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Abstract

Construction companies are required to employ effective methods of project planning and scheduling in today's competitive 

environment. Time and cost are critical factors in project success, and they can vary based on the type and amount of resources 

used for activities, such as labor, tools, and materials. In addition, resource leveling strategies that are used to limit fluctuations in 

a project's resource consumption also affect project time and cost. The multi-mode resource-constrained discrete-time–cost-resource 

optimization (MRC-DTCRO) is an optimization tool that is developed for scheduling of a set of activities involving multiple execution 

modes with the aim of minimizing time, cost, and resource moment. Moreover, uncertainty in cost should be accounted for in project 

planning because activities are exposed to risks that can cause delays and budget overruns. This paper presents a fuzzy-multi-mode 

resource-constrained discrete-time–cost-resource optimization (F-MRC-DTCRO) model for the time-cost-resource moment tradeoff in 

a fuzzy environment while satisfying all the project constraints. In the proposed model, fuzzy numbers are used to characterize the 

uncertainty of direct cost of activities. Using this model, different risk acceptance levels of the decision maker can be addressed in 

the optimization process. A newly developed multi-objective optimization algorithm called ENSCBO is used to search non-dominated 

solutions to the fuzzy multi-objective model. Finally, the developed model is applied to solve a benchmark test problem. The results 

indicate that incorporating the fuzzy structure of uncertainty in costs to previously developed MRC-DTCRO models facilitates the 

decision-making process and provides more realistic solutions.

Keywords

discrete time-cost tradeoff, resource-constrained project scheduling, resource leveling, optimization, uncertainties, fuzzy theory, 

ENSCBO, construction management

1 Introduction
The role of project management is to make use of knowledge, 
skills, tools, and techniques to fulfill the project require-
ments [1]. Construction projects involve a network of activi-
ties having a precedence relationship between them, each of 
which can be completed in a variety of ways. Depending on 
the adopted construction method, the employed resources, 
the consumed materials, a particular activity might have 
a number of alternatives, each with a different comple-
tion time, completion cost, and other performance factors. 
Furthermore, a single execution mode should be used for 
every activity. Thus, it is crucial to assign the appropriate 
execution mode to each activity. Time-cost tradeoff prob-
lems (TCTP) seek to minimize project costs keeping proj-
ect duration within desired limits [2]. In general, the cost of 
accelerating an activity is higher because more expensive 

resources are usually needed. Therefore, the optimal com-
bination of time and cost to accomplish each activity must 
be chosen by construction firms. However, it is more prac-
tical to use the discrete version of TCTP (DTCTP) in situa-
tions where there is a discrete, non-increasing relationship 
between the number of nonrenewable resources consumed 
by a project activity and the time it takes to complete [3].

On the other hand, a project's schedule is affected 
by its resource constraints since executing each activity 
requires various renewable and nonrenewable resources, 
that in most cases, they are limited. The limited number of 
labor, equipment, and amount of materials are examples 
of resource constraints. The resource-constrained project 
scheduling problem (RCPSP) method aims to select opti-
mal precedence of activities to minimize project make-span 
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by considering precedence relationship constraints and 
resource constraints. Multi-mode RCPSP (MRCPSP) is 
a  generalized form of RCPSP, in which various execu-
tion modes are available for each activity with correspond-
ing resource requirements and duration [4]. In addition, 
resource planning strategies play an essential role in project 
success. Excessive variations in resource usage throughout 
the project duration lead to reduced labor productivity and 
increased cost and time. Resource management in construc-
tion projects is usually handled by solving resource alloca-
tion or resource leveling problems (RLP) [5]. Consequently, 
an efficient construction project schedule can be achieved 
through a combination of DTCT, MRCPSP, and RLP as 
a multi-objective optimization problem. 

Due to linguistic terms and subjectivity of managers 
and engineers, the measured performance factors for each 
project activity, such as time, cost, quality, etc., are gen-
erally vague, uncertain, or imprecise. Thus, performance 
measurements for the overall project are subject to uncer-
tainties  [6]. Also, projects often face opportunities and 
threats that may affect the project's objectives in uncertain 
environments. Various types of project complexity and the 
involvement of more parties in contracts make the con-
struction industry and construction projects risky. It is pos-
sible to reduce this level of risk by implementing risk man-
agement practices.   Along with assessing and controlling 
the schedule for projects, project managers need to man-
age risks as well  [7, 8]. The outcome of a risk event can 
differ in favorableness from the most likely outcome and 
can fall within a certain range, as well [9]. As a means of 
addressing uncertainties in the scheduling process, fuzzy 
logic has been applied to construction process modeling 
and decision-making. An activity's cost and duration are 
generally assumed to be deterministic. However, in prac-
tice, they are uncertain and may be defined as fuzzy num-
bers. Therefore, considering uncertainties is necessary for 
any multi-objective scheduling problem (MOSP) when 
optimizing time and cost, quality, safety, etc. Such a prob-
lem is called stochastic MOSP [10].

Recently, metaheuristic optimization algorithms have 
attracted much attention for applying to real-world prob-
lems. Such techniques explore the search space effectively 
without requiring time-consuming derivative informa-
tion in order to find global or quasi-global solutions [11]. 
Metaheuristics with various characteristics are devel-
oped and applied throughout various fields, including 
structural design [12], project scheduling [13], site layout 
design  [14],  etc. Biological evolution, social behavior of 

animals, and physical phenomena are some sources of inspi-
ration for searching in metaheuristics, e.g., genetic algo-
rithm (GA) [15], particle swarm optimization (PSO) [16], 
colliding bodies optimization (CBO) [17], etc. Many tech-
niques have been developed to solve construction sched-
ule optimization (CSO), divided into mathematical, heu-
ristic, and metaheuristic. Despite guaranteeing optimality, 
the first group can be time-consuming and rely on gradi-
ent information of the objective function [18]. Furthermore, 
heuristic methods are inefficient in multi-objective prob-
lems. Their major problem is that they do not provide deci-
sion-makers with enough options to choose the solution that 
best suits their needs. These issues have been addressed by 
developing metaheuristic methods to solve multi-objec-
tive problems. Metaheuristic methods are not guaranteed 
to provide optimal solutions, but they have proven their 
efficiency in finding good solutions that are relative rather 
than exact [19]. In recent years, many multi-objective evo-
lutionary algorithms (MOEAs) have been proposed, such as 
non-dominated sorting genetic algorithm (NSGA-II)  [20], 
strength Pareto evolutionary algorithm (SPEA2)  [21], 
Pareto archived evolution strategy (PAES) [22], multi-ob-
jective particle swarm optimization (MOPSO)  [23], and 
multi-objective vibrating particles system (MOVPS) [24]. 
In literature, various MOEAs have been employed to solve 
the DTCTP, MRCPSP, and RLP.

Zheng et al. [25] proposed a model for time-cost opti-
mization using a GA-based multi-objective approach sup-
ported by an adaptive weight approach. Afshar et al.  [26] 
employed multi colony ant principles to develop non-dom-
inated archiving ant colony optimization (NA-ACO) to 
solve the time–cost optimization problems. To solve the 
MRCPSPs, Sebt et al. [4] suggested a hybrid genetic algo-
rithm-fully informed particle swarm algorithm   (HGFA). 
In their analysis, the HGFA proved to be one of the most 
effective approaches in solving the MRCPSP. El-Rayes and 
Jun [27] utilized a GA-based model to minimize resource 
fluctuation and resource peak demand at the same time. In 
addition, they introduced two new metrics for resource-lev-
eling. Ghoddousi et  al.  [28] developed   MRC-DTCRO 
based on NSGA-II. According to their model, time, cost, 
and resource moment deviation are minimized concur-
rently. Fuzzy sets theory has been applied to different types 
of CSOs to model uncertainty in the activities' time, cost, 
and other performance factors. Zheng and Ng [29] devel-
oped a model in which fuzzy sets theory was applied to pre-
dict the time and cost for alternatives of activity consider-
ing managers' behavior. Eshtehardian et al.  [10] proposed 
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a fuzzy representation of uncertainties incorporating into 
the time-cost tradeoff (TCT) model to evaluate alterna-
tives' direct costs. As a means of incorporating manag-
ers' behavior in the process of forecasting time and cost of 
activities, Zahraie and Tavakolan [30] utilized fuzzy num-
bers. They proposed an NSGA-II based model to optimize 
the total time, direct and indirect costs of the project, and 
the moments of resources concurrently. Kaveh et  al.  [31] 
developed a fuzzy resource-constrained project scheduling 
problem (FRCPSP) model that considers uncertainties in 
RCPSP utilizing fuzzy numbers for activitys' duration, via 
two metaheuristics named charged system search (CSS) and 
colliding bodies optimization (CBO). There have been many 
studies on nondeterministic CSOs in the literature, but very 
few have addressed uncertainties in the costs of activities 
in the MRC-DTCRO model. In this paper, a fuzzy-multi-
mode discrete-time–cost–resource optimization (F-MRC-
DTCRO) is developed that simultaneously considers MRC-
DTCRO, risks, and uncertainties. For this purpose, a newly 
developed MOEA, called enhanced non-dominated sorting 
colliding bodies optimization (ENSCBO), is employed.

2 Multi-mode resource-constrained discrete-time–cost-
resource optimization (MRC-DTCRO)
The aim of MRC-DTCRO is to address the problem of 
scheduling j = 1, …, J activities that can be illustrated by 
an activity-on-node (AON) network, G = (V . E) where nodes 
and arcs represent the activity set, V and their precedence 
relationship (without a time lag), E, respectively. The set 
of ℳ = {1, …, Mj} is used to show the available options for 
performing each activity j  V. In order to execute activity 
j in mode m  ℳj, rjmk units of renewable resource k must 
be provided for each period of implementation. cjm and djm 
are the direct cost and duration of execution activity j in 
mode m, respectively. It is assumed that after implement-
ing an activity j in mode m, that activity cannot be inter-
rupted and its mode cannot be altered, and the progress of 
activity must be maintained through djm successive peri-
ods. Furthermore, there is limited amount of renewable 
resources k = {1, …, K}, available each period and is deter-
mined by Rk. A set of non-dominated solutions for project 
managers is offered by MRC-DTCRO while minimizing 
time, cost, and resource moment deviation, given the pre-
cedence and resource constraints.

2.1 Objective functions
A determination will be made of the duration, direct costs, 
and resources required for each activity once the mode of 

execution is chosen. Then a feasible schedule will be gener-
ated based on these constraints by incorporating the activ-
ity mode information into the schedule generation scheme 
(SGS). Finally, the project duration, cost, and resource 
moment can be determined as outputs of the schedule.

Project completion time: Evaluation of a project's suc-
cess is highly dependent on the project's duration. The first 
objective of MRC-DTCRO is to minimize the project com-
pletion time, which is determined through the SGS. The 
given schedule indicates when the last activity in a project 
will be completed, estimating its duration. Therefore the 
project completion time Ft is equal to:

F f j Jt j= =max . ,...,1 ,	 (1)

where fj is the finish time of the jth activity.
Project completion cost: MRC-DTCRO's second objec-

tive is to reduce the total project cost. In this model, both 
the project's direct cost and indirect cost are taken into 
account. Direct costs refer to the sum of the execution 
costs for all the activities involved in a project, based on 
the alternatives chosen for each activity. The indirect cost 
is deemed constant in each period, and its amount for the 
entire project changes with project duration. Hence the 
project completion cost Fc can be formulated as follow:

	 (2)
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Where, cjm is the direct cost of jth activity in mode m, 
and xjm is a decision variable that is defined as follow:

x
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1

0
.	 (3)

Throughout a project's duration, ci corresponds to the 
indirect costs per period.

The contractor will be penalized in case of a delay from 
the contracted timeline. The term (yJ × cp × ( fJ – Tcontract)) 
is the penalty cost where Tcontract refers to the deadline that 
is stipulated in the project contract, cp is a penalty in each 
period of delay, and yJ also is the other decision variable 
that given by:
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Total resource moment: This model also aims to mini-
mize resource fluctuations throughout the project lifetime 
considering the deviation of the X moment Mx

dev (X is the 
time axis) of the resource histogram in the resource level-
ing process. Resource leveling problem (RLP) is formu-
lated as follows: 

M r t rx
dev

k

K

t

T

k k= ( ) −( )
= =
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1 1

2
,	 (5)

where rk(t) is the resource usage of renewable resource k 
in period t  {1, …, T} for a determined schedule, K is the 
total types of project resources, T is the completion time of 
project and r̅ k is the average resource usage that defined as:

r
T

r tk
t

T

k= ( )
=
∑1

1
.	 (6)

3 Fuzzy logic
In the fuzzy set (FS) theory, uncertainties lacking a sta-
tistical basis are explicitly addressed [32]. Many linguistic 
descriptions problems can be solved using FS in the real 
world. [33]. Since construction projects are notoriously 
imprecise and unpredictable, FS has been extensively used 
to account for them [34]. From fuzzy set theory, fuzzy 
logic is derived to deal with a set of membership functions 
to indicate how much an element belongs to a set, rated 
from zero (no membership) to one (full membership), and 
it may also belong to more than one set. Fuzzy logic will 
become more useful when historical data is scarce or when 
estimates are not detailed.

Consider A as a fuzzy number, that is, a normalized 
convex fuzzy subset of real number C:

A c c c CA= ( )( ) ∈{ }.µ ,	 (7)

where μA(c) is a membership function that takes values 
from  Indicating to what degree  belongs to A. Fuzzy logic 
uses fuzzy numbers that have a specific distribution [25]. 
Several fuzzy systems with a single, rectangular, trape-
zoidal, triangular number or other types have been intro-
duced, as shown in Fig. 1 [35]. The stochastic nature of the 
parameters of the problem strongly influences the choice 
of fuzzy number shapes.

In practice, project activity's costs are uncertain due 
to the influence of many uncontrollable factors, so the 
assumption of fixed and known costs cannot be justified. 
In fuzzy scheduling, in which uncertainty is taken into 
account, fuzzy numbers are used to model activity costs. 
Using triangular fuzzy numbers is a common method for 
representing the costs of an activity [29]. Additionally, 
various operations can be performed on fuzzy numbers, 
such as unions, intersections, etc. One such operation is 
the α cut, which ties together fuzzy and crisp sets and 
functions as the basis for many existing systems. The α 
cut level set of A can be defined as:

A c c c CA
α µ α α= ( )( ) ≥ ∈{ } ∀ ∈[ ]. .0 1 .	 (8)

It is possible to transform fuzzy numbers represent-
ing uncertain variables into crisp sets using the α cut con-
cept. In this way, the proposed framework can be utilized 
to determine optimum options with different alpha cut 
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Fig. 1 Different types of fuzzy numbers: a) single value; b) rectangular distribution; c) triangular distribution; d) trapezoidal distribution adapted from [31]
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values, reflecting risk tolerance. Because the value of α can 
significantly impact non-dominated solutions, decision- 
makers must carefully consider its choice. 

4 Metaheuristic algorithm
MRC-DTCRO's principal goal is to reduce project dura-
tion, cost, and resource moment while addressing the prior-
ity relationships among activities and restricted resources. 
Problems of this type are considered NP-hard. Consequently, 
the exact methods cannot locate Pareto optimal solutions 
within the logical timeframe. Such problems can be tack-
led through metaheuristic algorithms. A  new type of col-
liding bodies optimization (CBO), which has recently been 
adapted to a multi-objective configuration, is used in this 
research. This section discussed the standard CBO [17], 
enhanced CBO (ECBO) [36], and multi-objective version 
of this algorithm, which is called enhanced non-dominated 
sorting colliding bodies optimization (ENSCBO) [37]. 

4.1 Colliding bodies optimization (CBO)
CBO is characterized as a physics-based meta-heuristic 
algorithm that relies on analyzing collisions between bod-
ies in one dimension. Momentum and energy are laws of 
physics that explain collisions among objects. Whenever 
objects collide in an isolating system, their total momen-
tum is conserved. Physics conservation laws for colliding 
bodies have been used to justify the formulation of CBO. 
CBO's methodology is straightforward: Its best solutions 
are not stored in memory, nor does it have an internal fac-
tor. The following section explains the laws and theories 
of the algorithm. All of the explanations about this method 
are taken from [17].

4.2 CBO formulation
CBO employs several agents that represent candidate solu-
tions, such as agent Xi, which comprises a number of vari-
ables (i.e., Xi = {(Xi.j)})  and is defined as a colliding body 
(CB) with a specific mass. Two types of object groups, 
including stationary and moving objects, mimic the pro-
cess of collision. A pair-by-pair collision process occurs 
during this process, in which moving objects move after 
stationary objects, improving their positions and making 
stationary objects move towards more promising spaces. 
As a result of the collision, each CB is repositioned accord-
ing to the changes in velocity. Following is a brief outline 
of the CBO process:

Step 1. Initialization: Initially, CBs are positioned in the 
search space using randomly generated individuals:

x x rand x x i ni min max min
0

1= + −( ) =, , , ,	 (9)

where, xi
0 indicates the initial value vector of the ith CB. 

xmin and xmax are the lower and the upper bounds of vari-
ables, respectively; rand is a random number in the range 
of [0.1], and n is the number of CBs.

Step 2. Calculating mass: For each CB, the magnitude 
of the body mass is as follows:

m
fit k

fit i

k nk

i

n
=

( )

( )

= …

=∑

1

1
1

1

. , , ,	 (10)

where fit(i) denotes the objective function value of the ith 
agent while better-performing CBs have a higher mass 
than their inferior counterparts.

Step 3. Forming groups: First, all CBs are sorted ascend-
ingly according to their objective function values. Then CBs 
are categorized into two distinct subgroups: stationary CBs 
(the lower half) and moving CBs (the upper half).

Step 4. Pre-collision criteria: The stationary CBs are 
good agents that have zero velocity before colliding. Each 
moving CB moves toward its matching stationary CB, 
and a collision happens between pairs of CBs. Therefore, 
the stationary and moving CBs have the following initial 
velocities:

v i n
i = =0 1

2
. ,..., ,	 (11)

v x x i n ni i i n
= − = +

−
2

2
1. ,..., ,	 (12)

where vi and xi are the velocity and position of the ith CB, 
respectively.

Step 5. Post-collision criteria: The velocity of each sta-
tionary CB after the collision is determined as follow:
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2
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where, v
i n+

2

 and vi' are the velocity of the ith moving CB 

before and the ith stationary CB after the collision, respec-
tively, mi is the mass of the ith CB, and m

i n+
2

 is the mass of 
the ith moving CB pair.

The velocity of ith moving CB after the collision is 
given by:
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where, vi and vi' are the velocity of the th moving CB 
before and after the collision, respectively, mi is the mass 
of the ith CB, and m

i n−
2

 is the mass of the ith CB pair.

The factor of ε is the coefficient of restitution (COR) that 
decreases from 1 to 0 on a linear basis. So, it is defined as:

ε = −1 iter
itermax

,	 (15)

where iter and itermax are the number of the current itera-
tion and the total number of iterations, respectively

Step 6. Generating new CBs: CBs are repositioned after 
they collide based on the corresponding velocity and the 
locations of stationary CBs.

The new position of each stationary CB is:

x x rand v i n
i
new

i i= + =

'
. ,...,1

2
,	 (16)

where xi
new, xi and vi' are the new position, old position, 

and the velocity of the ith stationary CB after the colli-
sion, respectively. rand is a random vector uniformly dis-
tributed in the [–1.1] interval, and the sign "°" denotes an 
element-by-element multiplication.

Also, the new positions of moving CBs are obtained by:

x x rand v i n ni
new

i n i= + = +
−
2

2
1

'
,..., ,	 (17)

where, xi
new and vi' are the new position and the velocity 

after the collision of the ith moving CB, respectively, x
i n−

2

 
is the previous position of the stationary CB pair.

Step 6. Terminal condition: The optimization process 
is finished when the determined stopping criteria are met. 
Otherwise, go to Step 2 for a new iteration.

4.3 Enhanced colliding bodies optimization (ECBO)
ECBO is an updated version of the standard CBO since 
it has been improved in terms of both the quality of the 
solutions and convergence speed by Kaveh and Ilchi 
Ghazaan [36]. It was modified to keep previous best solu-
tions in memory and prevent the algorithm from trapping 
in local optima. In the latter mechanism, one component of 
each CB is selected at random and is altered with a certain 
probability (which is defined by parameter Pro) as follow:

x x random x xij j min j max j min= + ⋅ −( ). . . ,	 (18)

where xij is the jth variable of the ith CB. xj.min and xj.max are 
the lower and upper bounds of the jth variable, respectively.

4.4 Enhanced non-dominated sorting colliding bodies 
optimization (ENSCBO)
As standard CBO and ECBO are originally single-objective 
approaches, they are not helpful in solving problems con-
sisting of more than one objective function. Kaveh et al [37] 
adapted the configuration of ECBO to handle the multi-ob-
jective optimization problems by employing a non-domi-
nated sorting technique represented by Deb et al. [20] and 
proposed a new algorithm named ENSCBO. The CBs are 
divided into separate fronts using this method, and the num-
ber of a CB's front determines its ranking. The crowding 
distance (CD), another concept in NSGA-II  [20], is used 
to determine the priority of CBs in each front. In this way, 
CD prioritizes solitude solutions above others in the same 
front to maintain the diversity of solutions. For each solu-
tion, crowding distance is formulated as:

CD
f f

f f
j ki

j

k
j
i

j
i

j
max

j
min=

−

−
=

=

+ −

∑
1

1 1
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where fj
i+1 and fj

i–1 are the jth function value of the (i+1)th 
and (i–1)th CB in the front, respectively. Furthermore, 
fj

max and fj
min are the maximum and minimum values of the 

jth objective function, respectively. In this algorithm, the 
magnitude of the mass for each CB is calculated using the 
rank and CD values of the CBs as follow:

m
Rank k
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k nk
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1

1

1

1
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. . . ,	 (20)

The rest of the steps and details are the same as those 
used by the ECBO.

5 Fuzzy-multi-mode resource-constrained discrete-
time–cost-resource optimization (F-MRC-DTCRO)
In the proposed F-MRC-DTCRO, factors such as duration, 
amount of resource usage, and fuzzy numbers of costs for 
each alternative are defined as inputs to the optimization 
algorithm. In the same way as real numbers, fuzzy num-
bers can be manipulated by using extension principles. 
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For a given candidate solution, one of the objectives is to 
determine the total project cost. At first, this can be done 
by calculating the fuzzy total costs of a set of selected 
modes as follow: Consider C̃  as a fuzzy number repre-
senting the performance cost of an execution mode, so its 
α cut can be denoted as follows:

C c cα α α= 



− +. ,	 (21)

where according to a certain value of α, cα
– and cα

+ repre-
sent the lower and upper limits of the fuzzy cost, respec-
tively, as shown in Fig. 2.

Additionally, for two fuzzy costs, C̃ 1 and C̃ 2 and their α 
cuts, C1α and C2α, the summation of them can be defined 
as [38]:

C C c c c c1 2 1 2 1 2+( ) = + +





− − + +
α α α α α. .	 (22)

The above-mentioned formulation can be extended to 
encompass all fuzzy costs of selected options for activi-
ties, resulting in a single fuzzy number that represents the 
project's total cost. 

Moreover, to compare the candidate solutions in terms 
of total project cost, associated fuzzy costs for different α 
cut values should be ranked. In order to convert the total 
fuzzy cost to a crisp value, a defuzzification method is 
applied. Based on this technique, consider the total fuzzy 
cost, C̃  with membership function, A, in the case of a candi-
date solution, the area captured by A is defined by point C* 
based on the center of gravity defuzzifier. Thus, C* stands 
for the total cost crisp value and is calculated as follows:

C
C c dc

c dc
A

A

* =
∫ ( )
∫ ( )
µ

µ
.	 (23)

As a result, it would be possible to compare the can-
didate solutions based on the associated value of C* and 
two other objective functions. Flowchart of the proposed 
model of F-MRC-DTCRO is explained in Fig. 3.

6 Model application and discussion of the results
To verify and demonstrate the application of the proposed 
F-MRC-DTCRO model using ENSCBO, an exciting case 
study of a warehouse construction project, which was firstly 
introduced by Chen and Weng [39], is chosen. Ghoddousi 
et al. [28] made some modifications to the project activi-
ties data to solve the MRC-DTCRO problem in a certain 
environment. This case study presents a project consisting 
of 37 activities, each involving multiple execution meth-
ods. A single type of renewable resource is available, with 
a daily limit of 12 workers. Also, indirect costs are consid-
ered to be zero during the project timeline. In  this study, 

non-symmetric triangle shapes are assumed to represent the 
cost of the alternatives. These cost values are transformed 
into three numbers, of which the first, middle, and third are 
the minimum, most probable, and maximum cost of the 
assigned fuzzy number. Details of this case study and the 
highest and lowest possible costs of each available alter-
native are presented in Table 1. The network of the case 

C

𝝁𝝁(𝒄𝒄)

𝑐𝑐−𝛼𝛼 𝑐𝑐+𝛼𝛼

1

𝛼𝛼

Fig. 2 α cut of a fuzzy cost

Fig. 3 Flowchart of proposed F-MRC-DTCRO model
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Table 1 Activity data of the case study

Act. 
ID Act. description Execution 

mode
Duration 

(days) Predecessor Labor requirement 
(men) Direct cost ($)

1 Mobilization and site facilities 1 25 - 2 4800 5000 5600

2 Soil test 1 11 - 2 1900 2200 2700

3 Excavation work 1 21 1 4 8000 8400 9100

2 16 1 6 9500 9600 10000

4 Piling work 1 20 1 5 9400 10000 12500

2 18 1 6 9750 10800 13000

5 Pile loading test 1 15 2 2 2800 3000 3500

6 Backfilling and M&E work 1 9 4 3 2550 2700 3400

2 6 4 5 2600 3000 3600

7 Pile cap work 1 14 2,4 4 5500 5600 6100

2 10 2,4 6 5700 6000 6550

8 Column rebar and M&E work 1 10 5 5 4850 5000 5300

9 Slab casting 1 12 3,6,7 5 5800 6000 6700

2 11 3,6,7 6 6400 6600 7200

10 Column formwork 1 10 8 4 3850 4000 4300

11 Roof beam and slab formwork 1 12 9 5 5800 6000 6400

12 Column casting 1 10 10 4 3700 4000 4900

13 Roof beam and slab rebar 1 10 11,12 5 4800 5000 5450

14 Roof parapet wall casting 1 14 12 5 6600 7000 7800

15 M&E work 1 1 7 12 4 2750 2800 3100

16 Door and window frame 1 7 14 3 2000 2100 2500

17 M&E work 2 1 7 13,14 4 2650 2800 3300

18 Roof slab casting 1 12 15 4 4500 4800 5500

2 9 15 6 5250 5400 6000

19 Plastering work 1 10 16,17 4 3800 4000 4400

20 Brick wall laying 1 14 18 4 5400 5600 6200

2 10 18 6 5650 6000 6700

21 Ceiling skimming 1 7 11 4 2700 2800 3150

2 14 20 3 4000 4200 4500

22 Toilet floor and wall tiling work 1 10 20 5 4600 5000 5700

23 Drain work 1 10 19,21 4 3850 4000 4350

24 Apron slab casting 1 9 21,23 5 4400 4500 4900

25 Door and window 1 7 22 5 3400 3500 3800

26 Painting work 1 14 19,22 4 5400 5600 6100

27 Fencing work 1 16 24 5 7500 8000 8800

28 External wall plastering 1 10 25,26 4 3800 4000 4600

2 9 25,26 5 4200 4500 5300

29 Electrical final fix 1 6 25 2 1100 1200 1500

30 Main gate installation 1 3 24,27 3 850 900 1100

31 External wall painting 1 12 29 4 4600 4800 5300

32 Qualified person inspection 1 5 27,30 2 950 1000 1150

33 Landscape work 1 10 28,31 2 1900 2000 2300

34 Registered inspector inspection 1 7 32,33 1 650 700 800

35 Authority inspection 1 7 34 1 650 700 800

36 Defect work 1 14 35 1 1300 1400 1650

37 Project handover 1 1 36 1 70 100 150
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study is shown in Fig. 4. The objective of this case is to find 
non-dominant solutions with the intention of optimizing 
project time, cost, and resource deviation. Implementation 
of the model was done using MATLAB R2018b [40].

An optimal set of 48 unique Pareto solutions satisfy-
ing the desired project objectives were found. Project com-
pletion time, project completion cost, and total resource 
moment were determined for every 48 implementation 
scenarios of project. The time, the fuzzy costs for differ-
ent α cuts and resource moment for all 48 obtained Pareto 
optimal solutions are presented in Table 2. Fig. 5 shows the 
results of the algorithm after 200 iterations of 50 agents 
for different α values. It should be noted that the best per-
formance of ENSCBO in terms of performance metrics of 
multi-objective algorithms such as number of Pareto solu-
tions and diversification metric is determined by trials and 
errors. Project completion time values vary from 190 to 231 
days, project completion cost values for α = 1 vary from 
$145400 to $147700, total resource moment values vary 
from 1811.3 to 2721.6. Comparing the proposed model's 
outputs for α = 1 with corresponding results of the earlier 
deterministic version of MRC-DTCRO validated its per-
formance. Once α = 1, the stochastic nature of the presented 
problem becomes deterministic, so that comparisons with 
deterministic models can be made easily. The results of the 
proposed ENSCBO with α = 1 are very similar and even 
superior to those of a similar problem solved by Ghoddousi 
et al. [28], which is depicted in Table 3. While the average 
time for ENSCBO (203.31 days) is very slightly different 
from that of NSGA-II (203.04 days), the average cost and 
resource moment deviation for ENSCBO ($145958.33 and 
2210.45) is less than those of NSGA-II ($146015.56 and 
2222.28). In addition, the proposed model is capable to 

use a variety of α cut values in the fuzzy cost assessment 
process, allowing the project planners to choose a suitable 
value for the α to set the level of risk retention. As shown 
in Table 2 with increasing α values, the difference between 
the minimum and maximum expected costs of the project 
decreases, which signifies that the project manager takes 
on more risk. The decision to use 1 as α (i.e., 100% risk 
acceptance) results in an entirely certain circumstance and 
makes cost estimation uncertainty invisible. In contrast, 
with a zero risk acceptance level, 0 may be chosen as the 
α value, which would result in an extremely wide range 
of costs. The project manager must know the expected 
minimum and maximum total costs since the cumulative 
impact of uncertainties in the cost of alternatives can lead 
to a wide estimate of the project's total cost. Although this 
model provides construction planners and decision-mak-
ers with a practical tool for project scheduling, it is also 
possible to include other types of objectives such as safety 
and quality in the planning process. In this study, other 
objectives of the project were not considered in the opti-
mization process since project-specific details of the case 
study were not available.

7 Conclusions
In this study, an F-MRC-DTCRO model is presented to 
address the time–cost-resource moment tradeoff prob-
lem considering uncertainties in costs. With ENSCBO, 
a recently introduced multi-objective optimization algo-
rithm, the proposed framework attempts to minimize the 
project's time, cost, and resource moment as three objec-
tives. The modeling framework fully incorporates fuzzy 
sets theory to account for uncertainty in project costs. 
In order to illustrate how the model can be applied to the 
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Table 2 F-MRC-DTCRO model results for case study

Solution 
no.

Time 
(day)

Cost ($) Resource 
momentα = 0 α = 0.25 α = 0.5 α = 0.75 α = 1

1 190 140320 165900 142172 161347 144010 156800 145862 152247 147700 2719.3

2 191 139920 165200 141747 160697 143560 156200 145387 151697 147200 2721.6

3 192 139570 164700 141284 160122 142985 155550 144699 150972 146400 2587.0

4 193 139220 164900 140996 160247 142760 155600 144536 150947 146300 2595.0

5 194 138820 164200 140571 159597 142310 155000 144061 150397 145800 2592.5

6 194 139620 164900 141396 160347 143160 155800 144936 151247 146700 2565.8

7 194 139220 164900 141146 160397 143060 155900 144986 151397 146900 2537.5

8 195 138820 164200 140571 159597 142310 155000 144061 150397 145800 2552.6

9 195 138870 164400 140683 159822 142485 155250 144298 150672 146100 2464.7

10 196 138570 163700 140283 159122 141985 154550 143698 149972 145400 2539.7

11 196 138820 164200 140571 159597 142310 155000 144061 150397 145800 2472.3

12 196 139420 164700 141171 160122 142910 155550 144661 150972 146400 2412.8

13 196 140020 165850 141846 161209 143660 156575 145486 151934 147300 2411.0

14 197 138570 163700 140283 159122 141985 154550 143698 149972 145400 2526.4

15 197 138620 163900 140395 159347 142160 154800 143935 150247 145700 2353.1

16 197 139020 164650 140821 160034 142610 155425 144411 150809 146200 2330.0

17 198 138570 163700 140283 159122 141985 154550 143698 149972 145400 2422.6

18 198 138820 164200 140571 159597 142310 155000 144061 150397 145800 2325.8

19 198 138970 164400 140708 159772 142435 155150 144173 150522 145900 2306.1

20 199 138570 163700 140283 159122 141985 154550 143698 149972 145400 2298.3

21 199 138770 164150 140533 159559 142285 154975 144048 150384 145800 2235.8

22 200 138570 163700 140283 159122 141985 154550 143698 149972 145400 2215.4

23 200 139070 164850 140933 160259 142785 155675 144648 151084 146500 2213.9

24 201 138570 163700 140283 159122 141985 154550 143698 149972 145400 2142.0

25 202 138820 164350 140645 159784 142460 155225 144285 150659 146100 2132.1

26 203 138870 164400 140683 159822 142485 155250 144298 150672 146100 2114.1

27 204 138570 163700 140283 159122 141985 154550 143698 149972 145400 2130.7

28 204 138620 163900 140395 159347 142160 154800 143935 150247 145700 2076.9

29 205 138570 163700 140283 159122 141985 154550 143698 149972 145400 2065.2

30 205 138620 163900 140395 159347 142160 154800 143935 150247 145700 2045.6

31 205 138870 164400 140683 159822 142485 155250 144298 150672 146100 2032.7

32 205 139220 165100 141045 160447 142860 155800 144685 151147 146500 2023.6

33 206 138620 163900 140395 159347 142160 154800 143935 150247 145700 2015.9

34 206 139620 165100 141420 160522 143210 155950 145010 151372 146800 2008.7

35 207 138570 163700 140283 159122 141985 154550 143698 149972 145400 2062.9

36 207 138620 163900 140395 159347 142160 154800 143935 150247 145700 1917.7

37 208 138570 163700 140283 159122 141985 154550 143698 149972 145400 2048.0

38 210 138620 163900 140395 159347 142160 154800 143935 150247 145700 1894.2

39 211 138870 164400 140683 159822 142485 155250 144298 150672 146100 1886.8

40 212 138620 163900 140395 159347 142160 154800 143935 150247 145700 1845.6

41 212 139220 165100 141045 160447 142860 155800 144685 151147 146500 1811.3

42 213 138570 163700 140283 159122 141985 154550 143698 149972 145400 2010.6

43 216 138620 163900 140395 159347 142160 154800 143935 150247 145700 1829.0

44 217 138570 163700 140283 159122 141985 154550 143698 149972 145400 1991.5

45 218 138570 163700 140283 159122 141985 154550 143698 149972 145400 1990.2

46 221 138570 163700 140283 159122 141985 154550 143698 149972 145400 1977.9

47 225 138620 163900 140395 159347 142160 154800 143935 150247 145700 1826.1

48 231 139220 164400 140995 159872 142760 155350 144535 150822 146300 1823.3
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Table 3 Optimal results for certain MRC-DTCRO adapted from Ghoddousi et al. [28]

Solution no. Time Cost Resource moment Solution no. Time Cost Resource moment

1 190 147700 2719.27 24 203 145800 2170.26

2 191 147200 2721.58 25 203 146100 2118.12

3 192 146400 2587 26 204 145400 2130.69

4 193 146300 2595.01 27 204 146100 2089.66

5 194 145800 2592.45 28 204 146600 2084.92

6 194 146700 2565.76 29 205 145700 2075.64

7 195 145800 2484.65 30 205 146100 2038.7

8 195 146100 2464.74 31 205 146500 2025.61

9 196 145400 2539.69 32 206 145400 2083.3

10 196 147600 2442.82 33 206 146100 2033.25

11 197 145400 2538.45 34 207 145400 2062.88

12 197 146100 2433.87 35 207 145700 1919.69

13 197 146200 2414.03 36 210 145700 1918.19

14 197 146600 2404.58 37 211 146100 1886.79

15 197 147000 2388.96 38 212 146100 1870.5

16 198 145700 2393.54 39 213 145400 2010.57

17 198 146200 2346.83 40 213 145700 1886.57

18 199 145400 2354.3 41 213 146500 1852.83

19 199 145800 2307.77 42 217 145400 1991.53

20 200 145400 2215.42 43 217 145700 1868.29

21 201 145400 2198.01 44 226 145400 1983.5

22 202 145800 2192.42 45 226 145700 1861.86

23 202 146100 2138.06

Fig. 5 Fuzzy Pareto fronts associated with different α values
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MRC-DTCRO under uncertain conditions, a case study 
was developed. It was demonstrated that project manag-
ers could effectively impose their risk acceptance thresh-
old using the α technique. The effect of different values 
of α cuts was considered on the estimated total project 
cost. Based on the results, it is evident that decreasing α 
value can result in a larger range of total project costs. 
Comparing the identified non-dominated solutions for 
α cut = 1 with those of the previously developed determin-
istic model proposed by Ghoddousi et al. [28] confirms 
the efficiency of the proposed ENSCBO in solving the 
MRC-DTCRO problems. This model can be effectively 
employed by project managers who have some knowledge 

of risk management basics. As an assumption, no prefer-
ences on time, cost, and resource moment were given in 
the analyzing process. Therefore, if a manager had specific 
priorities, choosing the preferred scenario among obtained 
non-dominated solutions would be fairly straightforward.  
Future studies can enhance the applicability of the model 
by testing several metaheuristic algorithms. Moreover, the 
uncertainties in the estimation of time and other project 
objectives can be considered.
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