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Abstract

This paper presents the use of a finite element method (FEM) to analyze the shear lag effect due to the flexure of beams with an 

arbitrary cross-section and homogeneous elastic material. Beams are constrained by the most common types of supports, such 

as fixed, pinned, and roller. The transverse, concentrated, or distributed loads act on the beams through the shear center of the 

cross-section. The presented FEM transforms the 3D analysis of the shear lag phenomenon into separated 2D cross-sectional and 

1D beam modeling. The characteristics of the cross-section are firstly derived from 2D FEM, which uses a 9-node isoparametric 

element. Then, a 1D FEM, which uses a linear isoparametric element, is developed to compute the deflection, rotation angle, bending 

warping parameter, and stress resultants. Finally, the stress field is obtained from the local analysis on the 2D-cross section. A MATLAB 

program is executed to validate the numerical method. The validation examples have proven the efficiency and reliability of the 

numerical method for analyzing shear lag flexure, which is a common problem in structural design.
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1 Introduction
In the engineering beam theory, the cross-sections are 
assumed to remain plane after flexure deformation, and 
therefore, the normal stress in the longitudinal direction is 
proportional to the distance from the neutral axis. However, 
with complex cross-sections such as thin-walled beam, 
double T beam, where the influence of warping is signifi-
cant, the above theory is no longer reasonable. In this case, 
the normal stress is nonuniformly distributed over the width 
of the section. This phenomenon is called shear lag  [1]. 
Various design codes and standards, such as AASHTO 
LRFD Bridge Design Specifications  [2], Eurocode 2 [3], 
and Eurocode  3  [4], use the concept of effective flange 
width to consider the shear lag phenomenon. However, fac-
tors affecting shear lag, such as boundary conditions and 
loading type, have not been considered in these standards.

Many authors have researched the shear lag phenome-
non. Reissner [5] established a displacement field along the 
axis of the beam, taking into account the effect of shear lag, 
which is expressed by a parabolic function, and used  the 

principle of minimum potential energy to obtain the flange 
stress at the cross-section. Moffatt and Dowling  [6] and 
Tenchev [7] investigated the parameters affecting shear lag 
using FEM. Chang and Zheng [8] compared the experiment 
results in cantilever box beam with those analyzed the shear 
lag and negative shear lag effects using finite-element tech-
nique and variation principle. To compare with the experi-
mental results, Luo et al. [9, 10] established FEM by add-
ing to each node of element two parameters, derivative of 
vertical displacement and maximum rotation angle caused 
by shear deformation. To improve Luo et al. [9, 10] numer-
ical method, Zhou  [11] enriched one degree of freedom, 
the derivative of maximum rotation angle caused by shear 
deformation, to each node. Luo et al. [12] derived the ele-
ment stiffness matrix and force vector from the assump-
tion of many axial displacement fields of box girders with 
varying depths. Chang  [13] derived an analytical method 
from [5, 8] to calculate the shear lag of simply supported 
prestressed concrete. Lee  et  al.  [14] utilized the FEM to 
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explain the nature of negative shear slag. Luo  et  al.  [15] 
analyzed shear lag in box girder under the combination of 
bending and axial forces. Lin and Zhao [16] obtained the 
longitudinal displacement in the flange of the box girders 
by the superposition of the infinite number of second or 
third-order binominal with unknown quantities. Zhou [17] 
proposed a new FEM to analyze the shear lag in prestressed 
concrete box girders. Qin et al. [18] postulated an analytical 
method to investigate the shear lag problem of a T-section 
beam by solving a system of Hamilton dual equations. The 
above studies presuppose that a spanwise displacement is 
a polynomial function that considers the warping of flanges.

Some of the scholars, Zhang [19], Zhang and Lin [20] 
and Prokić [21], proposed that the new axial displacement 
includes a warping function improved on the thin-walled 
beam theory of Vlasov  [22]. El Fatmi  [23, 24] derived 
the nonuniform shear and torsional warping of an arbi-
trary homogeneous cross-section from the Saint Venant 
beam problem. Le Corvec and Filippou  [25] defined the 
axial displacement due to warping by interpolation warp-
ing degrees of freedom number on the cross-section to 
establish FEM formulation for shear torsional warping 
in the elastic and elastoplastic analysis of beams. Ferradi 
et al. [26] obtained FEM that accurately captures normal 
stress due to restrained warping by reproducing cross-sec-
tional warping as a linear combination of warping modes. 
Dikaros and Sapountzakis [27] proposed an advanced 
beam theory to analyze the composite beam with arbitrary 
cross-section using the Boundary Element Method (BEM). 
Lewiński and Czarnecki [28] constructed the new first-or-
der warping function, which integrated with the theo-
ries of Vlasov [22], El Fatmi [23, 24], Kim and Kim [29], 
Librescu and Song [30], and Timoshenko [31, 32] to com-
pose the theories of straight elastic bars

Some authors, Sa-nguanmanasak et al. [33], Yamaguchi 
et al.  [34], developed the 3D model to examine the shear 
lag phenomenon. However, the solution using shell or solid 
elements is still not more flexible and computationally effi-
cient than determining the stress on the cross-section by 
superimposition technique, 2D cross-section, and 1D beam 
element. BEM has quickly developed in recent years and 
has been considered as FEM's rival  [35]. However, the 
world's leading structural analysis software companies [36] 
still use FEM primarily. The purpose of this paper is to 
establish a numerical method using FEM to solve the shear 
lag flexure problem of the prismatic beam with an arbi-
trary cross-section in homogeneous isotropic elastic mate-
rial, based on theoretical formulas derived from Dikaros 

and Sapountzakis [27]. A 2D FEM based on the Galerkin 
approach is obtained from computing the warping func-
tion of the corresponding elliptical differential equations. 
The other kinematical variables of the beam are computed 
from the principle of virtual work by developing a 1D FEM.

The paper is organized as follows: Section 2 briefly 
introduces the theoretical formulas for analyzing the shear 
lag flexure problem. Section 3 describes FEM. Section 4 
illustrates several numerical examples. Finally, we close 
our paper with some concluding remarks.

2 A brief introduction of the theoretical formulas for 
analyzing shear lag due to flexure
Let us consider a prismatic beam with arbitrary cross-section, 
constant along the length L with a modulus of elasticity E, 
and shear modulus G. The longitudinal axis is the x-axis, 
and the cross-sections lie in the y–z plane. The coordinate 
system is Sxyz through the shear center, S, of the cross-sec-
tion. CXYZ is the parallel system with Sxyz through the 
center of gravity C. The multiply connected domain Ω is 
bounded by n curves, Γ1, Γ2,…, Γn–1, Γn, as Fig. 1. Tangent 
vector t with associate coordinate s and normal vector n set 
up the right-handed system.

The beam is exposed to the arbitrary distributed or con-
centrated loads, transverse loading pz(x) along the z-direc-
tion, bending moment mY(x), and warping moment MφP

CY
(x) 

along with the Y-direction. The cross-section is assumed 
with no distortion.

The geometric constants of the beam are defined as [27]
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Fig. 1 Cross-section of a prismatic beam
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where A is the area of cross-section, IYY, IZZ are the second 
moments of area with respect to Z, Y- axis, respectively, 
IφP

CYφ
P
CY
 is the warping constant
φP

CY defines the primary shear warping function with 
respect to center of gravity C, which is obtained from

ϕ φCY
P

CY
P Z= − , 	 (2)

where ϕP
CY (y, z) is determined from the elliptical differen-

tial equations
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where AZ
P = kZA is defined as the primary shear area, kZ 

is the shear correction factor obtained from the definition 
given in [37]. It is worthy to note that the shear correction 
factor kZ in this study considers Poisson's ratio, which is 
neglected in [27].

In addition, the evaluated warping function ϕP
CY from 

Eq. (3) contains an integration cs, which can be obtained 
from Wagner and Gruttmann [38] 

c
A

dAs
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1
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Ω
. 	 (4)

The displacement field is expressed as [27]
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where
u̅, v̅ , w̅ are the total displacements corresponding with the 

axis x, y, z.
u̅P, u̅ S(x, y, z) are the primary and secondary axial dis-

placement, respectively
w(x)	 deflection of the center of twist
θY(x)	 is the angle of rotation due to flexure about the Y axis
ηY	 is the bending warping parameter.

The stress field obtained from the theory of elasticity as [27]
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where γZ
P = wx + θY, γZ

S = ηY – wx – θY are defined as the 
primary and secondary shear strain, respectively. It is 
emphasized that the stress component σzz composed of i) 
the classic normal stress, σP

xx, determined from the engi-
neering beam theory and ii) the warping normal stress, 
σS

xx, caused by warping of the cross-section, is the primary 
reason for the shear lag phenomenon.

The relation of the stress components, σP
xx, τ

P
xy, τ

P
xz, σ

S
xx, τ

S
xy, 

τS
xz, can be expressed by the equilibrium equation as [27]
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The values τS
xy, τ

S
xz, which equilibrate with the varia-

tion of σS
xx in Eq. (9), fail to fulfill the zero-traction con-

dition on the lateral surface of the beam [27]. Dikaros 
and Sapountzakis [27] suggested a shear stress modifica-
tion, τS

xy, τ
S
xz, by adding an additional warping function, φS

CY. 
Therefore, Eq. (7) is transformed as
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with ΦCY
S

CY
P

CY
S= +ϕ ϕ , 	 (11)

where φS
CY is the secondary shear warping function with 

respect to the center of gravity C.
The value ΦS

CY is obtained from 
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Φ̃S
CY is determined from the elliptical differential equations
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The bending moment, the warping moment, the pri-
mary shear force, the secondary shear force are denoted 
MY, MφP

CY
, QZ

P, QZ
S obtained as [27]
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3 FEM procedures
3.1 Deflection w(x), rotation angle θY, and bending 
warping parameter ηY

The principle of virtual work ignoring volumetric forces 
is used to establish the stiffness matrix of the 1D beam 
element. Assume the beam element includes two end 
nodes, 1, 2, The symbol δ(.) denotes the virtual quantities. 
The internal virtual work is

W dVi xx xx xy xy xz xz
V

= + +( )∫ σ δε τ δγ τ δγ , 	 (16)

where V is the volume of a prismatic beam.
Substitution the Eq. (6), Eq. (10) and Eq. (15) to Eq. (16), 

the internal virtual work can be rewritten as
(17)
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where tx, ty, tz are the components of traction vector applied 
on the lateral surface of the beam which is related to the 
end nodes - external loads as [27]

p x t d

m x t Zd

m x t d

z z

Y x

x CY
P

CY
P

( ) ,

( ) ,

( ) .

=

=

=

∫
∫
∫

Ω

Ω

Ω

Ω

Ω

Ωϕ ϕ

̂

̂

̂

	 (19)

Using the expression Eq. (5), Eq. (19), the Eq. (18) can 
be represented as

(20)

̂

W p x w dx m x dx m x dx

p w

e z x
L

Y Y
L

Y
L

zi xi
i

Cy
P= + +

+

∫ ∫ ∫

=

( ) ( ) ( )δ δθ δη

δ

ϕ
0 0 0

1

22

1

2

1

2

∑ ∑ ∑+ +
= =

m mYi Yi
i

i Yi
i

CY
Pδθ δηϕ .̂ ̂

To derive the element stiffness matrix, the variables wx, 
θY, and ηY need to be interpolated within each element. wx, 
θY, and ηY are independent variables. As a result, any kind of 
H0 shape function can be used for the present beam. We use 
1D linear isoparametric shape function for both variables. 
That is,
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where wx1, wx2, θY1, θY2, ηY1, ηY2 are the nodal displacements, 
rotation angle, bending warping parameter at the beam 
end nodes (1) and (2), respectively

N N
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1= −( ) = +( )ξ ξ, 	 (22)

The corresponding element nodal degrees of freedom is
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Substituting Eq. (21), Eq. (22) to Eq. (17) and Eq. (20) 
leads to the element stiffness matrix and element force 
vector as
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wi, ξi are the weights and the integration points of the 
Gaussian integration technique. In the present study, to 
avoid the shear locking, we use one-point Gauss quadra-
ture (wi = 2, ξi = 0).

Assembling the element stiffness matrix and load vec-
tors in the system matrix equation given below

K d F. .= 	 (34)

3.2 Warping function, ϕP
CY

Using Galerkin's method, with test function η ∈ H1(Ω) and 
applying the Gauss-Green theorem, the governing Eqs. (6) 
and (22) are transformed to weak form as
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The warping function values, ϕP
CY in Eq. (35) and Φ̃S

CY in 
Eq. (36) are approximated by the FEM, which is presented 
in [37]. Finally, the value ΦS

CY is calculated from Eq. (12).

4 Validation examples
In this section, the accuracy of the proposed FEM for non-
uniform bending has been examined. A computer code is 
developed in the MATLAB R2015a software denoted as 
RWB based on the formulations described in the previ-
ous sections. Thin-walled beams and solid cross-sections 
under different loading and boundary conditions were 
analyzed using this code. The obtained results are com-
pared with the available works of the literature. 

4.1 Example 1
As a first example, a cantilever beam with a box-shaped 
cross-section shown in Fig. 2 is analyzed and compared with 
the results obtained by [8, 21]. The beam is subjected to two 
load cases separately i) load case 1 with the distributed load 
pz = 0.1 kN/cm, ii) load case 2 with the concentrated force 
Pz = 4.7 kN applied at the tip of the beam. The length of the 

Fig. 2 Cantilever beam with the applied load, and the geometry of the 
cross-section, units [mm]
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beam is 47 cm. The Young's modulus and the shear modulus 
are E = 2844.9 MPa and G = 1016.036 MPa, respectively. 
Point B1 is on the upper plate and has the y coordinates 
72 mm. The first test was analyzed using RWB by employ-
ing 15 axial elements and 76 elements in the cross-sec-
tion. The geometric constants of the cross-section deter-
mined from the RWB are as follows A = 0.00248 m2, AZ

P = 
4.0431 × 10–4 m2, AZ

S = 1.3721 × 10–4 m2, IYY = 1.4668 × 10–6 m4, 
I

CY
P

CY
Pϕ ϕ

 = 1.022 × 10–7 m4.
Chang and Zheng [8] experimented with the above 

problem and used the finite element method to compare 
the experimental results. Prokić [21] analyzed this prob-
lem by finite element method with a postulate warping 
function. Moreover, Dikaros and Sapountzakis [39] eval-
uated this test with the model without shear stress correc-
tion, which does not give good results as with the model 
with shear stress correction [27]. In [8, 21], to describe the 
shear lag effect, the shear lag factor λ is defined

λ
σ

σ
= xxj

xxj
, 	 (37)

where σxxj, σ̄ xxj are the total normal stress and classic normal 
stress at the point j of the cross-section, respectively.

In Fig. 3 and Fig. 4, the variation along the axis of the 
deflection w(x) and the rotation θY predicted by RWB 
in load cases 1 and 2 are shown and compared with the 
results from the Timoshenko beam obtained from 1D 
analysis by SAP2000 ver 21 software [36]. There is a good 
agreement in the rotation angle between the two meth-
ods. The deviation of deflection value at the free end of 
RWB with SAP2000 in 2 load cases 1 and 2 is 6.427% and 
4.883%, respectively. Fig. 5 depicts the variation along the 
axis of the warping parameter ηY of two load cases.

Fig. 6 and Fig. 7 show the contour plot of the classic nor-
mal stress, warping normal stress, and total normal stress 
σxx in the load case 1 at the positions x = 0, 30 cm, respec-
tively. Fig. 8 and Fig. 9 depict the variation of the shear lag 
factor in one half-length of the upper plate of the cross-sec-
tion in load case 1 at the positions x = 0, 30 cm. Fig.  6, 
Fig. 8, the effect of the shear lag phenomenon on the char-
acteristic point B1 is apparent, where λ is greater than 1. 
It can see from Fig.7, Fig. 9 that RWB can capture the neg-
ative shear lag, where λ is less than 1, at the conjunction of 
flange and web. This phenomenon cannot be ignored, espe-
cially in the prestress concrete boxed girder [8].

Fig. 10 and Fig. 11 present the variation along the length 
of the beam of the shear lag factor at point B1 in load cases 
1, 2, respectively. It is observed that the normal stress 

predicted by RWB is in good agreement with the other 
methods. It is worth noting that the laws of the variation of 
the shear lag factor of two load cases 1 and 2 are different. 

Fig. 3 The variation of deflection w(x), and rotation angle θY along the 
beam length in load case 1

Fig. 4 The variation of deflection w(x), and rotation angle θY along the 
beam length in load case 2

Fig. 5 The variation of bending warping parameter ηY along the beam 
length in load case 1 and load case 2
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It can confirm that the loading condition, which is not men-
tioned in the standard [2–4], is also one factor affecting 
shear lag [33, 34].

(a)

(b)

(c)
Fig. 6 The distribution of the classic normal stress, (a) the warping 

normal stress, (b) and the total normal stress σxx, (c) in cross-section at 
x = 0 m with load case 1, units [kPa]

(a)

(b)

(c)
Fig. 7 The distribution of the classic normal stress, (a) the warping 

normal stress, (b) and the total normal stress σxx, (c) in cross-section at 
x = 0.3 m with load case 1, units [kPa]

Fig. 10 The variation of the shear lag factor in B1 along the length of 
the beam in load case 1

Fig. 9 The variation of the shear lag factor in one a half-length of the 
upper plate at x = 30 cm of load case 1

Fig. 8 The variation of the shear lag factor in one a half-length of the 
upper plate at x = 0 of load case 1
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4.2 Example 2
In the second example a continuous beam with a multi-cell 
cross-section has been considered. All geometrical character-
istics of the beam as well as the boundary and loading con-
ditions are shown in Fig. 12. The Young's modulus and the 
shear modulus are E = 2.1 × 105 MPa, G = 1.05 × 105 MPa. 
As shown in Fig. 12, the concentrated force Pz = 10 kN is 
applied at the positions x = 7.5 m, the uniform distributed 
pz = 5 kN/m. The second example was analyzed using RWB 
by employing 400 axial elements and 346 elements in the 
cross-section. The geometric constants of the cross-section 
determined from the RWB are as follows A = 0.1304 m2, 
AZ

P = 0.0481  m2, AZ
S  =  0.0055  m2, IYY  =  0.004982  m4, 

I
CY
P

CY
Pϕ ϕ

 = 7.6274 × 10–5 m4.
Sapountzakis and Dikaros [40] analyzed the problem 

based on BEM with (Model B) and without (Model A) shear 
stress correction and compared with the result obtained 
from 3D solid simulation by FEMAP commercial soft-
ware. It is emphasized that RWB is based on the theory of 
Model B, which gives more accuracy than Model A.

In Fig. 13, the variation of the deflection w(x) and the 
rotation θY along the length of the beam predicted by 
RWB are shown and compared with the results from the 
Timoshenko beam obtained from SAP2000 ver 21 soft-
ware [36]. The deviation of deflection value at the positions 
x = 2.5 m, 7.5 m of RWB with SAP2000 is 4.967%, 3.577%, 
respectively. Fig. 14 shows the variation along the axis of 
the warping parameter ηY.

Fig. 15 shows the contour plot of the classic normal 
stress, warping normal stress, and total normal stress σxx 
at the fix-end. In Table 1, the normal stress σxx in point B2 
at the fixed end predicted by RWB is given and compared 

with the results from [40]. It is observed from Table 1 that 
the results analyzed by RWB are in good agreement with 
the results from FEM 3D-Solid [40].

Fig. 11 The variation of the shear lag factor in B1 along the length of 
the beam in load case 2

Fig. 12 Continuous beam with the applied load, and the geometry of the 
cross-section, units [mm]

Fig. 13 The variation of deflection w(x), and rotation angle θY along the 
length of the beam

Fig. 14 The variation of bending warping parameter ηY along the length 
of the beam
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4.3 Example 3
A cantilevered with an I-shaped cross-section depicted in 
Fig. 16 is analyzed in this section. The length of the beam 
is L = 6 m and, it is made of a material with the Modulus 
of elasticity E = 30 MPa and the Poisson's ratio v = 0.2. 
The considered beam is subjected to uniformly distributed 
force pz = 10 kN/m. The third example was analyzed using 
RWB by employing 240 axial elements and 76 elements in 

the cross-section. The geometric constants of the cross-sec-
tion determined from the RWB are as follows A = 0.62 m2, 
AZ

P = 0.1159 m2, AZ
S = 0.0337  m2, IYY  =  0.0988  m4, 

I
CY
P

CY
Pϕ ϕ

  = 0.0074 m4.
Ni and Cao [41] used an analytical method to analyze 

this problem and compared it with the results obtained from 
ANSYS commercial software by using Solid 45 element. 
In Fig. 17, the variation along the axis of the deflection w(x) 
and the rotation θY predicted by RWB is shown and com-
pared with the results from Timoshenko beam obtained 
from 1D analysis by SAP2000 ver 21 software [36]. There 
is a good agreement in the rotation angle between two 
methods. The deviation of deflection value at the free end 
of RWB with SAP2000 is 7.379%. Fig. 18 depicts the vari-
ation along the axis of the warping parameter ηY.

(a)

(b)

(c)
Fig. 15 The distribution of the classic normal stress, (a) warping normal 

stress, (b) and the total normal stress σxx, (c) in cross-section at the 
fixed-end, units [kPa]

Table 1 Comparison of the normal stress σxx in the point B2 at the 
position x = 0 m

Methods σxx [kPa]

Engineering beam theory 5.31405 × 102

RWB 7.182044 × 102

Model A- Dikaros, I. C. [40] 1.0417 × 103

Model B- Dikaros, I. C. [40] 7.0937 × 102

FEM-3D Solid [40] 7.27 × 102

Fig. 17 The variation of deflection w(x), and rotation angle θY along the 
length of the beam

Fig. 16 Cantilever beam with the applied load, and the geometry of the 
cross-section, units [mm]
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Fig. 19 shows the contour plot of the classic normal 
stress, warping normal stress, and total normal stress σxx at 
the fix-end. Fig. 20 and Fig. 21 present the variation along 
the width of the normal stress in the upper and lower plate 

of the cross-section at the positions x = 0, 3 m, respectively. 
It is observed from these figures that the result analyzed 
by RWB is in good agreement with the results from FEM 
3D-Solid.

5 Conclusions
In this paper, a finite element method, denoted as RWB, 
is developed to solve shear lag due to the flexure of the 
prismatic beam with an arbitrary cross-section and homo-
geneous isotropic material. Galerkin's method is used to 
derive the warping function of the corresponding ellip-
tical differential equations. Three independent variables, 
deflection, rotation angle, and bending warping parame-
ter are obtained by 1D FEM. A set of numerical examples 
were performed for validating the accuracy of RWB. The 
results from RWB were compared with the corresponding 
results in the literature. The main conclusions that can be 
drawn from this investigation are:

Fig. 18 The variation of bending warping parameter ηY along the length 
of the beam

(a)

(b)

(c)
Fig. 19 The distribution of the classic normal stress, (a) warping normal 

stress, (b) and the total normal stress σxx, (c) in cross-section at the 
fixed-end, units [kPa]

Fig. 20 The variation of normal stress at the upper and lower flange 
along the width at the fixed end

Fig. 21 The variation along the width of the normal stress at the upper 
and lower flange at x = 3 m
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1.	 The value of rotation angle calculated by RWB and 
SAP2000 software is the same. There is a slight dif-
ference in the deflection value. The main reason for 
this difference is the shear correction factor. It is 
emphasized that the value of the shear correction fac-
tor of the RWB takes into account the shape of the 
cross-section and the Poisson's ratio [37].

2.	 Boundary conditions, loading type, are the factors 
affecting the shear lag phenomenon. RWB is capa-
ble of capturing the normal stress distribution due to 

shear lag. It is valuable that the results determined by 
the RWB are in good agreement with the experimen-
tal and 3D Simulations.
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