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Abstract

In this research work, damage propagation at the interface of a cracked sandwich beam is considered. The behavior of Sandwich 

Beams (SB) depends upon a law based on relationship between tangential or normal efforts with inelastic propagation. As the crack 

propagates; fracture parameters such as stress intensity factors and energy release rates corresponding to the applied shear stress 

in mode I and II are determined. Linear and nonlinear models are presented. It is shown that the Timoshenko beam’s theory is 

employed in the formulation of transverse shear and peel stresses at the overlap ends. These parameters are used to derive energy 

release rates. Besides, effects of the adhesive thickness and shear modulus on the shear and peel stresses in the adhesive are 

studied. Obtained results from the analytical solution for the case of a sandwich beam at the interface (adhesive part) agree well with 

numerical investigations available in the literature. It is also proven that the contribution of the adhesive bond to the energy release 

rate increases for softer adhesives, shorter cracks and thicker bonds.
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1 Introduction 
Nowadays, many industrial sectors (automotive, aeronau-
tical, naval and others) are researching and experimenting 
new materials. These materials must provide structures that 
are increasingly light and strong to achieve the broader goal 
of attaining greater speeds with less energy consumption. 
However, in actual products, there are other components and 
parts that are made of steel or Aluminum, wood alloys that 
must be joined to the composite material using in the build-
ing and civil engineering (housing cells, factory chimneys, 
formwork, shelter, swimming pool, wall panel, profiles…).

Recently the replacement of the traditional materials by 
the sandwiches is motivated by the lightening of the struc-
tures having the same mechanical properties or higher. An 
important effort was deployed this last decade to extend 
the life of the structures in sandwich materials and also 
to prevent them from failure. Composite materials con-
sidered in this study are classified as mixed beams or 
three-layer sandwich materials. These structural systems 
are governed by the same nature of differential equations, 
both in the plane and the off-plane behavior. Partially con-
nected multi-layers are typically encountered in the field 
of wood construction, where the elements are assembled 

by bolting or gluing. In the construction field, composite 
steel or concrete wood beams are commonly used, for their 
optimum overall mechanical and economic properties. 
The formalism of the theory of the behavior in the plan and 
out of plane of mixed beams is given and obtained results 
and their interpretation are proposed for mixed beams of 
a rectangular section and simply supported. These results 
are analogous to those obtained for vibrations in the plane 
for both composite beams and sandwich girders where fre-
quencies increase with the rigidity of the connection. The 
treatment of more complex loading conditions is analyzed 
from numerical procedures, such as finite element method.

Stresses in cement lap joints (adhesive) were first deter-
mined by Goland and Reissner [1]. They elaborated a new 
method on composite materials such as wood and metal 
sheets using the cement lap adhesives as a very strong 
bond. Also, they were able to assess loads and stresses at 
the edges of the joints for cylindrically bent plates using 
the method of finite deflection theory. Besides, Goland and 
Reissner took into consideration the effect of the deflection 
at the jointed members due to the plate bending and also 
the effect of the tearing stress that was neglected before.
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Using a similar procedure to Goland and Reissner, Luo 
and Tang [2] presented a new formulation with an ana-
lytical solution for adhesive bonded composite lap joints, 
taking into consideration the transverse shear deformation 
as well as the large deflection in adherents. They obtained 
the peel stress of adhesive and were able to predict the peel 
stress in the bending line. This work is based on a simple 
model of the mechanics of a composite.

In order to compare their results obtained geometrically 
using a nonlinear finite element method to those from an 
analytical solution, Tsai and Morton [3] introduced a gen-
eralized state-based theory that overcomes the limitations 
of the original theory and stated that the difference between 
short and long joints can be defined on the basis of the 
impact of the large overlap deflection on the edge moment. 
It is shown that for the short joint, K–ξ curves are intensive 
to the adhesive thickness not to the material property; how-
ever, these curves are important to both factors for the long 
joint. The modification of theoretical solutions has been 
corrected for practical applications. For a review concern-
ing the argument of validity and its major applications, the 
reader is referred to the work of Tsai and Morton [3].

The beam theory for modeling adhered bending response 
and made real model than Goland and Reissner by adding 
the effects of bend shear strains was due to Oplinger [4]. 
This work supposed incomplete because the effect of bond 
thickness deformation was ignored by Goland and Reissner. 
It was also proven that Oplinger's models gave a more rea-
sonable approximation for the long single lap joint for differ-
ent thicknesses and material properties in the adhesive layer.

In a recent research work, both numerical simulations 
and experimental tests have been performed on single lap-
shear joints made of carbon–epoxy laminated composites 
and an epoxy adhesive [5]. This work was able to verify 
the adequacy of cohesive damage models for the strength 
prediction of bonded joints. Authors proposed a mixed-
mode cohesive damage model to simulate damage onset 
and growth in the adhesive layer. Tensile tests were per-
formed for joints with different overlap lengths and 
obtained numerical simulations described with a reason-
able accuracy the mechanical behavior of the joints tested.

A Cohesive Zone Model (CZM) was adapted to model 
the propagation of cracks in bonded joints, using a bilin-
ear traction-separation law implemented in the finite ele-
ment code ABAQUS. The riveted assemblies were mod-
eled with the XFEM damage method identified in this 
ABAQUS numerical code. Both CZM and XFEM meth-
ods are combined to model hybrid assemblies. The results 

were consistent with the experimental results and made it 
possible to guarantee the validity of the applied numerical 
model [6]. On the other hand, generated robust and phys-
ically reasonable Abaqus-based FEA solutions to model 
multi-step damage processes in laminated composite mate-
rials and structures were presented by Kim et al. [7]. They 
demonstrated their efficiency on representative examples.

Recently, a free vibration of a cracked cantilever 
bar was investigated using an Approximate Analytical 
approach [8, 9]. The crack is modeled by an equivalent 
axial spring with stiffness Kx according to Castigliano's 
theorem. The effect of different crack depth ratio on the 
longitudinal frequencies and mode shapes in the cracked 
bar has been analyzed. Authors have shown that an increase 
in the crack depth ratio produces a decrease in the funda-
mental longitudinal natural frequency of a cracked bar. 
On the other hand, approximate analytical results indicate 
that the variation of a normalized longitudinal natural fre-
quency with respect to the crack depth ratio give compa-
rable results with those obtained from the numerical solu-
tion of an analytical equation of a cracked beam.

Failure occurs due to the formation of localized mac-
rocracks that occurs through the coalescence of diffuse 
microcracks surround the tip of the main crack [10]. In this 
research work, authors evaluated the energy release rates 
during the propagation of a crack in the presence of a dis-
location in the vicinity of the crack's tip. The problem was 
formulated using a composite material and they have shown 
throughout their study that by using a numerical approaches 
such as FEM along with the software ABAQUS, the stress 
field and stress intensity factor are determined for differ-
ent crack lengths. Besides, energy release rate during crack 
propagation are calculated. In a recent research work, 
Ayas et al. [11] estimated the von Mises stress distribution 
around the crack tip under mixed modes I and II during the 
propagation of a crack interacting with two nearby circular 
inclusions. Using numerical techniques, they were able to 
assess SIFs for different crack lengths in a brittle material.

The size and shape of the damage zone has been deter-
mined numerically by Hamli Benzahar and Chabaat [12]. 
They have studied the damage zone length limit during 
the crack propagation in brittle materials. Their work was 
mainly based on the determination of stress fields by vary-
ing the distance between a semi-infinite crack and a neigh-
boring dislocation. They have proven that for a given 
position between the two cracks (semi-infinite crack and 
dislocation), stress fields are obtained that lead to a limiting 
damage zone length.
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A crack propagation in composite beams where the 
bending of an elastic-composite beam with interlayer slip, 
has been theoretically investigated by Hammoudi and 
Chabaat [13]. They derived governing equations for lay-
ered beams (mechanically jointed) considering shear con-
nections (lap joints mechanically or adhesively jointed) and 
sandwich constructions (with weak shear cores). In their 
study, composite beams were subjected to end moments 
with interlayer slip in the interface. They have proven that 
a boundary layer prevails at the beam extremity for a very 
stiff connection.

On the other side, a finite element plate model with dis-
placement formulation is presented for the analysis of thin 
and thick plates in the nonlinear domain by Lyamine [14]. 
The latter is an isotropic rheological model based on 
Reissner theory [1] with the consideration of transverse 
shear. The material nonlinearity considered is of the elas-
toplastic type and the resulting systems of equations are 
solved using an iterative incremental approach. This work 
made it possible to demonstrate the good performance of 
the heterosis element compared to standard plate elements.

Based on the analysis of crack growth of End-Notch 
Flexure (ENF) specimens, it is found that interlaminar 
shear deformation may influence the evaluation of the 
Mode II fracture toughness [15]. The influence may, how-
ever, be minimized by using beams with a small thick-
ness-to-crack length ratio. On the other hand, the design 
analysis presented for sizing the ENF specimen dictates 
that a minimum thickness has to be used in order to main-
tain linear behavior. For geometries and material proper-
ties commonly in use (unidirectional lay-ups), the error 
in the toughness value, calculated from measured exper-
imental values, induced by neglecting interlaminar shear 
deformation is less than ten percent according to this 
analysis. Besides, the interlaminar fracture toughness in 
mode II and mode III of a number of advanced composites 
was studied using beam type test specimens and scanning 
electron microscopy [16]. Special emphasis was placed on 
elucidating the material aspects of the fracture process 
and on quantifying the effect of matrix on fracture energy.

The fracture energy in mode II was independent of 
crack extension while mode III exhibited a rather probabi-
listic "resistance" behavior that was attributed to the effect 
of fiber bridging.

The use of Carbon Fiber-Reinforced Polymer (CFRP) 
composites in strengthening reinforced Concrete Beams (CB) 
have been widely utilized for external flexural or shear 

reinforcement in construction. Ibrahim and Rad [17] 
developed a numerical model from testing several beams 
in bending to determine the concrete contribution to their 
shear resistance. A series of numerical simulations have 
been carried out on non-prismatic RC beams having dif-
ferent haunch angle. Comparing between numerical and 
experimental results, authors showed that changing beams 
geometry can have an impact on the shear strength. It was 
also proven that CFRP strips applied to the critical sections 
surface will enhance the shear strength of RC beams. 

In this research study, Timoshenko beam theory for 
equilibrium equations of adherents with analytical solu-
tions for force boundary conditions at both overlap ends 
is considered. These equations are derived on the basis of 
a geometrically nonlinear analysis for infinitesimal ele-
ments of adherend and adhesive material. Besides, equa-
tions formulation based on the Timoshenko beam's the-
ory [18] can be applied to isotropic and composite single 
lap joint. However, it is considered better than Euler beam's 
theory based on the formulation for only composite single 
lap joints, particularly edge moment factor and peel stress. 
The present formula of peel stress gave excellent numer-
ical results for mixed-modes I and II. Besides, energy 
release rates (ERR) have been validated for selected results 
available in the literature. Shear stress and stress inten-
sity factor (SIF) of the adhesive are also determined from 
Timoshenko beam's theory. Throughout this study, we pro-
ceed as follows: The problem is divided in two parts: First, 
shear stresses at the edge and along the adhesive part are 
computed and second, energy release rates of the compos-
ite beam are developed.

2 Model description
Consider the sandwich beam (SB) shown in Fig. 1. Under 
normal applied load F (mode I) and shear force P (mode II), 
a crack in the adhesive bond advances along the plane of 
symmetry. Since the adhesive bond is usually softer and thin-
ner than the adherend, the system of each arm of the adher-
end and the adhesive bond can be modelled as a Cantilever 
Beam (CB). The initial crack renders the beam partially free 
in one edge and fixed or rolled in the other edge. In this 
study, the following characteristics are considered: 

l: Crack length; B: Specimen width; h: Adherend height; 
2t: Adhesive thickness; E1, ν1: Young's modulus and 

Poisson's coefficient of the adherend, respectively.
E2, ν2: Young's modulus and Poisson's coefficient of the 

adhesive, respectively. F: Tearing force; P: Shearing force.
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3 Hypothesis
For the present study, some hypotheses should be taken in 
consideration:

• Adherent and adhesive are considered as nonlinearly 
elastic.

• E1 > E2; 
• Mixed mode (I + II).
• Plane stress.
• Isotropic adherent.
• The displacement of the composite beam determi-

nate by the flexion of the beam.

4 Basic equations
Basic equations for the overlap and outer adherend are 
written according to the Fig. 1. This latest gives the basic 
parameters of a beam in its lower and upper part which 
corresponds to the adherend. On the other side, the adhe-
sive considered in the middle has an edge crack.

4.1 Loads at the edge of the beam
The edge part of the beam is submitted to two forces: 
a shearing force P and a tearing force F as shown in Fig. 2. 
Since the beam is symmetrical, the equilibrium equations 
of the beam are given as follows;

R FA � � 0 , (1)

N PA � � 0 , (2)

M F B P t h
A � � ��

�
�

�
�
� �. .
2

0 . (3)

4.2 Deflection beam
The deflection is schematically represented in Fig. 3. The 
bending moment in section 1-1 at the edge is w0;

M x R x N w M L xg
A A A0 0 0� � � � � � � � � � � �, , (4)

M x M R L x N w O x ld
A A A0 1� � � � � �� � � � � � � �, , (5)

M x M R x N w x BA A A1 2 0� � � � � � � � � � �, . (6)

The relation of bending moment based on Timoshenko's 
beam theory is as follows;

M D d w
dx

g
0 0

2

0

0

2
� � . , (7)

M D d w
dx

d
0 1

2

1

1

2
� � . , (8)

M D d w
dx1 2

2

2

2

2
� � . , (9)

where, D0, D1 and D2 are the bending stiffness of the outer 
adherend and overlap.

Substituting Eq. (7) through Eq. (9) into simultaneous 
Eq. (4) to Eq. (6), we get;

w A x A cosh x M
F

R
F
xg A A

0 1 0 0 2 0 0 0� � � �sinh � � �, (10)

w B x B cosh x M
F

d A
0 1 1 1 2 1 1� � �sinh � � , (11)

w C x C cosh x M
F

R
F
xA A

1 1 2 2 2 2 2 2� � � �sinh � � . (12)

Here; A1, A2, B1, B2, C1, C2, are unknown integration con-
stants to be determined using boundary conditions, and con-
stants β0, β1, β2 are computed by the following equations;

� � �0

0

1

1

2

2

� � �
F
D

F
D

F
D

, , . (13)

Fig. 1 Proposed model

Fig. 2 Decomposition of the beam under loading, reaction forces in 
section 1-1

Fig. 3 Deflection in the beam
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It is noted that in Eq. (10) to Eq. (12), there are six inte-
gration constants and two reactions to be determined. 
Then, one needs to have 8 independent equations, two 
equilibrium equations such as those given in Eq. (1) and 
Eq. (2), and two more equations from the deformation con-
tinuity in section 1-1 as follow;

U l U L w l w Ld g d g
0 0 0 0� � � �� � � � � �� �, , (14)

dw l
dx

dw L
dx

d g
0

0

0

0

� �
�

�� � , (15)

2 2 22 1 2 1 2 1U U U w w w U U US S S� � � � � �, , . (16)

5 Overlap and adhesive stresses
The upper and lower adherends are identical and symmet-
rical. To obtain the solution of shear and peel stress, the 
following boundary conditions (BC) are considered:

2 2 2

2 2 1

2 1 2 1

2 1

N N N Q Q Q M
M M wa w w

S S S� � � �
� � � �

, ,

, ,
 (17)

2 2 22 1 2 1 2 1N N N Q Q Q M M Ma a a� � � � � �, , . (18)

5.1 Linear analysis of adhesive joints
Equilibrium equations of adherends 1 in the overlap can 
be obtained from Fig. 4 as follows;

dN
dx

dQ
dx

dM
dx

h Q1 1 1

10 0
2

0� � � � � � �� � �, , . , (19)

dN
dx

dQ
dx

dM
dx

h Q2 2 2

20 0
2

0� � � � � � �� � �, , . , (20)

where σ and τ are the peel and shear stress, respectively. 
Substitution of Eq. (16) through Eq. (18) into Eq. (19) 

and Eq. (20) leads us to the following expressions similar 
to those given in [1];

� � �� � � ��
�
�

�
�
�

�

�
�

�

�
�

G
t
U U h dw

dx
dw
dx

a

2 2
2 1

1 2 , (21)

� �
�� �E w w
t

a 2 1

2
, (22)

where Ea and Ga are Young's modulus and shear's modulus 
of the adhesive, respectively.

Using separately Eqs. (19) and (20), Equilibrium equa-
tions can take the following form;

dN
dx

dQ
dx

dM
dx

s s s= = =0 0 0, , , (23)

dN
dx

dQ
dx

dM
dx

h Qa a a
a� � � � � �� �0 0

2
0, , , (24)

� � � � � �
�
�

�
�
�

�

�
�

�

�
�

G
t

U h dw
dx

a
a

a

2
. (25)

Constitutive relations of Euler beam are given as;

N A du
dx

M D d w
dx

� � �1 0

2

2
, , (26)

where A1 is an extensional stiffness of the adherends.
If we substitute Eq. (26) into Eq. (25) then, differen-

tial equations for shear and peel stress can be written as 
follows;

d
d x

G
At

h A
D

d
dx

a
3

3

1

2

1

0

1
4

� �
� �

�

�
�

�

�
� , (27)

d
d x

E
D t

a
4

4

0

2
0

� �� � . (28)

Solutions for the above equations are given as;

� � �� � �A x A x Aa a1 2 3sinh cosh , (29)

� � � � �
� � �

� � � �

� � �

� � �

�

B x B x
B x x B x

1 2

3 4

sinh sin sinh sin

cosh cos cosh coos ,�� x
 (30)

in which integration constants can be determined by the 
boundary conditions of the overlap (Appendix A) as follows;

�
�

�a
k

k
A h
D

�
�� �

�
1

4 4

1
2

0

, , (31)

� � � � �� � �a a
a aG
A t

E
D t

2 2

1 0

4
2

2
� � �, , , (32)

- For isotropic adherents αa = 1 and αk = 3.
Let us substitute Eq. (25) and Eq. (26) into Eq. (23), 

then, differential equations for adherend displacements 
take the following form;Fig. 4 Stress linear analysis of adhesive joints



686|Hammoudi et al.
Period. Polytech. Civ. Eng., 66(3), pp. 681–693, 2022

� � �
�

�
��

�

�
�� �

d w
dx

h G
D t

du
dx

h d w
dw

a a a
4

4
0

2

22 2
0,, (33)

d u
dx

G
A t

u h dw
dw

a a
a

a
2

4
1

22
0� ��

�
�

�

�
� � , (34)

du
dx

D
dw
dx

E w
t

s s a s
2

2 0

4

4
0 0� � �, . (35)

5.2 Nonlinear analysis of adhesive joints 
Equilibrium equations of adherend 1 in the overlap can be 
obtained from Fig. 5;

dN
dx

dQ
dx

dw
dx

dM
dx

h Q

N
dw
dx

N
dw
dx

a a s a
a

s
a

a
s

� � � � �

� �

0 0
2

, ,� �
 (36)

The nonlinear constitutive relations of Euler beam are;

d M
dx

dQ
dx

N
d w
dx

N
d w
d x

s s
s

s
a

a
2

2

2 2

2� � � , (37)

d M
dx

h d
dx

dQ
dx

N
d w
dx

N
d w
d x

a a
s

a
a

s
2

2

2

2

2

22
� � � � �

� , (38)

with;

N A
du
dx

N A
du
dxa

a
s

s= =1 1, . (39)

If we substitute Eq. (39) into Eq. (38), then; equations 
of adherend's displacements in the overlap become;

d u
dx

s²

²
= 0 , (40)

� � �D
d w
dx

E
t
ws a
s0

4

4
0 , (41)

� � � �
�

�
��

�

�
�� �D

d w
dx

h G
t

du
dx

h d w
dx

E
t
wa a a a a
a0

4

4

2

22 2
, (42)

A
d u
dx

G
t
du h dw

dx
a a

a
a

1

2

2 2
0� ��

�
�

�

�
� � . (43)

Analytical solutions for Eq. (40) to Eq. (43) are given 
under the following form;

u A x As s s� �1 2 , (44)

w B x x B x x
B x x B x x

s s s s s

s s s s

� �

� �

( sinh cosh )

( sinh cosh )

1 1 2 1

3 1 4 1

� �
� � ,,

 (45)

u A x Aa a a� �1 2 , (46)

w B x B x B x
B x B x B

a a a a a a a

a a a a

� � �

� � �
1 1 2 1 3 2

4 1 5

sinh cosh sinh

cosh

� � �
� 66.

. (47)

6 Shear and peel stresses
For prescribed force boundary conditions with free fixed 
ends, symmetrical shear stresses and peel stresses are 
found as;

�
�

�
��

�
�� �� � � �� �3

12
3

121 1h
Fh M x

h
Fh Mcosh , (48)

� � � � �� �� �E
t
B s B sa

x x
2

1 1 2 2cosh cosh . (49)

From the above Eqs, we deduce the following stresses;

�
�
�

�
�

max
k

k L� �1 coth , (50)

�
�

�

�
�

�
�

�
�

max h
Fh M L

h
Fh M L

� �� �

� �� �

3
12

3
12

1 1

1 2

cosh

cosh .

 (51)

7 Energy release rates
Once the maximum adhesive stresses are obtained, energy 
release rate GI and GII are determined according to the fol-
lowing expressions;

G t
EI
a

max� � �� 2 , (52)

G t
GII
a

max� � �� 2 , (53)

G t
E

LI
a

k
k� �

�

�
�

�

�
�1

2
�
�

�
�
coth , (54)

Fig. 5 Stress non-linear analysis of adhesive joints
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G t
G

h
Fh M L

h
Fh M L

II
a

�
�� �

� �� �

�

�

�
�
�
�

�

�

3
12

3
12

1 1

1 2

�
�

�
�

�
�

�
�

cosh

cosh

��
�
�
�

2

. (55)

Energy release rates for both modes can be written in a 
dimensional form as;     (56)

G
GI

E
G

h
Fh M L

h
Fh M L

II a

a
�

�� � � �� ��
�
�

�
�

3
12

3
121 1 1 2

�
�

�
��

�
�

�cosh cosh ��

�
�

�
�

�

�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

2

2

1
�
�

�
�

k
k Lcoth

.

8 Numerical results and discussions
For the case of Double Cantilever Beam with fixed-Free 
BC and symmetrical adherents, the following input data 
in the following Table 1 are considered.

The value of tensile force is estimated to 659.6 N/mm 
(after [2]).

Fig. 6 shows both moments at the crack tip of DCB with 
fixed free conditions and also for roller-roller conditions. 
One can notice that the moment at the crack's tip is very 

important in DCB when the rate L/l increases. On the other 
side; the moment is lower for the case of the roller-roller 
condition and much smaller for the DCB with fixed free BC.

Fig. 7 represents an evaluation of shear stress at the 
crack tip of DCB with fixed free condition. One can notice 
that the shear stress increases linearly with the crack's 
length. It becomes important at the extremity of DCB 
while the shear stress for the case of a roller- roller BC 
gets lower for a longer crack's length. This particular case 
has been proved in the work of [2] et more precisely for the 
case of fixed free BC.

The peel stress at the crack tip of DCB for fixed free con-
dition increases linearly at the same rate with an increase 
of crack's lengths. However; the peel shear stress with roll-
er-roller BC gets a higher value for greater crack's lengths. 
Besides, the peel stress is not important at fixed free BC 
compared to the roller-roller BC as shown in Fig. 8.

In Fig. 9, contribution of energy GI to the adhesive layer 
of the DCB is considered a crucial parameter in the stress 
evaluation at the crack tip. Energy has a high concentration 

Table 1 Geometrical dimensions and mechanical characteristics [2]

Geometrical Dimensions Mechanical Characteristics

h = 1.6 mm E1 = 70 GPA

l = 1.25*L E2 = 0.04*E1

t = 0.078*h μ1 = 0.34

L = 32*h μ2 = 0.4

Ga = 10 GPA

Fig. 6 Moment M0 at crack tip vs. L/l with fixed-free boundary 
conditions

Fig. 7 Shear stress at crack tip vs. L/l with fixed-free conditions

Fig. 8 Peel stress at crack tip vs. L/l with fixed-free conditions

Fig. 9 Energy release rate  stress vs. L/l with fixed-free conditions

Fig. 10 Energy release rate GII for shear stress vs. L/l with fixed-free 
conditions
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of stress at the tip and decreases for longer crack's lengths. 
As shown in Fig. 9, the energy contribution to the adhe-
sive layer at the roller-roller BC has a big effect for longer 
crack's lengths. It is noticed that GI increases and becomes 
very important for fixed free condition.

In Fig. 10, contribution of energy GII to the adhesive 
layer of the DCB increases with increasing cracks lengths 
at fixed free boundary condition, however the contribution 
of energy to the adhesive layer at the roller-roller bound-
ary condition increases with a slight increase in the crack's 
length. In the other hand, it gets lower than the energy for 
fixed free boundary conditions.

In Fig. 11, contribution of energy release rates GII /GI
 for 

both modes to the adhesive layer of the DCB increases in 
a proportional way with the cracks length at fixed free BC, 
however the energy's contribution to the adhesive layer 
at the roller-roller condition decreases for longer crack's 
length. It reaches a pick at half crack's length. This energy 
is lower than the one for the case of fixed free conditions.

Effect of the adhesive modulus on the ERR is illus-
trated in Fig. 12 which shows the dependency of GII /GI

 on 
the relative stiffness for various crack lengths. The con-
tribution of the adhesive bond is larger for shorter cracks 
and, of course, for softer adhesives. On the other hand, an 
increase in the energy is accompanied by an increase in 
the ratio EII /EI

 however; the energy to the adhesive layer 

at the roller-roller BC increases for longer crack lengths, 
but it is lower than the energy for the case of fixed free BC.

Plots of GI as a function of the bond thickness t normal-
ized with respect to the adherend height h is shown in Fig. 13 
for fixed free conditions. It is noticed that GI is independent 
of the bond thickness and decreases when the ratio of t/h of 
adhesive increases at the fixed free BC. It is also noticed that 
the contribution of energy to the adhesive layer at the roll-
er-roller BC increases for longer crack's lengths, but it gets 
lower than the energy for fixed free boundary conditions.

Fig. 14 represents the energy GII to the adhesive layer 
of the DCB. It is shown that the energy GII decreases dras-
tically for smaller ratio of t/h of adhesive but increases at 
fixed free boundary condition. The contribution of energy 
to the adhesive layer at the roller-roller BC gets steady for 
longer crack's lengths, but it's lower than the energy of 
fixed free BC.

Fig. 13 Energy release rates GI vs. t/h bond thickness for fixed-free 
conditions

Fig. 12 Ratio of Energy release rates GII/GI
 for both modes vs. the 

relative moduli EII/EI
 for various cracks

Fig. 11 Ratio of energy release rates GII/GI
 for both modes vs. L/l the crack 

length L normalized by the specimen width l for fixed-free conditions
Fig. 14 Energy release rates GII vs. t/h with fixed-free conditions

Fig. 15 Energy release rates GII/GI
 vs. t/h with fixed-free conditions
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In Fig. 15, we notice that contribution of energy GII /

GI
 to the adhesive layer of the DCB increases for higher 

ratio of t/h of adhesive at fixed free boundary condition, 
however; energy’s contribution to the adhesive layer at the 
roller-roller BC is higher for crack's lengths. This contri-
bution gets lower than the energy for fixed free BC.

9 Conclusions
A study of the mechanical behavior of single lap-shear 
adhesive joints with different overlap lengths was per-
formed. Joints made of laminated composites and alumi-
num adhesive were tested. Obtained results were compared 
with those obtained using numerical simulations analysis. 
These latest including mixed modes I and II were simulated 
through interface finite elements. Then, the main objective 
in this study is to verify the adequacy of cohesive damage 
models for the strength prediction of bonded joints. These 
models are attractive in modelling fracture problems since 
they do not require the definition of an initial crack. Besides, 
these models account for the thickness of the adhesive bond 

and its elastic properties. In general, a mixed mode cohe-
sive damage model is used to simulate onset and growth 
in the adhesive layer. It is proven that adhesive joints pres-
ent several characteristics and offer many advantages when 
compared to other widely used joining methods.

In this research work, energy release rates set for both 
modes I and II have been validated for selected results. It is 
found that the total ERR increases with an increase of the 
adhesive's thickness, meanwhile; a decrease occurs at the 
same ratio with the crack's adhesive layer. Then, it is proven 
that the effects of the adhesive modulus and thickness 
improve the accuracy of fracture energy assessment particu-
larly for short crack lengths. Notice that thicker is the adhe-
sive layer (order of t/h ≈ 5%), more the strength is higher.
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Appendix A
Boundary Conditions
Fixed-Free

w
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dx
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Eq. (10) becomes;
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Eq. (11) becomes;
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For isotropic adherend α1 = 1, we get;
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