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Abstract

The Poisson’s ratio of the intact rock material is one of the basic material constants for rock engineering calculations in and on rock 

environments. Recently, several relationships were developed to calculate of the Poisson’s ratio of the intact rock from different 

mechanical parameters (e.g., rigidity index, cohesion, internal friction angle). This value can be measured under standardized 

laboratory conditions using traditional uniaxial compressive test at zero confining pressure. Analyzing the laboratory tests carried out 

at different confining pressure, it was found that this material constant should be increasing as a function of confining pressure. This 

paper aims to present a theoretical relationship between Poisson’s ratio of intact rock and the confining pressure, using the Hoek-

Brown failure criteria. It was assumed that the Poisson’s ratio is increasing linearly, and at the brittle-ductile transaction point, it is 0.5. 

The proposed relationship can be extended to rock mass, using the Geological Strength Index (GSI).
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1 Introduction
Poisson's ratio (ν) is defined as the negative of ratio of the 
radial strain (εr) and the corresponding axial strain (εa) 
caused by uniformly distributed axial stress. According to 
the definition, the Poisson's ratio of isotropic, linear elas-
tic material is between -1 (lower limit) and + 0.5 (upper 
limit) because of the requirement for Young's modulus, 
the shear modulus and bulk modulus to have positive val-
ues. The vast majority of intact rock materials is between 
0.1–0.4 [1], and using cylindrical rock samples can be cal-
culated from the measured axial and lateral strains using 
traditional uniaxial compressive tests [2]. The Poisson's 
ratio depends on several mechanical/pertophysical param-
eters, i.e., porosity, water content, confining pressure, 
among the others.

Although the Poisson's ratio is an important mechanical 
parameter for rock engineering design, it is less investi-
gated because it is difficult to measure accurately [1]. They 
summarized and published the typical ranges of values for 
Poisson's ratio of the most important rock types – see Fig. 1.

Unfortunately, in many cases it is not possible to 
determine the Poisson's ratio of the intact rock. It can be 
assumed that the Poisson's ratio depends on the mechanical 

Fig. 1 Typical ranges of values for Poisson's ratio of some rock types 
(collected by Gercek [1])
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behavior, namely the rigidity of the intact rock – increas-
ing the brittleness of the rock material the Poisson's ratio 
should be decreasing. These equations are based on Mohr-
Coulomb theory.

Zhang et al. [3] summarized the most important rela-
tionships between the different Mohr-Coulomb failure 
parameters (such as internal friction angle (ϕ), cohesion (c) 
and the Poisson's ratio (ν) of the intact solid material. 

One can find the equations describing the relationship 
between the Poisson's ratio and the internal friction angle 
without cohesion: 
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• The Poisson' ratio can be calculated by the use of 
other mechanical parameters, such as cohesion (c) 
and uniaxial compressive strength (σc): 
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• In rock mechanics the uniaxial compressive strength 
(σc) and the tensile strength (σt) play fundamen-
tal role. Their proportion (R) is also used as a key 
parameter and called rigidity, where R = σc/|σt|. 
The Poisson's ratio can also be calculated as a func-
tion of compressive and tensile strength, i.e., rigidity 
is the key parameter. In [3–5] one can find the most 
commonly used relations that are listed below: 
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Lógó and Vásárhelyi [4, 5] investigated the formulation 
in Eqs. (1)–(13), and validated by parametric experiences. 
Their computed values for the Poisson's ratio obtained by 
the use of Eqs. (1)–(13) were compared with the available 
internationally published data sets. They concluded: 

• the Poisson's ratio highly depends on the ratio of 
uniaxial compressive strength and tensile strength 
(i.e., brittleness) of the intact rock,

• increasing the brittleness of the rock, the Poisson's 
ratio decreasing.

The usual range of the ordinary Poisson's ratios of dif-
ferent intact rock types can be seen in Fig. 1, as it was 
indicated earlier. We elaborated parametric studies [4] 
to investigate the applicability of the Eqs. (8)–(13). This 
study is based on a simple data analysis operation where 
the upper and the lowers bounds of the available ranges 
of the Poison's ratios are plotted from the papers by 
Gercek [1] and AASHTOAmong these equations Eq. (12) 
was the best fitted one – however one can see the differ-
ence between the measured/published and the theoreti-
cally calculated values. This difference is significant even 
with the best approximation (see Fig. 2).

Fig. 2 Poisson's ratio in the function of the rigidity of intact rock 
according to the results of Lógó and Vásárhelyi [4] 
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Accepting that the rigidity of the intact rock (R = σc/|σt|) 
is equal to the Hoek-Brown material constant (mi), thus 
R ≈ mi, [6], one can use the following form [5]:

� �
�

1
1mi

. (14)

Hereafter this form will be used. 
In [7] Carniero and Puga examined various materials 

by dynamic mechanical analysis. This method is able to 
monitor the instant values of load and displacement to 
determine the instant specimen stiffness and the Poisson's 
ratio and complex modulus. Carried out several tests they 
found: increasing the temperature, the Poisson's ratio is 
also increases (see Fig. 3).

As shown in Fig. 4, if the Poisson's ratio is considered 
constant, the behavior of the model does not correspond 
to the actual measurement results. In Fig. 5 one can see 
the variation of the Poisson's ratio and the corresponding 
stresses and strains in case of tensile strength test.

The structure of the rest of this paper is as follow: 
Section 2 contains an overview of selected papers deal-
ing with the influence of the confining pressure on the 
Poisson's ratio. Section 3 contains the main goal of this 
paper, namely a recommendation is suggested to give 
a theoretical relationship between the confining pressure 
and the Poisson's ratio of intact rock material. In the last 
section (Section 4) one can find the conclusions and appli-
cability of the results.

2 An overview on the influence of the confining 
pressure on the Poisson's ratio
The above-presented equations were developed for zero 
confining pressure; however, the environmental stress 
should have influence on this value. It is well known that 
increasing the confining pressure both the ultrasound 
velocities (both vp and vs) and the deformation modulus 
increase. It can be assumed that the Poisson's ratio of the 
intact rock increases, as well.

Xu et al. [8] investigated the influence of the increasing 
lateral stress (σ3) for the Poisson's ratio of the intact rock 
(they investigated cryptocrystalline amygdaloidal basalt 
samples). According to their results, the Poisson's ratio (ν) 
linearly increases with increasing lateral stress (σ3), and 
the lateral stress loading on the rock samples has some 
softening effects (see Fig. 6).

Dong et al. [9] investigate experimentally the variation 
of the Poisson's ration for intact rocks and its variation as 
deformation develops. They conclude, by analyzing the 

deformation processes of a wide variety of rocks under 
uniaxial compression, that the Poisson's ratio and Young's 
modulus behave quite differently: there is no plateau in 
Poisson's ratio because the secant and average Poisson's 
ratios both increase monotonously with increasing stress. 

Fig. 5 Experimental tensile strength test [6]

Fig. 4 Comparison of results considering a constant and variable 
Poisson's ratio. Comparison of results considering a constant and 

variable Poisson's ratio [6]

Fig. 3 Connection between Poisson's ratio and the specimens 
temperature [6] 
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This behavior could be related to the irreversibility of 
compaction in the direction of compression and micro-
crack propagation in the principal stress direction.

One can see the variation of the secant Poisson's ratios 
of several marble specimens in Fig. 6(e) [9]. The evolu-
tion of the secant Poisson's ratio can be divided into two 
parts. The first part is linear and here the increment of 
stress is 20–30% of the peak strength. The values are in 
the normal range of values for Poisson's ratio [1]. When the 
stress increases to 70–80% of the peak strength, the secant 
Poisson's ratio grows in a rapid and nonlinear manner, and 

it exceeds the normal range of values for Poisson's ratio [1] 
prior to failure. The transitions into the nonlinear rapid 
growth stage roughly corresponds to the failure stress. 
A similar behavior can be seen in Fig. 6(f) [5] where the 
authors of this paper presented as the results of series of 
parametric experiments that the value of the Poisson's ratio 
is not only dependent on the magnitude of the environ-
mental pressure but is significantly influenced by the frag-
mentation of the rock. This numerical experiment is based 
on Eq. (3). One can see quasi –linear relations between the 
Poisson' ratio and the confining pressure.

(a) (b)

(c) (d)

(e) (f)

Fig. 6 According to the measured data, the influence of the lateral stress on the Poisson's ratio of intact rock with given s1 [8]; a) Relationship among 
σ1, σ3, and ε1; b) Relationship among σ1 and σ3; c) Relationship among σ3, and ε1; d) Relationship among v and σ3; e) Variation of the secant Poisson's 

ratios of several marble specimens (according to Dong et al. [9]); f) Poisson's ratio in the function of GSI and confining pressure [5]
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3 Theoretical considerations
It is well known, that by increasing the confining pres-
sure, the rigid rock material becomes plastic. First, Kármán 
observed this mechanical behavior of the rigid rock sam-
ples [10–12], namely Carrara marble and Mutenberg sand-
stone. They documented the deformation of the samples, 
both at zero and high confining pressure (see Fig. 7) [13–14]. 
As it is known, the plastic behavior can be described by 
yield functions. In these functions the yield of the structural 
element depends on the deviatoric part of the stress tensor. 
In the following it is assumed, that σ2 = σ3 and σ1 and σ3 are 
used in our investigation.  

In this paper, the transition point from brittle to ductile 
failure is calculated using σtr (transitional stress) as referred 
to Mogi's widely used brittle-ductile transition limit [15]:

� � �
1 3 3

3 4� � �. . (15)

Here σ1 is the axial stress. Hence, the axial stress can 
be considered as:

� �
1 3
4 4� �. . (16)

The Hoek–Brown failure criterion is widely used in rock 
mechanics and rock engineering practice. For determin-
ing the transition point of the intact rock the Hoek-Brown 
failure criterion can be applied. This semi-empirical fail-
ure criterion was introduced by Hoek and Brown [16] 
and the following form was suggested for intact rock 
(see also [17]):
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where σ1 and σ3 are major and minor principal stresses at 
failure, respectively, mi is the Hoek-Brown material con-
stant and σc is the uniaxial compressive strength of intact 
rock. In case of the experiments above the major and 

minor principal stresses are equivalent to the axial and lat-
eral stresses, respectively. In the following axial and lat-
eral stresses are used instead of the expression of major 
and minor principal stresses.

According to Eq. (17), two independent parameters are 
necessary, namely:

• σc: Uniaxial compressive strength of intact rock,
• mi: Hoek–Brown material constant of intact rock.

Note, the Hoek-Brown material constant (mi) is equal to 
the ratio of the uniaxial compressive strength (σc) and the 
tensile strength (σt) of the intact rock [18]. This ratio can 
be used as the rigidity of the rock (R).

It should be noted that the Hoek-Brown criterion is pro-
posed to deal with shear failure in rocks. Therefore, the 
Hoek-Brown criterion is only applicable for confining 
stresses within the range defined by σ3 = 0 and the transition 
from shear to ductile failure, as shown in Fig. 2. Research 
by [19, 20] indicated that the range of confining stress σ3 
can have a significant influence on the calculation of mi. 

Also, triaxial test data of Indiana limestone by 
Schwartz [21] in Fig. 8. shows that the applicability of the 
Hoek-Brown criterion is determined by the transition from 
shear to ductile failure at approximately σ1 = 4.0 σ3 [22]. 

Substituting Eq. (16) into Eq. (17) one can get the fol-
lowing equations:
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Fig. 7 Marble samples: from unconfined (left) to increasing confining 
pressure (to right) (according to Kármán [13–14]) Fig. 8 Limit of applicability of the Hoek-Brown criterion [22]
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Making the necessary calculation, the final form is:
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It means that σ3 can be derived from the following 
equation:
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Without taking into account the negative value of σ3, 
the transitional stress (σ3 = σtr) point can be calculated 
from Eq. (20):
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where, σc and σtr are the uniaxial compressive strength and 
brittle-ductile transient stress, respectively, mi is the Hoek-
Brown material constant. This equation was analyzed for 
a different types of rock samples by Davarpanah et al. [23].

The goal of this research is to suggest a theoretical rela-
tionship between the confining pressure and the Poisson's 
ratio (ν) of intact rock material. The following assump-
tions were used for determining the influence of the con-
fining pressure to Poisson's ratio:

1. The intact rock is the linearly elastic homogeneous 
continuous material.

2. In case of zero lateral stress (σ3 = 0), the Poisson's 
ratio of the intact rock is constant: (ν = νi = const.)

3. According to the definition, the maximum value of 
the Poisson's ratio is 0.5 (ν = νtr = 0.5)– reaching this 
value, the rock has plastic behavior.

4. There is a linear relationship between the confin-
ing pressure and the Poisson's ratio (accepting the 
results of Xu et al. [8]) and the results of the para-
metric study of Lógó and Vásárhelyi [5]).

According to the theoretical assumptions the Poisson's 
ratio of the linearly elastic intact rock is increasing lin-
early from ν = νi (intact rock without confining pressure) 
to ν = νtr = 0.5 (confining pressure reaches the brittle-duc-
tile transient stress, σtr ) – see Fig. 9.

If the relationship between the Poisson's ratio and the 
axial stress is assumed to be linear, the relationship can be 
obtained using the equation of a line between the points P 
and Q, where the coordinates are: P(0; νi ) and Q(σtr ; 0.5). 

Writing the equation of the line crossing on these 
points, one can get the following relation: 
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Based on Eq. (22), the steepness of the line can be 
determined: 

tan
.

�
�

�
�

�0 5 i

tr
. (23)

Thus, the slope of the line is:

tan
. .

.

�
�

�
�

�

� �

1 11 56 23 12

46 24
2c

i

i im m
. (24)

It means the Poisson's ratio in the function of confin-
ing pressure (ν(σ)) can be calculated using the following 
equation:
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In Eq. (25) one can see the closed form of the linearly 
approximated variation of the Poisson's ratio ν(σ) in func-
tion of the uniaxial compressive stress σ. 

4 Conclusions
The goal of this theoretical research is to determine a simple 
relationship between the confining stress and the Poisson's 
ratio value of intact rock. This simple linear relation can 
be created easily and does not need any other information 
than the Poisson's ratio of the intact rock without confining 
pressure  (ν = νi) and the transient stress value. 

It has to be mentioned, that the Poisson's ratio can be 
differently handled. As it was indicated in Section 2, it can 
be more accurately described as an elastic deformation 
parameter that monotonously increases with stress during 
the compressive processes. According to the experimen-
tal results of Dong et al. [9], different rocks exhibit differ-
ent behaviors in their Poisson's ratios. In hard rocks, the 
secant and average Poisson's ratios grow approximately 
linearly with stress in the main stages of the loading pro-
cess. However, in soft rocks, these ratios quickly increase 

Fig. 9 Poisson’s ratio (ν) in the function of confining pressure (σ)
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beyond the theoretical maximum of 0.5 in the initial load-
ing stage. In that case a bilinear expression can be created, 
but the determination of the intermediate point is criti-
cal in that approximation. The intermediate point is the 
case where the axial stress reaches 20–30% of the transi-
tion stress. If this intermediate point is known a Lagrange 
or a Hermitian approximation can be applied, as well. 
In these last cases non-linear approximations are used 
instead of linear ones.

The influence of the confining pressure to the Poisson's 
ratio value, using Eq. (25), is plotted in Fig. 10: the uni-
axial compressive strength (σc)= 100 MPa and the Hoek-
Brown constant (mi) = 10 in this example. The Poisson's 
ratios were plotted in the function of confining pressure 
for νi = 0.1, 0.2, 0.3 and 0.4 values of the intact rock at zero 
confining pressure.

It should be emphasized that this relationship applies 
to intact rock. In rock engineering practice it is import-
ant to know the mechanical parameters of the rock mass 
(Poisson's ratio, as well). The Poisson's ratio value depends 
on the rock mass quality. Increasing the quality of the 
rock mass, the Poisson's ratio is decreasing, according 
to [24, 25]. The Poisson's ratio also depends on the water 
content [26]. It should be also used for determining the 
different elastic moduli for rock engineering design – see 
Davarpanah et al. [27].

Using the above presented theory it is possible to cal-
culate of the Poisson's ratio for rock mass in different 
ambient stress conditions. According to the suggestion of 
Vásárhelyi [24], the Poisson's ratio of the rock mass (νrm ) 
can be calculated from the Geological Strength Index 
(GSI) [22]:

� �rm � � � �0 002 0 2. .GSI . (26)

It is assumed that Eq. (25) and Eq. (26) can be used 
together in case of increasing confining pressure around 
the rock mass.

Lógó and Vásárhelyi [4] suggested a calculation method 
of the Poisson’s ratio from the Hoek-Brown material con-
stant (mi) of the intact rock. They compared the differ-
ent theories with published results and received that the 
Poisson's ratio is decreasing in case of increasing rigidity 
(i.e., mi value [18]). The following equation was suggested 
for calculation the Poisson's ratio (νi ) of intact rock using 
the Hoek-Brown material constant (mi ):

� i � �
1

1m
i

. (27)

Using the above presented theory it is possible to calcu-
late of the Poisson's ratio for rock mass in different ambi-
ent stress conditions.

Using parametric analysis, Lógó and Vásárhelyi [5] 
plotted the Poisson's ratio in function of both Geological 
Strength Index (GSI) and confining pressure (ν3) (Fig. 6(f)).
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Fig. 10 Changing the Poisson's ratio in case of σc = 100 MPa 
and mi = 10 (using Eq. (25))
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