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Abstract

The recorded responses at predefined sensor placements are used as input to solve an inverse structural damage detection problem. 

The error rate that noise causes from the recorded responses of the sensors is a significant issue in damage detection methods. 

Therefore, an optimal number and location of sensors is a goal to achieve the lowest error rate in structural damage detection. 

To overcome this problem, an algorithm (GVPSS) based on a Geometrical Viewpoint (GV) of optimal sensor placement and Parameter 

Subset Selection (PSS) method is proposed. The goal of the GVPSS algorithm is to minimize the effect of noise on damage detection 

problem. Therefore, the fitness function based on error in damage detection is minimized by GVPSS. In this method, the degrees of 

freedom are arranged to place sensors using a fitness function based on GV theory. Then, the optimal number and location of sensors 

are found on these arranged the degrees of freedom using the objective function. The efficiency of the proposed method is studied in 

a 52-bar dome structure under static and dynamic loadings. In the examples, damages are detected in two states: 1) using responses 

recorded at all DOFs, 2) using responses recorded at the optimal number and location of sensors obtained by GVPSS. The results 

showed that the damage detection error in state 2 is approximately equal to the error in state 1. Therefore, the GVPSS have the high 

performance to find the optimal number and location of sensors for structural damage detection.
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1 Introduction
Detection of damages is necessary for monitoring of 
structural health and preventing the structural failures. 
Ghiasi et al. [1] proposed a novel strategy using least square 
support vector machines based on a new combinational 
kernel for structural damage detection. Homaei et al. [2] 
proposed a direct damage detection method using multiple 
damage localization index based on mode shapes criterion. 
A two-stage method was presented for structural damage 
detection using an optimized artificial neural network. 
In the first stage, location of damages was detected using 
curvature-moment and curvature-moment derivative con-
cepts. In the second stage, Bat optimization algorithm was 
engaged by an artificial neural network as a surrogate of FE 
model to assess the severity of damages [3]. Ghiasi et al. [1] 
proposed a new strategy for structural damage detection 
using least square support vector machines based on a new 
combinational kernel. Kaveh and Dadras [4] enhanced and 

applied a developed optimization algorithm for damage 
detection problem. Dinh-Cong et al. [5] presented a multi-
stage optimization method for damage detection in plate-
like structures. In this method, the objective function is 
established via flexibility change of the structure, which 
is minimized using a modified differential evolution algo-
rithm. Khatir et al. [6] proposed a novel method for crack 
identification using vibration analysis based on model 
reduction. Kaveh and Zolghadr [7] formulated an approach 
for damage detection as an inverse optimization problem. 
In this approach, the amounts of damage to each element 
are considered as the optimization variables. The objec-
tive function is based on setting these variables such that 
the characteristics of the modal correspond to the experi-
mentally measured characteristics of the actual damaged 
structure. Khatir et al. [8] presented a two-stage method for 
damage detection in beam-like structures. In this method, 
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a new damage index is proposed to locate the damaged 
elements. Krishnanunni et al. [9] used vibration data and 
static displacement measurements to detect structural 
damages. In this study, an objective function is proposed 
using the sensitivity equation that was minimized by the 
cuckoo search algorithm. Ghannadi et al. [10] studied the 
efficiency of grey wolf optimization algorithm for dam-
age detection. In this study, the residual force vector based 
on expended mode shapes was considered as an objective 
function. Mishra et al. [11] proposed ant lion optimizer to 
detect structural damage. The objective function is based 
on vibration data, such as natural frequencies and mode 
shapes. Baneen and Kausar [12] presented a baseline-free 
approach to improve damage detection accuracy using the 
modal strain energy method. Alexandrino et al. [13] con-
sidered an inverse problem of damage detection as a robust 
optimization problem. In this study, the robust optimum 
value was obtained by solving a multiobjective problem. 
Blachowski [14] proposed a comprehensive approach for 
damage detection in spatial truss structures. In this method, 
first, sensitivity of assumed modal characteristics is calcu-
lated. After that, natural frequency sensitivity is used to 
determine hardly identifiable structural parameters and 
mode shape sensitivity is applied to select damage-sensi-
tive locations of sensors. Next, two sparsity constrained 
optimization algorithms are tested towards efficient identi-
fication of applied damage scenarios. 

Structural damage detection using recorded responses 
of the sensors has received a lot of attention in the recent 
years; since it is important in the accuracy of damage detec-
tion [15]. The suggested methods are based on the minimi-
zation of the difference between the measured and analyt-
ical static responses of structures. The suggested methods 
are based on the minimization of the difference between 
the measured and analytical static responses of struc-
tures. The quality of recorded responses depends on the 
number and location of sensors in structures [16]. On the 
other hand, the high cost of data acquisition systems and 
accessibility constraint in many cases lead to the distri-
bution of a limited number of sensors on a structure [17]. 
So, determination of the optimal number and location of 
sensors is significant in structural damage detection pro-
cess. Shahbaznia et al. [18] proposed a time-domain effi-
cient response sensitivity-based modal update procedure 
for the identification of railway bridge damage subject to 
unknown moving loads. Talebpour et al. [19] proposed the 
simultaneous use of mathematical and statistical meth-
ods to reduce the search space. To this aim, a two-step 

damage detection method was proposed. In the first step, 
the structural elements were initially divided into differ-
ent groups using the k-means method. Subsequently, the 
possibly damaged elements of each group were identified. 
In the second step, the items selected in the first step were 
placed in a new set and a process was applied to identify 
their respective location and severity of damage.

Many researchers have studied the optimal number and 
location of sensors problem for identification of damage 
detection during the past few years. The primary evalua-
tion criteria and main sensor placement methods was dis-
cussed by Yi and Li [20]. Dinh-Cong et al. [21] proposed 
an efficient approach for optimal sensor placement and 
damage detection in laminated composite structures. In this 
approach, first, a reduced order model for OSP is developed 
using an iterated improved reduced system (IIRS). The OSP 
is then formulated as an optimization problem and solved 
using Jaya algorithm. Next, the approach uses the mea-
sured incomplete modal data from OSP for damage detec-
tion and the damage is detected again by Jaya algorithm. 
Li et al. [22] proposed a novel method called dual-struc-
ture coding and mutation particle swarm optimization 
(DSC-MPSO) algorithm for optimal sensor placement. This 
approach first selected the main modes of contribution using 
the cumulative effective modal mass participation factor. 
Then, a novel method was used that combines dual-struc-
ture coding with the mutation operator to obtain the opti-
mal sensor location. Hou et al. [23] presented a criterion for 
optimizing the sensor quantity and location for stay cable 
damage identification. In this study, the random elimination 
algorithm and the heuristic random elimination algorithm 
were utilized to solve the sensor location optimization prob-
lem. Beygzadeh et al. [24] proposed an improved genetic 
algorithm for OSP in space structures damage detection 
based on a geometrical viewpoint. Wu et al. [25] presented 
the development and application of optimal sensor place-
ment methods, which have been integrated into a versa-
tile software tool to maximize sensor convergence capac-
ity for structural performance evaluation. Sensor placement 
methods are optimized using a parallel optimization frame-
work based on the competent genetic algorithm, generat-
ing a number of characteristics that enrich the flexibility of 
the application. The developed methods and software tool 
provide a genetic approach for multi-type sensor place-
ment. Chisari et al. [26] proposed a novel method for OSP 
based on definition of the representativeness of the data 
with respect to the global displacement field. This method 
employed an optimization procedure based on genetic 
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algorithms. Sadat Shokouhi and Vosoughifar [27] proposed 
a novel numerical method for optimal sensor placement, 
which was called transformed time-history to frequency 
domain (TTFD) algorithm. This method uses nonlinear 
time-history analysis results as an exact seismic response 
despite the common OSP algorithms utilize the eigenvalue 
responses. A review of optimization of sensor placement for 
structural health monitoring was presented by Ostachowicz 
et al. [28]. Gomes and Pereira [29] detected the damages by 
solving an inverse problem. In this study, a fuselage model 
of an E190 aircraft is considered and the firefly algorithm 
(FA) is applied to solve the inverse problem. Obtaining the 
modal response at all points in a large-scale structure is pro-
hibitive. Therefore, the Fisher Information Matrix (FIM) is 
performed for OSP.

In this study, an algorithm called GVPSS is proposed to 
find the optimal number and location of sensors for struc-
tural damage detection. In this numerical method, the 
Geometrical Viewpoint (GV) of OSP [24] is combined 
with the Parameter Subset Selection (PSS) method [30] for 
structural damage detection. The PSS method employs the 
recorded responses of sensors for structural damage detec-
tion. Due to the noise of the existing responses, the damage 
is not detected accurately. In the GVPSS method, the opti-
mal number and location of sensors is obtained based on the 
reduction of the error rate in damage detection. Therefore, 
the degrees of freedom (DOFs) are arranged to place the 
sensors using a fitness function based on GV theory. The 
optimal number and location of sensors are then attempted 
on these arranged DOFs. The objective function is estab-
lished based on error in damage detection using PSS that 
should be minimized. The responses recorded at predefined 
locations in the structure are input data for damage detec-
tion. Damages are detected in two states: 1) using responses 
recorded in all DOFs, 2) using responses recorded in 
the optimal number and location of sensors obtained by 
GVPSS. Damage detection error is minimized by using 
responses recorded in all DOFs of the structure. When the 
damage detection error in state 2 is approximately equal to 
the error in state 1, the number of sensors is optimum. 

This article is organized as follows: the geometrical 
viewpoint as a theory for optimal sensor placement is 
described in Section 2. The parameter subset selection 
method for damage detection is discussed in Section 3. 
The proposed algorithm to find the optimal number and 
location of sensors (GVPSS) is presented in Section 4. 
Numerical results are obtained and discussed in Section 5 
and conclusions are presented in Section 6.

2 Geometrical viewpoint theory for optimal sensor 
placement
Due to the damage, the responses recorded by the sensors 
change in the structures and these responses are used as 
input data in damage detection. Therefore, the damage 
detection problem is equivalent to a nonlinear system of 
equations, which can be expressed as [31]:

R R Z Zd iz� � � � �( ) ? ( )0 1 , (1)

where Z = (z1, z2, …, zne)
T is the damage vector and zi 

is the damage ratio of the ith element where zi = 0 and 
zi = 1 indicate the intact and completely damaged states, 
respectively. ne is the number of structural elements, Rd = 
(rd,1, rd,2, …, rd,m)T is the vector of m responses of the exist-
ing damaged structure and R(Z) = (r1(Z), r2(Z), …, rm(Z))T 

is the vector of m responses of a hypothetically damaged 
structure that can be evaluated from the analytical model. 
In this study, the damage is considered as a reduction in 
the modulus of elasticity of the elements. The structural 
response in the intact state is R(0) = Rh. The function 
ΔR(Z) is defined as R(Z)-Rh.

Using the first order approximation, linearization of 
Eq. (1) can be estimated as follows:
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The structural response in the damaged state is 
R(Zd) = Rd, where Zd = (zd,1, zd,2, …, zd,ne)

T, which is the 
actual damage vector. ΔZ = Z – Z0 = Z – 0 and S is the 
sensitivity matrix. Matrix S can be found using [32] in 
structures under external loadings and general excitation, 
respectively. The damage is detected by Eq. (3).

Z S Rne ne m m� �
�

��1 1� , (3)

where S + is the pseudo-inverse of S and it can be found by 
Singular Value Decomposition (SVD) [33]. According to 
Eq. (3), the vectors Z and ΔR are geometrically members 
of ne-dimensional and m-dimensional Euclidean space, 
which are called the damage space and the response change 
space, respectively. Eq. (3) is geometrically interpreted as 
the response change space maps approximately linear into 
the damage space by S + matrix, according to Fig. 1.

The recorded responses from the sensors are noisy. 
According to Eq. (4), this noise is added to the damage 
detection equation.

S Z R Z S R S� � � � �� �� �� � , (4)
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where ϑ is the random variable vector. The noise has 
a multivariate normal distribution which is indicated as, 
ϑ~N(μ,∑) where μ is the mean vector and ∑ is the covari-
ance matrix. The noise can be considered additive or mul-
tiplicative. The covariance matrix is a diagonal matrix and 
a complete matrix in additive and multiplicative noise, 
respectively. The additive and multiplicative noises are 
geometrically interpreted as the spherical and the ellipsoid 
in Euclidean space, respectively. In this study, the noise 
is a normally distributed additive standard error with 
zero mean and unit standard deviation, ϑ~N(0,I) [34]. 
According to Eq. (4), the additive noise in the response 
change space is transferred to the damage space by S+ 
matrix and it is changed to the multiplicative noise with 
covariance matrix S + I S +T, this mapping is called direct 
mapping. In inverse mapping, the additive noise in the 
damage space is changed to multiplicative noise in the 
response change space by S matrix, according to Fig. 2.

It is supposed that A is 2 × 2 real-valued matrix. 
Geometrically, SVD is a decomposition of matrix A into 
one rotation, scaling and second rotation of the form:

A U V U V� � �
�

�
�

�

�
�

T T�
�

1

2

0

0
, (5)

where the T denote transpose. Here, V T is the first rotation, 
∑ is the scaling matrix and U is the last rotation. This is 
shown in Fig. 3:

Therefore, the diameters of ellipsoid noises in the dam-
age space and the responses change space can be created 
by SVD according to Eqs. (6) and (7) (ne > m):
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According to geometrical viewpoint, if the diameters of 

the elliptical noise are large in the inverse mapping (1/γi) 
and then the diameters of the elliptical noise in the damage 
space in the direct mapping (γi) will become small and the 
damage detection will be accurate. Therefore, the ellipti-
cal noise in the response change space consisting of the 
DOFs corresponding to OSP is greater than that in other 
spaces. Then, the projection of ellipsoid noise on each side 
of this space is greater than that of other spaces. Therefore, 
the objective function for obtaining OSP is as follows:

f proji e m ne ne ne ne m
T

i i m ne ne ne ne m
T

i m m
� �� � �

�
� � �� �

S I S e e S I S
1 1 , (8)

Fig. 1 Geometrical interpretation of damage detection equation

(b)
Fig. 2 The geometrical viewpoint; (a) Direct mapping, (b) Inverse 

mapping 

(a)

Fig. 3 Illustration of the singular value decomposition of a real 2 × 2 
matrix A
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where proj is the projection of the ellipsoid in the response 
change space into each side of this space. ei is the vector 
with the m × 1 size in which only ith component of this vec-
tor is unity and the others are zero. f in the degrees of free-
dom corresponding to the proper locations for sensor plac-
ing is greater than other DOFs. The selected DOFs which 
are more suitable for sensor placement, have a higher objec-
tive function value than the other DOFs. Therefore, the 
objective function values for DOFs are sorted in a decreas-
ing order and DOF corresponding to each value is the opti-
mal placement, respectively.

3 Parameter subset selection method for damage 
detection
The subset selection method can be solved by a complete 
search of all possible subsets. This subset of the parame-
ters that minimizes a function is based on the norm of the 
residuals in Eq. (3). Among the columns of S, we search 
for the single column that best represents the vector ΔR. 
The selected parameter is the one that minimizes the resid-
ual according to Eq. (9).

q i i� ��R s � 2 , (9)

where si is ith column of S = [s1, s2, …, si, …, sne] and βi is 
the least squares estimation of the ith parameter as follows: 

�i i
T

i
T
i

�
s R
s s
� .  (10)

Then, the combination of two columns of S that con-
stitutes the best sub-basis for the representation of ΔR is 
determined. Let i1 and si1 represent the first selected param-
eter and the corresponding column of matrix S, respec-
tively. The optimum value for this parameter is:

�i i
T

i
T
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1

1 1

�
s R
s s
�
.  (11)

The columns of S and the vector ΔR are replaced with 
si → si – si1α1 and ΔR → ΔR – si1α1, respectively, where

�i i
T

i
T
i

�
s R
s s

1

1 1

� .

The procedure is repeated on this reduced problem 
to find the parameter βi, for i ≠ i1, that gives the smallest 
residual [30]. 

4 The proposed algorithm for optimal location and 
number of sensors
The quality of a damage detection process is highly depen-
dent on the quality and quantity of the recorded data, which 

further depends on the location and number of sensors in 
the structures. Therefore, it is important to find the optimum 
number of sensors in structures and the optimum location of 
these sensors. When the location and number of sensors are 
optimum in structure, damage detection will be exact. 

A new algorithm called GVPSS, which combines the 
geometrical viewpoint (GV) for OSP with the Parameter 
Subset Selection method (PSS) is proposed to find the opti-
mal locations and number of sensors in structural damage 
detection. This algorithm has two steps. In the first step, GV 
obtains the proper DOFs to place the sensors, and finally, 
in the second step, the optimal number and locations of the 
sensors are found during the damage detection process.

Finally, if damage detection using the data recorded from 
sensors is more accurate, the number of sensors is optimum. 

The error in damage detection will be minimized 
when the data recorded on all DOFs of the structure is 
used. On the other hand, it is not economic to use the data 
recorded on all DOFs of the structure. To overcome this 
problem, the GVPSS algorithm is obtained with the opti-
mal number and location of sensors in which the dam-
age detection error using this incomplete measurement is 
approximately equal to the damage detection error using 
complete measurements in the structure. Therefore, the 
objective function is suggested as:

p abs comp incomp� �( )� � , (12)

where εcomp and εincomp are damage detection errors using 
complete and incomplete data, respectively, obtained by 
Eq. (13). abs(.) represents the absolute value.

� � �� ( ( ))abs z z , (13)

where z  and z are the damage vector calculated using the 
parameter subset selection method and the hypothetically 
damage vector, respectively.

In any step of this method, one sensor is added accord-
ing to the DOFs sorted using the GV method. Then, the 
objective function according to Eq. (12) is obtained. When 
the value of the objective function is letter than α (α is the 
suggested maximum error, for example, 5%), the optimal 
number and location of the sensors are obtained.

The step-by-step summary of the GVPSS algorithm is 
in Algorithm 1.

5 Numerical results
In this section, the GVPSS algorithm is studied to obtain the 
optimal number and location of sensors for damage detec-
tion in a 52-bar dome structure under static and dynamic 
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loadings. The type of sensors is displacement meter for 
static loading and acceleration meter for dynamic loading. 
In this example, the damages are considered as a reduc-
tion in the modulus of elasticity of an individual element. 
This space truss is shown in Fig. 4. All the cross-sectional 
areas of elements are 0.005 m2. The material properties are 
taken from aluminum where the elastic modulus is 70 GPa 
and the density is 2770 kg/m3. According to Fig. 4, the 
analytical model has 21 nodes, 52 elements and 39 active 
DOFs [31].

5.1 Dome under static loading
The structure is subjected to static loading according to 
Fig. 5. The displacement in all DOFs is obtained in healthy 
and damaged structures. Then, the values of fi are cal-
culated according to Section 2. Table 1 demonstrates the 
results of DOFs corresponding to fi arranged in decreas-
ing order. In this table, for example, positions 2 and 17 
indicate that the sensors should be placed on the degrees 
of freedom of the 1th node in the X-direction and the 6th 
node in the Y-direction.

The displacements of the DOFs corresponding to sen-
sor placements are recorded for damage detection. Three 
damaged scenarios are considered as shown in Table 2 and 
Fig. 6. The results of the GVPSS algorithm are presented 
for all damaged scenarios in Fig. 7. According to this fig-
ure, for example, the value of objective function using the 
recorded responses of 23, 26 and 36 DOFs (3 sensors) is 
0.4012 in scenario 1. The results show that the optimum 
number of sensors is 14. The obtained value of objective 
function using the recorded responses from 14 sensors is 
letter than α (α = 0.05). 

Fig. 8 demonstrates the results of damage detection using 
incomplete and complete data. The results show that the 
error rate for damage detection using recorded responses 
from 14 sensors is almost equal to that for damage detec-
tion using recorded responses from all DOFs. Therefore, 
the number and locations obtained from the sensors are 
optimum. The optimal sensor locations are 3, 6, 9, 12, 15, 
19, 23, 24, 25, 31, 34, 35, 36 and 37 DOFs shown in Fig. 9.

Algorithm 1 GVPSS algorithm

Step 1:
Set i = 1, Q and G matrices with the number of DOFs × 1 size
Repeat

Compute S and f proji e m ne ne ne ne m
T

i
= × × ×( )S I S

Increase i by one unit 
Until i = the number of DOFs

Qi = The values fi arranged in a decreasing order 
Gi = The DOF corresponding to Qi

Step 2:
Set j = 1
Repeat

The sensor locations = G1 to Gj DOFs
Compute damage detection error (by parameter subset 
selection method) using complete and incomplete data (εcomp 
and εincomp)
Compute objective function p = abs(εcomp – εincomp) 
Increase j one unit

Until objective function < α (α is the suggested maximum error, 
for example, 5%)

The optimal number of sensors is j and the optimal sensor placement 
is DOFs of G1 to Gj.

(a)

(b)
Fig. 4 (a) 52-bar space truss, (b) Active DOFs



Beygzadeh et al.
Period. Polytech. Civ. Eng., 66(3), pp. 809–819, 2022|815

5.2 Dome under dynamic loading
In this Section, the dome is under the excitation that is 
applied vertically at node 2. This force is a triangular 
impulsive force with a peak value of 320.4N and continues 
for 0.005s according to Fig. 10. The acceleration at DOF 
corresponding to sensor location is measured with a dura-
tion of 0.25 s. In GV theory, the sensor placements and the 
projection of ellipsoid noise are obtained by the algorithm 

Fig. 5 Dome under static loading

Table 1 DOFs corresponding to the optimal placement for sensors

Optimal placement for sensors

24 36 23 35 12 6 3 9

15 19 37 31 25 34 22 16

28 10 4 13 7 1 21 39

33 27 8 14 11 5 2 20

38 32 26 18 30 17 29

Table 2 Damaged scenarios (Element number- Damage severity %)

Scenario 1 Scenario 2 Scenario 3

Element 15- 25%

Element 22- 25%

-

-

Element 1- 20%

Element 3- 20%

Element 15- 30%

-

Element 1- 10%

Element 3- 10%

Element 12- 10%

Element 23- 15%

Fig. 6 Damage scenario for structure (a) Scenario 1, (b) Scenario 2, (c) Scenario 3

(a)

(b)

(c)
Fig. 7 Objective function value; (a) Scenario 1, (b) Scenario 2, (c) 

Scenario 3
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every 0.005 seconds. Therefore, the sensor placements 
with the maximum fitness function value are optimum, 
respectively. The results of DOFs according to the geo-
metrical viewpoint are demonstrated in Table 3.

Damages are detected using the recorded acceleration 
at DOFs corresponding to the sensor placements. The dif-
ferent damaged scenarios are shown in Table 4 and Fig. 11. 
The results of objective function in the GVPSS algorithm 
are presented according to Fig. 12. In all three scenarios, 
the obtained objective function value using the recorded 
responses from the first 9 DOFs according to Table 3 is 

lesser than α(α = 5%). Therefore, the optimum number of 
sensors is 9 and the OSPs are 3, 4, 6, 9, 12, 15, 16, 20 and 
21 DOFs. Fig. 13 demonstrates that damage detection using 
incomplete data obtained from 9 measurement points is 
accurate. In this figure, the error rate in damage detection 
using incomplete and complete data is almost the same. 
Therefore, the incomplete data recorded from the obtained 
OSP is suitable for the damage detection. The optimal loca-
tion and number of sensors are illustrated in Fig. 14. 

6 Conclusions
In this study, an algorithm called GVPSS is presented for 
the optimization of the number and location of sensors for 
structural damage detection. In GVPSS, the Geometrical 
Viewpoint (GV) of optimal sensor placement is combined 
with the Parameter Subset Selection (PSS) method to 

(a)

(b)
Fig. 8 Damage detection; (a) Scenario 1, (b) Scenario 2, (c) Scenario 3

Fig. 9 Optimal location and number of sensors under static loading 
(,  and × represents horizontal, vertical and downward directions, 

respectively)

Table 3 DOFs corresponding to the optimal placement for sensors

Optimal placement for sensors

6 4 3 9 12 15 16 20

21 38 39 25 1 19 18 27

7 13 37 26 10 33 31 28

23 35 30 32 8 2 34 14

24 11 36 5 29 17 22

Fig. 10 Dome under dynamic loading

Table 4 Damaged scenarios (Element number- Damage severity %)

Scenario 1 Scenario 2 Scenario 3

Element 24- 30%

Element 43- 30%

-

-

Element 19- 10%

Element 32- 15%

Element 52- 15%

-

Element 8- 15%

Element 16- 10%

Element 20- 15%

Element 21- 10%
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achieve the optimum number of sensors. From GV, the opti-
mal sensor placement is a projection of the elliptical noise 
on the side of the response change space. The degrees of 
freedom are sufficiently arranged according to decreasing 
order of the objective function values to place the sensors. 
In GVPSS, the optimum number of sensors is searched 
based on arranging DOFs obtained by GV. In GVPSS, 
the objective function is error in damage detection using 
parameter subset selection, which should be minimized. 

The GVPSS is tested on a 52-bar dome structure under 
static and dynamic loadings. Damages are detected in 
two states: 1) using the recorded responses of all DOFs, 
2) using the recorded responses of DOFs corresponding to 
the optimal number and location of the sensors obtained 
by GVPSS. The results demonstrated that the number and 
location of the sensors obtained by GVPSS were optimum 
and damage detection using those locations was exact. 
Finally, the GVPSS algorithm can be utilized for the opti-
mal number and location of sensors in structures.

Fig. 11 Damage scenario for structure; (a) Scenario 1, (b) Scenario 2, (c) Scenario 3

(a)

(b)

(c)
Fig. 12 Objective function value; (a) Scenario 1, (b) Scenario 2, 

(c) Scenario 3 

(a)

(b)

(c)
Fig. 13 Damage detection; (a) Scenario 1, (b) Scenario 2, (c) Scenario 3
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Fig. 14 Optimal location and number of sensors under dynamic loading (,  and × represents horizontal, vertical and downward directions, 
respectively)
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