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Abstract

Why fractal distribution is so frequent? It is true that fractal dimension is always less than 3? Why fractal dimension of 2.5 to 2.9 seems 

to be steady-state or stable? Why the fractal distributions are the limit distributions of the degradation path? Is there an ultimate 

distribution? It is shown that the finite fractal grain size distributions occurring in the nature are identical to the optimal grading 

curves of the grading entropy theory and, the fractal dimension n varies between –¥ and ¥. It is shown that the fractal dimensions 

2.2–2.9 may be situated in the transitional stability zone, verifying the internal stability criterion of the grading entropy theory. Micro 

computed tomography (μCT) images and DEM (distinct element method) studies are presented to show the link between stable 

microstructure and internal stability. On the other hand, it is shown that the optimal grading curves are mean position grading curves 

that can be used to represent all possible grading curves.
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1 Introduction
1.1 Natural soils and fragmentation
The fragmentation phenomena are described by a power 
law distribution [1]. The size distribution of fragments is

N d d n∆ ≤( ) −~ , (1)

where N is the number of particles that have diameters ∆ 
below the size d (see the mass-based form in Appendix A). 
This fractal distribution law is independent of the material 
properties, the energy input and the relevant length scales. 
The value of negative exponent is called fractal dimension 

and is generally varying between 2.0 and 2.9 for 3-dimen-
sional objects [1]. It will be shown in this paper that this 
values can be related to internally stable mixtures. 

Fractal distributions are naturally occurring in granu-
lar materials, such as meteorites [2], gouge material [3, 4], 
avalanches, mines [5, 6] and in laboratory tests, like com-
pression tests and ring-shear tests [7–9, 10–12]. The fractal 
dimension in some theoretical studies [8, 11] is around 2.5. 
The grading data of monotonic tests reported in [12], pres-
ents values between 2.20 and 2.91.
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In Space Mechanics, a fractal dimension ~3 is encoun-
tered for small particles at the planetary rings [1], while it 
is ~6 for large ones with size ~ 0.1–1 km. 

1.2 Aim and content of paper 
The question why fractal distributions and fractal dimen-
sions 2.2–2.9 are so frequent in nature is analyzed in this 
paper revealing two controversal facts. To resolve the con-
troversies, the concept of the internal stability rule of the 
grading entropy theory [13–19] is linked with the internal 
structure and degradation. 

2 Grading entropy 
2.1 Space of grading curves 
In the grading curve measurement, the sieve hole diame-
ters, the fraction limits are doubled. The measured grading 
curve is an empirical distribution function with finite, dis-
crete distribution. An abstract cell system is defined with 
the diameter limits for the fractions (see Table 1, [18]):

2 2
0

1

0

j jd d d≥ > − , (2)

where d0 is the smallest diameter which may be equal to 
the height of the SiO4 tetrahedron (~d0 = 2–22 mm). The 
2-base log of the diameter limits are integers, called 
abstract diameters. The relative frequencies of the frac-
tions xi (i = 1, 2, 3..., N) fulfil the following equation:

x x Ni
i

N

i= ≥ ≥
=
∑ 1 0 1

1

, , , (3)

where the integer variable N is the number of the fractions 
between the finest and coarsest non-zero fractions.

The space of the grading curves with N fractions is 
identified with the N–1 dimensional, closed simplex con-
sidering the relative frequencies xi the barycenter coordi-
nates of the points. The vertices represent the fractions, 
the 2D edges are related to the two-mixtures, etc.

The sub-simplexes of a grading curve space are partly 
continuous, partly gap-graded. The continuous sub-sim-
plexes have a lattice structure (Fig. 1(b)).

2.2 Grading entropy parameters
The grading entropy S is derived from the statistical 
entropy concept, modified the original formula for unequal 
cells (since the fraction limits are doubled, [13, 17, 19]). Its 
result separates into two parts:

S S S= +0 ∆ , (4)

where S0 is base entropy and ∆S is entropy increment. 

The base entropy is a kind of mean of the log diameter:

S x S x ii i i0 0= =∑∑ , (5)

since the S0k - the k-th fraction entropy (Table 1) – expresses 
the power of 2 in the size of the statistical cell of d. The 
relative base entropy A is defined as:

A =
S S

S S
0 0

0 0

−
−

min

max min

, (6)

where S0max and S0min are the entropies of the largest and the 
smallest fractions, respectively. The relative base entropy 
varies between 0 and 1. The entropy increment 

∆S = x xi i
xi

1

2
0

ln
ln

≠
∑ , (7)

expresses the statistical entropy due to the mixing of the 
various fractions. The normalized entropy increment B is: 

B = S
N

D
ln

. (8)

The normalized coordinates are not unique unless N is 
defined properly (no zero fraction is allowed at the small-
est or largest sides).

3 Entropy diagrams
3.1 Entropy maps 
Four maps can be defined between the N–1 dimensional, 
open simplex (fixed N) and the two dimensional real 
Euclidean space of the entropy coordinates, the non-nor-
malized ∆ → [S0, ∆S], normalized ∆ → [A, B], partly nor-
malized ∆ → [A, ∆S] or [S0, B]. The map for fixed N is 
continuous on the open simplex and can continuously be 

Table 1 Definition of fractions

j 1 ... 23 24

Limits d0 to 2 d0 ... 222 d0 to 223 d0 223 d0 to 224 d0

Dj or S0j [-] 1 ... 23 24

(a) (b)
Fig. 1 Simplex images; (a) N = 3, (b) N = 7 represented by the lattice of 

continuous sub-simplexes (integers: fractions)
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extended to the closed simplex. The entropy diagram – 
image of the entropy map – is compact like the simplex 
(Fig. 2, [19–22]). It follows then, that the there is a maxi-
mum value for every value of A or S0.

The inverse image of the regular values is a N–3 dimen-
sional sphere, "centered" to the optimal point (Fig. 3). The 
inverse image of the conditional maximum B for fixed A  
(which is a critical value of the map, fixed N and minimum 
diameter) is a single optimal point or unique optimal grad-
ing curve (Fig. 4). 

3.2 Optimal grading – mean grading curves
The single optimal point or grading curve is defined as 
follows [18]: 

x =
a

a
a

x x a
j

j

N N j
j

1

1

1

1

11 1

1−

=

−

∑
=
−

−
=, , (9)

where the parameter a is the root of the equation: 

y a j A Nj

j
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= − − −( )  =
−

=
∑ 1

1

1 1 0 . (10)

The single positive root a varies continuously between 
0 and ∞ as A varies between 0 and 1, a = 1 at the symmetry 
point (A = 0.5) and a > 1 on the A > 0.5 side of the diagram 
(Appendices C, D, E). The optimal grading curve is con-
cave if A < 0.5, linear if A = 0.5 and convex if A > 0.5 [19]. 

The maximum of the grading entropy S is an optimal 
point where a = 2, in the entropy diagram (Fig. 5) it is sit-
uated at varying A, depending on N.

(a)

(b)
Fig. 2 Entropy diagram, the image of the optimal lines; (a): the non-
normalized entropy diagram, (b): the normalized entropy diagram

(a)

(b)

(c)
Fig. 3 The inverse image of three regular entropy diagram points (a) a 
regular value; (b) and (c) inverse image of A = 0.66, B = 1.2 (curve C), 

A = 0.5, B = 1.2 (curve B), A = 0.3, B = 1.2
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The subgraph area of all gradings is the same for a given 
A. The optimal grading curve has a geometric mean posi-
tion (Fig. 6). The "distance" of a general grading depends 
on Bmax–B for this given A value (Appendix B).

3.3 Link of optimal and fractal 
Instead of particle number, in a sieve analysis, the mass of 
all of the particles that are finer than the sieve mesh size d 
is measured and we have [20] (Appendix A):

M d = d d
d dd

n n

n n∆≤( ) −

−

− −

− −

3 3

3 3

min

max min

. (11)

Taking into account that the fraction limits are defined 
by multiplying 2, the relative frequencies of the fractions 
xi (i = 1,…, N) are as follows proving that the optimal grad-
ing curves are with finite fractal distribution:

(a)

(b)

(c)
Fig. 4 The inverse image of the critical values; (a) a critical value, (b) 

the optimal line in simplex, N = 4, (c) the optimal (fractal) grading 
curves, A = 2/3, N = 7, 10, 20, 30, 40

(a)

(b)
Fig. 5 The optimal grading curves related to a = 2 (and n = 2) giving 
the global maximum of S at N = 2 to N = 40, normalized and partly 

normalized diagrams

Fig. 6 Illustration of some gradings for A = 0.5, the optimal line is the 
linear line. The subgraph area of all gradings is the same for a given A 
if the grading curve is considered as a discrete distribution, the deviation 

from the optimal grading curve depends on Bmax–B. (Appendix B)
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and, therefore, the fractal dimension is:

n a
= −3

2

log

log
. (13)

The fractal dimension n varies between 3 and –∞ on the 
A > 0.5 side of the normalized diagram as a varies between 
1 and ∞. The fractal dimension n varies between 3 and ∞ 
on the A < 0.5 side of the normalized diagram, as a varies 
between 1 and 0. 

The n value at a given A value of depends on N except at 
the symmetry point at A = 0.5, where B = 1/ln2, n = 3, a = 1, 
Figs. 7–8. 

4 Internal stability and comments on internal structure 
4.1 Internal stability rule and structure
The criteria for grain structure stability (suffusion, piping) 
were elaborated on the basis of vertical water flow tests 
("wash-out tests") where the soil was placed into a cylin-
drical permeameter (20 cm height and 10 cm diameter) 

bounded at the bottom by a sieve. The bottom meshes per-
mitted the passage of particles smaller than 1.2 mm but 
retain particles larger than 1.2 mm. The applied downward 
hydraulic gradient, i, was as large as 4 or 5. 

In the zone "unstable" (A < 2/3) no internal structure 
of the large grains is present, the coarse particles "float" 
in the matrix of the fines and become destabilized when 
the fines are removed by erosion. In the zone "transition", 
the coarse particles start to form a stable skeleton if N > 2. 
In the zone "stable", there is a structure of the larger parti-
cles which is inherently stable. Suffusion may occur in any 
zone on condition that the grading curves are (near) gap-
graded with two missing fractions at least. 

The division curve between zones "transition" and 
"stable" connects the maximum entropy points with frac-
tion number less than N (Fig. 9(a)). The A < 2/3 condition 
defines geometrically a hyperplane section of the simplex 
of the space of the grading curves. 

The fractal distribution is stable if n < 2 (independently 
of N, A). The fractal distribution is internally unstable in 
terms of grading entropy criterion of if A < 2/3. The fractal 
dimension n at A = 2/3 it is 2.62 for N = 7, 2.25 for N = 3, 
2.96 for N = 30, see Table 2. 

Fig. 7 The fractal dimension n in terms of A and N

Fig. 8 Fractal dimension n in terms of A for N = 7 at A values of 0.1, 
0.33, 0.50, 0.67, 0.9. For N = 2 at the same A values n is 6, 4, 3, 2, –0.17

(a)

(b)
Fig. 9 Internal stability (a) and suffosion (b) criteria
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As highlighted in [12, 18, 23, 24], the diagram is needed 
to be completed (Fig. 9(b)) for suffusion. It follows from 
the Terzaghi's filter rule that if the ratio between the mini-
mum particle diameter of the filter and the maximum par-
ticle size of the base soil is smaller than 4, then particle 
migration may not occur. On the basis of this (and Kezdi's 
self-filtering theory) it is stated that in case of more than 2 
missing fractions, suffosion may take place (Fig. 9).

4.2 Internal microstructure 
The content of the internal stability criterion is as follows. 
The parameter A expresses the proportion of the large 
grains as a pseudo-metric. If the large grains are present 
a large enough quantity, then they may form a stable skel-
eton. To verify this stability' rule some micro-level studies 
were performed. 

4.2.1 DEM study 
Preliminary 3D DEM simulations of spherical particles 
using periodic boundaries were performed within the open- 
source framework YADE. This code uses an explicit time- 
centered finite difference integration scheme to calculate 
the velocities and positions of all particles at every time 
step based on their accelerations resulting from Newton's 
second law. A Hertzian contact model in the normal contact 
direction was used (with Young's modulus, E = 70 GPa and 
Poisson's ratio, ν = 0.22). In the shear direction a Coulomb-
type frictional law was used as routinely done in DEM 
research. Four fraction sizes were used to generate speci-
mens of spheres: 0.125–0.25 mm, 0.25–0.5 mm, 0.5–1 mm, 
and 1–2 mm (uniform distribution was assumed within the 
limits). 2-fraction soils (N = 2) were tested with various A 
values under drained triaxial conditions until the critical 
state was achieved. 

Each DEM specimen consisted of a different number of 
spheres. The rule of thumb used to determine specimen 
size was that every size fraction had to have at least 4000 
particles to ensure statistically representative micro-scale 
data. All specimens were generated by generating a system 
of contactless spheres that was then isotropically consoli-
dated to 200 kPa with an inter-particle friction coefficient 
of 0.3. As a result, specimens have a loose density that is 
close to minimum. The overall (Z) and mechanical (Zm) 
during critical state are shown in Table 3. The coordination 
numbers represent the average number of contacts per par-
ticle for the specimen, the mechanical coordination num-
ber only includes those that are part of strong force chains 
(i.e., accounting for particles with more than two contacts). 

Note that as A increases, Zm also increases indicat-
ing that the number of particles effectively transmitting 
stress increases. Furthermore, as A increases, the differ-
ence between Z and Zm decreases. This implies that as A 
increases the number of "rattlers" (i.e., particles that are 
not part of the strong force chains) reduces, the specimens 
become inherently more stable. Hence, there is a clear link 
between stability, relative base entropy and the mechani-
cal coordination number. 

4.2.2 μCT study 
The internal structure is investigated using sand-fine pow-
der mixtures with various fine content and results of vari-
ous image techniques are reported in literature [21].

Analyzing μCT images of samples composed of sand – 
fine powder mixtures showed that the number of contacts 
between the coarse particles decreased with the increase 
in the fines content (Fig. 10). 

The μCT studies of 2-fraction mixtures revealed that 
the microstructural meaning of the A = 2/3 condition is the 
limit or the boundary of "coarse in fine" to "fine in course" 
configurations. 

The stable structure is ensured such that the large grains 
form a skeleton. The gradual formation of the large grain 
skeleton for large fraction numbers needs some further 
research.

Table 2 The internal stability zones in terms of a fractal dimension 
(italic: unstable, bold: transition zone, normal: stable)

A [-]/N [-] 2 3 4 5 6 7

0.10 6.17 5.49 5.07 4.78 4.57 4.40

0.66 2.00 2.25 2.40 2.49 2.57 2.62

0.7 1.78 2.08 2.26 2.38 2.46 2.53

0.71 1.68 2.00 2.19 2.33 2.42 2.49

0.75 1.37 1.76 2.00 2.16 2.28 2.36

0.79 1.09 1.54 1.81 2.00 2.13 2.24

0.82 0.82 1.33 1.64 1.85 2.00 2.12

0.84 0.58 1.13 1.47 1.70 1.87 2.00

0.9 -0.17 0.51 0.93 1.22 1.43 1.60

Table 3 Effect of A on the coordination number - DEM results 

A Z Zm

0.10 2.87 4.32

0.33 2.34 4.41

0.50 2.52 4.42

0.66 2.83 4.47

0.90 3.39 4.47
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4.3 Probability of an internally stable grading curve 
The probability that an arbitrary N-fraction soil is not 
unstable can be characterized by the relative size of the 
grading curve space separated with the A = 2/3 hyper-
plane on condition that the probability is the same in the 
whole simplex. The geometrical probability expressed 
by the ratio of the volume of the simplex of the grading 
curves where A > 2/3 is met and the total volume of the 
whole simplex tends to be zero with N (Table 4, [18]). 

The probability is decreasing with the fraction number 
(e.g., for N = 2, the 1/3 part of the grading curve space is 
safe, for N = 3, the 2/9 part of the grading curve space is 
safe). Soils which meet both internal stability and segre-
gation criterion (7/10 > A > 2/3) may constitute very small 
part of the of the grading curve space and may need careful 
design in case of broadly graded filters.

5 Degradation path
5.1 Discontinuity of the entropy path if N varies
The grading curve of a granular matter may suddenly change 
due to breakage (appearing of new, finer fractions) or due to 
the addition of stabilization material like lime (disappear- 
ing of finer fractions and appearance of larger grains). 

These sudden changes of the grading curve can be rep-
resented in the grading entropy diagram if i (i = 1, 2...) 
zero fractions are added. Adding from the smaller diame-
ter side, then the following discontinuity can be derived in 
the normalized entropy path (Fig. 11, [18]):

B N B N = S N

N
N
N

( ) ( ) ( )

ln

ln

ln
− +

−
+

1

1
1∆ , (14)

A N A N = A N
N

( ) ( )
( )

+ −
−

1
1 . (15)

The A change for i = 1, 2… additional larger zero 
fractions:

A N A N = A N
N

( ) ( )
( )

+ −
−

1
1 , (16)

and, for j = i/2 = 1,2… zero fractions at both sides:

A N i A N = A N
N

( ) ( )
( )) /

+ −
−1 2 2 . (17)

5.2 Fragmentation path during breakage test
The results of three kinds of crushing tests with two dif-
ferent rock materials developed in this research are pre-
sented in Fig. 12 and Fig. 13 [22, 25, 26].

The non-normalized entropy path is as follows. The 
entropy increment ΔS strictly monotonically increases 
(reflecting the increasing entropy principle of thermo-
dynamics) and, the base entropy S0 decreases (due to the 
decrease of the mean diameter Fig. 12).

(a)

(b)
Fig. 10 μCT scan image of clean granular matter with (a) no smalls, 

(b) 25% smalls [25]

Table 4 The geometrical probability that an arbitrary N-fraction 
grading curve is stable and segregation free

N [-] 2 10 30 50

P (A > 2 /3) 3.33E-01 4.16E-02 8.24E-04 2.06E-05

P (0.7 > A > 2 /3) 3.33E-02 2.36E-02 7.54E-04 2.03E-05

Fig. 11 Computed discontinuity, an initially N = 2 optimal mixture, in 
the function of the increase in smaller fraction number (by adding zero 
fractions), initially convex and initially concave fractal gradings (blue)
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The normalized entropy path agrees with its non-nor-
malized version for constant fraction number N but is dis-
continuous if N is changing.

When some new, smaller fractions appeared, the num-
ber of the fractions is increased at start of tests, then a 'dis-
continuity' appeared in the normalized diagram, which was 
computed with the suggested formula (Fig. 12). The jump 
size was directly related to 1–A toward the stable zone in 
parameter A, independently of the material. 

In Fig. 12, the 1 indicates 3 initial 2-fraction gradings 
for both sands. When new fractions appear, the jump is 
also the same in the normalized entropy trajectory, the 
second, computed points are placed in the "stable" part.

The normalized entropy path was similar to the 
non-normalized one after the initial jump, being unique 
for a given load regime and initial grading (independently 
of the material properties of the solid). The velocity along 
the path was dependent on the material. The largest frac-
tion did not disappear even for very large crushing treat-
ments, as [20] indicates due to the "cushioning effect".

6 Degradation path – reevaluation of data 
Soil texture maturity was investigated in an open mine 
re-cultivation study (Fig. 14, Table 5, [27]). The project 
was undertaken over a short timeframe, within 10 weeks, 
using grading curve for texture characterization. The sam-
ples tested came from a coal mine where the mine own-
ers had been rehabilitating the land progressively, so 
that there were areas that were rehabilitated 2 years ago, 
8 years ago and 14 years ago. There were also soils which 
had formed on the same site naturally, over geological time 
(undisturbed).

The largest fraction at top may have been missing due 
to meteorological effects other than breakage (no 'cushion-
ing effect' protected the large particles). 

Most samples tested had an A value equal to or larger 
than 0.666, were not internally unstable. The samples tested 
were in the transitional stability zone, the only stable zoned 

(a)

(b)
Fig. 12 Three crushing test results, two rocks, normalized diagram; 

(a) Measured data, (b) reevaluated data. The initial discontinuities (solid 
lines) are computed values. In the subsequent path (circles: silica sands, 
crosses: carbonate sands) every point indicates 10 crushing treatments

(a)

(b)
Fig. 13 Three crushing test results, two rocks, non-normalized 

diagram; (a) Silica sand - short paths, (b) carbonate sands - long paths 
sizes, every point indicates 10 additional crushing treatments along the 

line in upwards direction
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sample was the undisturbed subsoil, the undisturbed top was 
less stable than this. The fractal dimension varied between 
2.5 to 2.8, with N = 17. 

The degradation was controlled by the increasing 
entropy increment (Fig. 14) and the decrease in diame-
ter, in different rate for the two layers. According to the 
results, the key variables were the two top and sub layer 
differences, which increased with time, the top was more 
degraded. Interestingly, at the end of the construction work 
the entropy increment difference was about zero (due to 
mixing the soils everywhere, Table 5). However, the base 
entropy difference was larger than the undisturbed case.  

The degradation path reflected the increasing entropy 
principle in terms of entropy increment (Fig. 14) and the 
decrease in diameter, similarly to the breakage test results. 

The top-sub difference in ∆S was very small after con-
struction (0.04) then it was monotonic increasing with time 
up to 0.16 since ∆S increased while N was basically constant. 
Its tentative maximum can be the undisturbed value, 0.73. 

The sub-top difference S0base- – S0top increased from an 
initially larger value than the undisturbed state (originated 
possibly from segregation). 

The topsoil-subsoil differences in terms of the entropy 
coordinates S0 and ∆S were increasing with time similarly 
to soil maturity (Fig. 14, Table 5).

7 Discussions 
7.1 The material laws 
The empirical discrete grain size distribution curves with the 
same A have the same cubic sub-graph area (Appendix B) 
and the optimal curve has a kind of mean position, as 
shown in Fig. 6. Due to this, the fractal gradings are used 
to produce data in regressions between grading curves and 
soil parameters [17, 18].

Some test results made on fractal soils concerning the 
critical state friction angle and minimum dry density are 
shown in Fig. 15 [16, 19]. According to the results, the 
A = 2/3 state is related to the maximum friction angle and 
the maximum value in the minimum dry density value. 
According to Table 3, the A = 2/3 state is related to maxi-
mum mechanical coordination number. 

7.2 The entropy path
The effect of crushing and degradation is similar. The base 
entropy S0 decreases, due to the decreasing of the grain size. 
The entropy increment ∆S is derived from the statistical 
entropy [28]. Since it is linked with a natural irreversible 
process, it reflects the entropy increasing principle [22]. 

Considering the normalized coordinates for fixed frac-
tion number N, the relative base entropy A decreases, the 
normalized entropy increment B increases. As a result, the 
entropy path is moving towards the maximum normalized 
entropy increment line. When the entropy path reaches it 
then moves along the maximum normalized entropy incre-
ment line, where all points are related to fractal mixtures. 
Therefore, fractal distributions are formed by degradation 
in nature sooner or later.

Table 5 The time evolution of the top and sub layers (reevaluation) 

S0base- – S0top [-] ∆Stop- – ∆Sbase [-] t [year]

2.01 0.04 0

2.11 0.18 8 

2.35 0.16 14 

1.46* 0.73** Undisturbed 

* small S0base- – S0top value, ** large ∆Stop- – ∆Sbase value

(a)

(b)
Fig. 14 The topsoil grading curves are more degraded. (a) Typical 

topsoil-subsoil gradings (b) Internal stability criterion in the (N = 17) 
normalized diagram, the degradation example of waste rock in open pit 

mine rehabilitation (topsoil samples in open symbols)
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However, the normalized entropy path is discontinu-
ously drifted into the transitional stability zone or into the 
stable zone at the change of N such that some new, smaller 
fractions appear. Therefore, stable distributions may be 
formed by degradation in nature.

7.3 Ultimate distribution  
Is there any ultimate distribution? This question can tenta-
tively be answered if some constraints during degradation 
are taken into account. 

There is a 'cushion effect', the largest fraction may not 
disappear even at very large crushing treatments [20]. 
There is a crushing limit in terms of diameter, where the 
soil grains cannot further break [24].

Assuming these constraints, the final distribution 
is a kind of maximum entropy increment distribution. 
However, in case of weathering, the large grains may also 
disappear, taking into account this, the ultimate state can 
be a uniform distribution.

8 Conclusions and summary
8.1 Questions
8.1.1 Fractal soils 
The finite fractal grain size distributions are the optimal 
grading curves. It follows that the fractal dimension n 
may vary from minus to plus infinity, as the relative base 
entropy A (normalized mean log scale diameter) varies 
between 0 and 1, in the function of N. 

At the symmetry point A = 0.5, fractal dimension n is 3, 
independently of N. For large N the fractal dimension n is 
close to 3 over a wide range of A. On the A > 0.5 side of 
the diagram n < 3 and if A < 0.5 then n > 3 (Fig. 7, Fig. 8).

8.1.2 The fractal dimension of natural soils 
The question why fractal distribution distributions with 
fractal dimensions 2.2–2.9 are so frequent in nature was 
analyzed in this paper. The main result is as follows. 

The fractal dimension n of the optimal grading curves 
varies between -∞ to +∞. However, the fractal dimension 

(a)

(b)

(c)
(d)

Fig. 15 Results of two kinds of tests on identical fractal grading curve series; (a) the tested grading curve series, (b) critical state friction angle from 
drained triaxial tests, 2-fractions mixtures with fractions of 1 to 2 mm and 2 mm to 4 mm, (c) critical state friction angle from drained triaxial tests, 
a summary for all three series, 2-fractions mixtures, (d) minimum solid volume ratio from minimum dry density test. The A = 2/3 value seem to be 

the maximum value in both cases [23, 29–31]
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occurring in the nature is generally less than 3. This con-
troversy can be explained if the internal stability criterion 
of the grading entropy concept is taken into account. 

The fractal distribution is stable if n < 2 (independently 
of N, A). The fractal distribution is internally unstable in 
terms of grading entropy criterion of if A < 2/3. The fractal 
dimension n at A = 2/3 it is 2.62 for N = 7, 2.25 for N = 3, 
2.96 for N = 30, see Table 2. The transitional stability zone 
is situated between A = 2/3 and an A value depending on N, 
related to fractal dimension 2.

The fractal dimensions of natural soils between around 
2.2 to 2.96 are related to the transitional stability zone 
on condition that the N is larger than about 6. The fractal 
dimensions larger than 3 are internally unstable. 

8.1.3 Probability of a stable state for an arbitrary 
grading curve 
The internal stability criterion of the grading entropy con-
cept can geometrically be defined as a A < 2/3 part of the 
N – 1 dimensional, closed simplex.

The probability of an arbitrary grain configuration to be 
the part of the stable domain was expressed by a geomet-
rical probability. It was found that this was so small that 
that stable mixtures may hardy occur in nature by chance. 
The probability of a fractal soil is zero, also. 

These controversies can be explained by the effect of 
fragmentation, which changes the grading entropy path 
either under the maximum entropy increment principle or 
– by the appearance of smaller fraction – into the direction 
of more stable states.

8.2 The formation of fractal soils 
The question why internally stable fractal distribution distri-
butions are so frequent in nature can be explained as follows. 

According to the breakage test results, the entropy 
increment ΔS monotonically increases (reflecting the 
increasing entropy principle of thermodynamics) and, the 
base entropy S0 decreases (due to the decrease of the mean 
diameter), resulting and upwards path. 

Concerning the non-normalized diagram, the picture 
is not so simple. At constant N, the breakage path in the 
normalized path has similar upwards direction as the non- 
normalized path, the internal stability is decreasing. When 
the path reaches the maximum normalized entropy incre-
ment line, then it proceeds along it, being realized through 
increasing fractal dimensions. 

The value of the fractal dimension can theoretically be 
used to estimate the safety against internal un-stability in 
this part of the entropy path at constant N. 

At the change of N due to some new, smaller fractions, 
a jump can be found in the opposite direction, which can 
be computed by the suggested formulae which was vali-
dated by the breakage tests results. 

Due to the new, smaller fractions, there is a sudden 
increase in the relative base entropy parameter A, the nor-
malized entropy diagram point is drifted into a more stable 
part of the grading entropy diagram, the internal stability 
increases.

8.3 Internal structure, material laws, further research 
A relationship between internal structure and the internal 
stability law was found in some DEM and μCT analyses. 
The internally more stable grain configurations seem to 
be characterized on a micro level by a larger mechanical 
coordinate number. 

According to the results of some earlier measurements 
made on fractal gradings, the internal structure may influ-
ence the material laws as well. 

Further research is suggested on many aspects. The 
connection of microstructure and internal stability is 
needed to be further investigated. The entropy path seems 
to be unique for a given loading breakage test and initial 
grading, its velocity depends on the material. The use of 
the normalized entropy path in material testing and sta-
bility analyses of natural slopes can be further investi-
gated. The description of the parameters of constitutive 
equations using mean or fractal gradings can be explored. 
The entropy path is unknown if cushion effect is no more 
valid, the final state could theoretically be simulated by 
fractal iteration, where all fractions have a fractal distri-
bution after additional changes.
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Appendix A 
Fractal distribution on mass base
The derivation of a mass-based distribution from a parti-
cle number based is as follows ([26]). In a fractal granu-
lar medium, the number of the collection of particles that 
have diameters ∆ below the size d is expressed by (see e.g., 
in [26])

N d = Cd∆≤( ) −a , (18)

where C is a constant of proportionality and, α = –n, n is 
the fractal dimension. In a sieve analysis, the mass of all 
of the particles that are finer than the sieve mesh size d is 
normally measured, i.e.,

M d = s Nd

d

d

m

∆ ∆ ∆≤( ) ( )∫ r 3
d , (19)

where s denotes the shape factor, which for spheres becomes 
π/6, and ρ is the specific mass. Differentiating: 

d dN = C∆ ∆ ∆( ) ( )−α α 1 , (20)

so that 

M d = Cs d dd
n n∆ ≤( )

−
−( )− −αρ

α3

3 3

min
. (21)

The grain size cumulative distribution by mass is given 
by dividing with the total mass:

M d
M

= d d
d d

d

t

n n

n n

∆ ≤( ) −

−

− −

− −

3 3

3 3

min

max min

 (22)

Appendix B 
Subgraph area at fixed A
The relative base entropy A:

A =
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is related to subgraph area of discrete distribution curve in 
terms of D. The area of each rectangle is equal to the ordi-
nate assuming identical base. The total area:
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 (24)

The mean ordinate ymean = Tsub/(N – 1) is measuring 
the area below the distribution curve (Fig. 16). Since 
A = 1 – ymean, A is the complement to the subgraph area. 
The A expresses the distance from the smallest fraction.

Appendix C 
Uniqueness of the optimal grading curves
In this section a polynomial y (see Section 3.2) and its sin-
gle positive root a are analyzed. By dividing the polyno-
mial y with (–aN–1), the symmetry appears: 

[29]  Imre, E., Hazay, M., Juhász, M., Lőrincz, J., Rajkai, K., Schanz, T., 
Lins, Y., Hortobagyi, Zs. "Sand mixture density", Proceedings of 
Sixth International Conference on Unsaturated Soils, UNSAT 2014, 
Sydney, Australia, 2014, pp. 691–697. 

[30] Göblyös, "The dependence of shear friction angle on the entropy 
parameters", MSc Thesis, Budapest University of Technology and 
Economics, 1989. 

[31] Barreto, D., Imre, E. "Preliminary study on the relationship between 
statistical entropy coordinates and the mechanical behaviour of gran-
ular materials", presented at 14th Joint European Thermodynamics 
Conference, JETC 2017, Budapest, Hungary, May, 21–25, 2017

(a)

(b)
Fig. 16 Discrete representations of (a) measured cumulative and 

(b) density PSD. The area of each rectangle is equal to the ordinate
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Using the substitution of a = ex the following can be 
derived: (26)
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Function y3 is odd and the further analysis is presented 
only for positive values of the independent variable. Its 
limit is at plus infinity is 1, it is continuously differentiable 
with a positive derivative. Having a continuous and posi-
tive derivative, it follows from the application of the local 
homeomorphism theorem that y3 has a continuous inverse. 
No closed form solution for the inverse of y3 is available. 

It can be concluded that as A varies within its range 
[0,1], a varies continuously between 0 and ∞ having some 
symmetry.

Appendix D 
Closed form formula for maximum B line 
The maximum B lines for various N are shown in Fig. 2, 
in the symmetry axis of the diagram they coincide, and 
nearly coincide otherwise as follows:
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Appendix E 
Closed form formula for A in terms of a and N 
Let
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