09
9.8446e-06
1.6882e-06
5.4000e-07
2.4046e-06

1.5282e-08
3.3313e-08
2.3935e-08
2.3469e-08
4.0025e-09

1.1196e-35
3.2814e-32
2.1532e-33
3.1044e-34
6.0237e-33

8.3612e-36
5.3488e-34
8.3658e-35
5.9294e-35
9.8594e-35

F3

Best
Worst
Mean

Median 
Std.

0.00
0.00
0.00
0.00
0.00

70.8285
2.6762e+03

789.1620
619.4506
746.2287

102.9550
468.6160
245.4694
221.1150
100.1024

2.5684e-32
2.4492e-17
8.1741e-19
1.8696e-24
4.4714e-18

1.2533e-19
3.5572e-13
1.5096e-14
2.0740e-17
6.5547e-14

F4

Best
Worst
Mean

Median 
Std.

0.00
0.00
0.00
0.00
0.00

1.2610
35.6743
9.3080
6.9806
8.0720

2.2498e-09
5.0857e-09
3.3030e-09
3.2020e-09
7.4424e-10

3.2458e-08
6.3429e-05
1.0102e-05
2.0270e-06
1.6927e-05

9.8174e-16
2.4431e-13
1.9487e-14
6.3817e-15
4.4955e-14
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Continuation of Table 4

Function Statistics PSSCA SCA GSA TSA GWO

F5

Best
Worst
Mean

Median 
Std.

3.5924e-04
3.5924e-04
3.5924e-04
3.5924e-04
1.6541e-19

27.3230
49.5110
29.9106
29.0097
4.1508

25.7459
220.9110
42.2647
26.1443
45.4674

25.6273
29.5430
28.4422
28.8115
0.7616

25.2273
28.7294
26.9256
27.1173
0.8418

F6

Best
Worst
Mean

Median 
Std.

1.9836e-07
0.0220
0.0021

1.9836e-07
0.0056

3.4070
4.4435
4.0360
4.0572
0.2954

9.711e-18
8.645e-16
3.097e-17
2.953e-17
6.165e-18

2.0585
4.7791
3.6724
3.5615
0.6918

0.2466
1.2619
0.6376
0.7452
0.3353

F7

Best
Worst
Mean

Median 
Std.

-1.2050e+04
-1.1096e+04
-1.2005e+04
-1.2050e+04

186.4737

-5.2993e+03
-3.5321e+03
-4.0769e+03
-3.9720e+03

336.8249

-3.6279e+03
-2.0033e+03
-2.7826e+03
-2.7464e+03

365.4671

-7.8992e+03
-5.2761e+03
-6.6126e+03
-6.6131e+03

599.2609

-8.8178e+03
-4.9742e+03
-6.2524e+03
-6.2270e+03

852.4634

F8

Best
Worst
Mean

Median 
Std.

0.00
0.00
0.00
0.00
0.00

1.0560e-06
51.4451
5.9694

9.3391e-04
12.2476

8.9546
21.8891
15.6209
15.9193
3.1043

77.7761
254.9883
151.4539
149.6596
35.8717

0.00
10.0548
0.8853
0.00

2.4438

F9

Best
Worst
Mean

Median 
Std.

8.8818e-16
8.8818e-16
8.8818e-16
8.8818e-16

0.00

1.5579e-05
20.2198
14.3622
20.1275
8.9778

2.5288e-09
4.4823e-09
3.4912e-09
3.4766e-09
5.1530e-10

1.5099e-14
4.3125
2.4095
2.9381
1.3920

1.1546e-14
2.2204e-14
1.5928e-14
1.5099e-14
2.5861e-15

F10

Best
Worst
Mean

Median 
Std.

0.00
0.00
0.00
0.00
0.00

4.8381e-07
0.7703
0.1368
0.0032
0.2218

1.6952
10.6642
4.2510
3.5667
2.0234

0.00
0.0159
0.0077
0.0082
0.0057

0.00
0.0140
0.0014
0.00

0.0041

F11

Best
Worst
Mean

Median 
Std.

3.9317e-08
1.5374e-04
7.0132e-06
4.0116e-07
2.7947e-05

0.2631
5.6300
0.9568
0.4964
1.1497

8.2033e-20
0.1037
0.0198

1.3512e-19
0.0400

0.2738
13.8088
6.3735
6.7411
3.4586

0.0121
0.0920
0.0364
0.0329
0.0201

F12

Best
Worst
Mean

Median 
Std.

0.9980
0.9980
0.9980
0.9980

1.4772e-11

0.9980
2.9821
1.1964
0.9980
0.6054

0.9980
8.0858
3.6212
3.0452
2.1942

0.9980
12.6705
7.6657
10.7632
4.8845

0.9980
12.6705
4.1312
2.9821
4.1443

F13

Best
Worst
Mean

Median 
Std.

3.1381e-04
3.9684e-04
3.3641e-04
3.2323e-04
2.4589e-05

3.4063e-04
0.0014

8.5975e-04
7.3095e-04
3.8089e-04

0.0012
0.0118
0.0025
0.0021
0.0019

3.751e-04
0.0566
0.0043

4.5390e-04
0.0116

3.1749e-04
0.0204
0.0044

3.0754e-04
0.0081

F14

Best
Worst
Mean

Median 
Std.

-1.0316
-1.0316
-1.0316
-1.0316

1.8597e-06

-1.0316
-1.0316
-1.0316
-1.0316

1.0395e-05

-1.0316
-1.0316
-1.0316
-1.0316

5.6082e-05

-1.0316
-1.0316
-1.0316
-1.0316
0.0058

-1.0316
-1.0316
-1.0316
-1.0316

4.7385e-09

F15

Best
Worst
Mean

Median 
Std.

-3.8628
-3.8628
-3.8628
-3.8628

1.3625e-16

-3.8625
-3.8539
-3.8560
-3.8548
0.0029

-3.8628
-3.8628
-3.8628
-3.8628

2.4795e-05

-3.8628
-3.8549
-3.8625
-3.8628
0.0014

-3.8628
-3.8549
-3.8620
-3.8628
0.0022

F16

Best
Worst
Mean

Median 
Std.

-10.4028
-10.4028
-10.4028
-10.4028

5.4202e-15

-9.0513
-0.9074
-5.4154
-5.0380
1.7315

-10.4009
-10.4029
-10.4029
-10.4028

4.6649e-06

-10.3812
-2.7427
-7.8325

-10.2554
3.1843

-10.4029
-5.0877
-10.2253
-10.4025
0.9703
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Fig. 2 Convergence curves of algorithms for F1
Fig. 3 Convergence curves of algorithms for F2

Fig. 4 Convergence curves of algorithms for F3
Fig. 5 Convergence curves of algorithms for F4

Fig. 6 Convergence curves of algorithms for F5 Fig. 7 Convergence curves of algorithms for F6
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Fig. 8 Convergence curves of algorithms for F7 Fig. 9 Convergence curves of algorithms for F8

Fig. 10 Convergence curves of algorithms for F9 Fig. 11 Convergence curves of algorithms for F10

Fig. 12 Convergence curves of algorithms for F11

Fig. 13 Convergence curves of algorithms for F12
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Fig. 14 Convergence curves of algorithms for F13 Fig. 15 Convergence curves of algorithms for F14

Fig. 16 Convergence curves of algorithms for F15 Fig. 17 Convergence curves of algorithms for F16

superior capabilities of exploration. From the standard devi-
ation point of view, which indicate the stability of the algo-
rithm, the results show that PSSCA is a more stable method 
when compared with the other techniques. In addition, the 
convergence progress curves of algorithms for benchmark 
functions are compared in Fig. 2–17. From the above anal-
ysis, it can be concluded that PSSCA either outperforms the 
other algorithms or performs almost equivalently. 

In order to determine the statistical significance of the 
comparative results of two or more algorithms, a non-para-
metric pairwise statistical analysis should be conducted. 
As recommended by Derrac et al. [37] to assess mean-
ingful comparison between the proposed and alternative 
methods, the nonparametric Wilcoxon's rank sum test is 
performed between the results. In this regard, utilizing the 
best results obtained from 30 runs of each method, a pair-
wise comparison is conducted. 

Wilcoxon's rank sum test returns p-value, sum of posi-
tive ranks (R+) and the sum of negative ranks (R−). Table 5 
presents the results of Wilcoxon's rank sum test of PSSCA 
when compared with other methods. The p-value indicates 
the minimum of significance level for detecting differ-
ences. In this study, α = 0.05 is considered as the level of 
significance. If the p-value of the given algorithm is bigger 
than 0.05, then there is no significant difference between 
the two compared methods. Such a result indicated with 
"N.A" in the winner rows of Table 5. On the other hand, if 
the p-value is less than α, it definitively means that, in each 
pair-wise comparison, the better result obtained by the best 
algorithm is statistically significant and it was not gained 
by chance. In such cases, if the R+ is bigger than R–, indi-
cates PSSCA has a superior performance than the alter-
native method otherwise PSSCA has inferior performance 
and alternative algorithm shown better performance [38].
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Table 5 results of Wilcoxon's rank sum test

Function Wilcoxon test Parameters PSSCA vs GSA PSSCA vs SCA PSSCA vs TSA PSSCA vs GWO

F1

p- value 
R+
R-

Winner 

1.7344E-06
465

0
PSSCA

1.7344E-06
465

0
PSSCA

1.7344E-06
465

0
PSSCA

1.7344E-06
465

0
PSSCA

F2

p- value 
R+
R-

Winner

1.7344E-06
465

0
PSSCA

1.7344E-06
465

0
PSSCA

1.7344E-06
465

0
PSSCA

1.7344E-06
465

0
PSSCA

F3

p- value 
R+
R-

Winner

1.7344E-06
465

0
PSSCA

1.7344E-06
465

0
PSSCA

1.7344E-06
465

0
PSSCA

1.7344E-06
465

0
PSSCA

F4

p- value 
R+
R-

Winner

1.7344E-06
465

0
PSSCA

1.7344E-06
465

0
PSSCA

1.7344E-06
465

0
PSSCA

1.7344E-06
465

0
PSSCA

F5

p- value 
R+
R-

Winner

1.7344E-06
465

0
PSSCA

1.7344E-06
465

0
PSSCA

1.7344E-06
465

0
PSSCA

1.7344E-06
465

0
PSSCA

F6

p- value 
R+
R-

Winner

7.4523E-7 
0

465
GSA

1.7344E-06
465

0
PSSCA

1.7344E-06
465

0
PSSCA

2.353E-06
462
3

PSSCA

F7

p- value 
R+
R-

Winner

1.7344E-06
465

0
PSSCA

1.7344E-06
465

0
PSSCA

1.7344E-06
465

0
PSSCA

1.7344E-06
465

0
PSSCA

F8

p- value 
R+
R-

Winner

1.7344E-06
465

0
PSSCA

1.7344E-06
465

0
PSSCA

1.7344E-06
465

0
PSSCA

0.02
21
0

PSSCA

F9

p- value 
R+
R-

Winner

1.73E-06
465

0
PSSCA

1.73E-06
465

0
PSSCA

1.73E-06
465

0
PSSCA

1.73E-06
465

0
PSSCA

F10

p- value 
R+
R-

Winner

1.73E-06
465

0
PSSCA

1.73E-06
465

0
PSSCA

1.473E-03
91
0

PSSCA

0.068
10
0

N.A

F11

p- value 
R+
R-

Winner

0.041
140
325

GSA

1.73E-06
465

0
PSSCA

1.73E-06
465

0
PSSCA

1.73E-06
465

0
PSSCA

F12

p- value 
R+
R-

Winner

1.73E-06
465

0
PSSCA

2.56E-06
435
0

PSSCA

4.81E-06
403

3
PSSCA

3.22E-04
152
1

PSSCA

F13

p- value 
R+
R-

Winner

1.73E-06
465

0
PSSCA

2.35E-06
462
3

PSSCA

0.006
366
99

PSSCA

0.393
274
191
N.A

F14

p- value 
R+
R-

Winner

0.059
304
161
N.A

0.371
276
189
N.A

0.132
50
415
N.A

1.59E-06
0

465
GWO
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8 Model application
In this section, two numerical examples of retaining struc-
tures are considered for investigating the efficiency of the 
proposed algorithm. 

These experiments are solved by considering three dif-
ferent combinations of Kh and KV ; Kh = 0, KV = 0, Kh = 0.2, 
KV = 0 and Kh = 0.2 and KV = 0.2. Table 6 presents input 
parameters for these experiments. 

The first example is originally presented by Saribas and 
Erbatur [39] and has been solved using classical nonlinear 
programming (NLP). Camp and Akin [40] applied big bang-
big crunch (BB-BC) optimization method and Gandomi 
et al. [17] developed interior search algorithm (ISA) for 
the solution. However, all these research solved the prob-
lem under static loading condition which is equivalent with 
first case in the current study (Kh = 0, KV = 0). The prob-
lem is solved using the proposed PSSCA as well as SCA, 
GSA, TSA and GWO for different combination of horizon-
tal and vertical acceleration coefficient. The algorithm is 
run 30 times and the best results are presented in Table 7.

As the results of Table 7 show, the best value of the 
objective function obtained by PSSCA for the first case 
(static loading) is 69.035 $/m which is approximately 
20% cheaper than the design presented by Saribas and 
Erbatur [39], 2% lower than BB-BS and 5.8% cheaper 
than the ISA method. In addition, the best cost evaluated 
by PSSCA are slightly lower than those obtained by SCA, 
TSA and GWO for all loading cases. The results of GSA 
are comparable with PSSCA, while the required computa-
tion time of GSA is more than the new hybrid algorithm.

Moreover, the results show that considering seismic 
condition (Kh = 0.2, KV = 0) will increase the construction 
cost around 19% and by increasing KV to 0.2, the best cost 
will decrease slightly as it was predictable from Eq. (12). 

Similarly, the second example has been studied previ-
ously by Saribas and Erbatur [39] using classical nonlinear 
programming (NLP) and Gandomi et al. [17] using interior 

Continuation of Table 5

Function Wilcoxon test Parameters PSSCA vs GSA PSSCA vs SCA PSSCA vs TSA PSSCA vs GWO

F15

p- value 
R+
R-

Winner

8.38E-08
465

0
PSSCA

1.73E-06
465

0
PSSCA

1.73E-06
465

0
PSSCA

1.73E-06
465

0
PSSCA

F16

p- value 
R+
R-

Winner

1.44E-07
465

0
PSSCA

1.73E-06
465

0
PSSCA

1.73E-06
465

0
PSSCA

2.13E-06
463

2
PSSCA

Total Superior  
/Inferior/N.A 13/2/1 15/0/1 15/0/1 13/1/2

Table 6 Input parameters for numerical Example 1 and 2

parameter Unit Symbol Value for 
Example 1

Value for 
Example 2

Height of stem m H 3.0 4.5

Internal friction 
angle of retained 
soil

degree φ 36 36

Internal friction 
angle of base soil degree φ' 0.0 34

Unit weight of 
retained soil kN/m3 γs 17.5 17.5

Unit weight of base 
soil kN/m3 γs' 18.5 18.5

Unit weight of 
concrete kN/m3 γc 23.5 23.5

Unit weight of steel kN/m3 γsteel 78.5 78.5

Cohesion of base 
soil kPa c 125 0.0

Depth of soil in 
front of wall m D 0.5 0.75

Surcharge load kPa q 20 30

Backfill slope degree β 10 15

Concrete cover cm dc 7.0 7.0

Yield strength of 
reinforcing steel MPa fy 400 400

Compressive 
strength of concrete MPa fc 21 21

Shrinkage and 
temporary 
reinforcement 
percent

- ρst 0.002 0.002

Design load factor - LF 1.7 1.7

Factor of safety for 
overturning stability - FSO 1.5 1.5

Factor of safety 
against sliding - FSS 1.5 1.5

Factor of safety for 
bearing capacity - FSB 3.0 3.0

Cost of steel $/kg CS 0.4 0.4

Cost of concrete $/m3 CC 40 40
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search algorithm (ISA). This case is solved using the pro-
posed PSSCA as well as mentioned algorithms in Section 7 
for different values of Kh and KV. The algorithms have been 
run 30 times and the best results presented in Table 8. 
Based on the results, the new method could provide better 
solution compared with the other methods, which indicate 
the consistent performance of the PSSCA. Moreover, the 
obtained results reveal that by increasing Kh to 0.2, the best 
cost will be increased 21%. While, by increasing KV, the 
inverse trend of this state becomes apparent and the best 
price slightly decreased. Therefore, in the prevalent condi-
tions of the seismic optimization of the retaining structure, 
ignoring the KV is acceptable.

9 Conclusions
This study develops a novel hybrid algorithm, namely 
PSSCA, by integrating PSO and SCA techniques. In the 
proposed PSSCA algorithm, during the search process the 
candidate solutions interact with each other and improve 

their positions based on the best position obtained so far 
as the reference point. In summary, the main features of 
PSSCA are as follows: it has just two internal parameters; 
it is easy to code; and it is easy to apply. The performance 
of the proposed algorithm is benchmarked using a set of six 
unimodal and ten multi-modal test functions and the results 
were compared with four well-known and recently devel-
oped algorithms including GSA, SCA, TSA and GWO. 
According to the results and finding, it was observed and 
may be concluded that PSSCA is capable of finding the 
global solution for most of the unimodal and multi-modal 
benchmark functions and it outperforms the other algo-
rithms in a statistically significant manner. Finally, the per-
formance of the new algorithm for low-cost design of retain-
ing structures under static and seismic loading conditions is 
investigated through two numerical examples and obtained 
results were compared with other methods. The numerical 
experiments reveal that the newly proposed algorithm for 
optimum design of retaining structures is quite robust and 
efficient when compared with the other techniques.

Table 7 Optimization result for design Example 1

Design 
variable Unit

Optimum 
values 
Kh = 0,
KV = 0

Optimum 
values 

Kh = 0.2,
KV = 0

Optimum 
values 

Kh = 0.2,
KV = 0.2

X1 m 0.6498 0.8969 0.8659

X2 m 0.2 0.2 0.2

X3 m 0.28 0.3 0.295

X4 m 0.6843 0.7778 0.6996

X5 m 0.2727 0.2918 0.3105

R1 cm2/m 12.5 13.3 12

R2 cm2/m 16.4 21.6 19.5

R3 cm2/m 16.6 21.6 20

PSSCA $/m 69.035 82.192 78.67

SCA $/m 70.43 84.56 78.86

GSA $/m 69.088 82.187 78.62

TSA $/m 69.142 82.231 79.12

GWO $/m 72.81 85.21 81.32

NLP [39] $/m 82.474 - -

BB-BC [40] $/m 70.38 - -

ISA [17] $/m 73.05 - -

Table 8 Optimization result for design Example 2

Design 
variable Unit

Optimum 
values 
Kh = 0,
KV = 0

Optimum 
values 

Kh = 0.2,
KV = 0

Optimum 
values 

Kh = 0.2,
KV = 0.2

X1 m 1.6757 1.8734 1.8

X2 m 0.2274 0.2787 0.2619

X3 m 0.4167 0.4454 0.424

X4 m 0.8862 1.1667 1.1667

X5 m 0.4504 0.5184 0.5089

R1 cm2/m 21 22 20.7

R2 cm2/m 39 42 40

R3 cm2/m 38 42 39

PSSCA $/m 185.2 223.95 210.58

SCA $/m 187.24 226.65 213.13

GSA $/m 185.2 224.11 210.86

TSA $/m 186.8 224.92 212.32

GWO $/m 188.95 227.86 212.95

NLP [39] $/m 189.55 _ _

ISA [17] $/m 190.06 _ _
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