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Abstract

At present, machine learning methods are widely used in various industries for their high adaptability, optimization function, and self-

learning reserve function. Besides, the world-famous cities have almost built and formed subway networks that promote economic 

development. This paper presents the art states of Defect detection of Shield Tunnel lining based on Machine learning (DSTM). 

In addition, the processing method of image data from the shield tunnel is being explored to adapt to its complex environment. 

Comparison and analysis are used to show the performance of the algorithms in terms of the effects of data set establishment, 

algorithm selection, and detection devices. Based on the analysis results, Convolutional Neural Network methods show high recognition 

accuracy and better adaptability to the complexity of the environment in the shield tunnel compared to traditional machine learning 

methods. The Support Vector Machine algorithms show high recognition performance only for small data sets. To improve detection 

models and increase detection accuracy, measures such as optimizing features, fusing algorithms, creating a high-quality data set, 

increasing the sample size, and using devices with high detection accuracy can be recommended. Finally, we analyze the challenges in 

the field of coupling DSTM, meanwhile, the possible development direction of DSTM is prospected.
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1 Introduction
As of January 2021, China's urban rail had reached 7,545 
kilometers. Shield tunneling, which belongs to semi-con-
cealed structures, is mainly used in the construction of 
underground sections of urban subways. As shield tun-
neling is the core facility of the subway lines, it is espe-
cially important to ensure the stability and safety of 
shield tunneling facilities. With increased operation time, 
much shield tunnel suffers cracks, water leakage, and 
other defects, which impact performance and operational 
safety. Various factors contribute to this situation, includ-
ing changes in geological conditions, deterioration of lin-
ing material performance, construction defects, untimely 
or inadequate maintenance, etc. [1]. Currently, two main 
types of methods are used for defect detection in shield 
tunnel: manual inspection and manual coordination mea-
suring instruments [2]. The former one is greatly influ-
enced by subjective factors and requires a lot of labor. 
The latter is time-consuming and inefficient. Therefore, 
there is an urgent need to develop an objective, efficient, 

and highly accurate method to detect the surface of shield 
tunnel. Additionally, with the rapid growth of high-per-
formance computers in recent years, machine learning is 
gradually being applied to the field of civil engineering. 
There have been significant advancements in crack detec-
tion, e.g., bridge cracks [3], roadway cracks [4], cracks 
in dams [5], etc. Therefore, it could be expected that the 
use of machine learning in the detection and extraction 
of defects in tunnel lining will make the procedure more 
objective, reliable, and efficient. Moreover, machine learn-
ing will provide an accurate record of defect morphology 
and parameters, which will revolutionize the inspection of 
underground tunnels to give it new vitality.

In the late 1980s, machine learning was initially employed 
in the field of civil engineering. Adeli and Paek [6] and 
others first proposed the use of machine learning in archi-
tectural building design. In terms of defect detection in 
shield tunnel lining, Sasama [7] developed automatic visual 
detection based on robots. It was a revolutionary change 
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using artificial eyes from the traditional detection method.  
In China, Wang et al. [8–10] conducted a series of research 
on crack detection in tunnel lining and developed a com-
prehensive set of crack detection models and software 
algorithms. A simple interface for acquisition and crack 
identification effectively detecting small cracks with less 
noise was formed. Wang et al. [11] divided machine learn-
ing into traditional machine learning and deep learning 
according to the way of the feature set was established. 
Support Vector Machine, Artificial Neural Network, 
Decision Tree, K-nearest Neighbor, and Genetic Algorithm 
were all categorized as traditional machine learning, which 
required artificial construction of feature sets. Machine 
learning overcomes the subjectivity and inefficiency of 
traditional manual inspection, and enable more flexible, 
highly accurate and precise defect detection [2]. Several 
defect detection algorithms for shield tunnel lining have 
been developed, and they are frequently utilized to detect 
lining cracks, water leakage, and other minor problems. 
Furthermore, the structure and operation process of the 
algorithm model are different, which differ significantly 
in terms of detection accuracy and environmental adapt-
ability accordingly. The detection effect of the algo-
rithm model is also closely related to the quality of the 
data set, image data processing, and the choice of detec-
tion equipment. Thus, the major purpose of Defect detec-
tion of Shield Tunnel lining based on Machine learning 
(DSTM) is to select an appropriate algorithm model for 
the differing environmental features of the shield tunnel. 
Specifically, analyzing and summarizing the adaptive link 
between trained models and lining faults is critical.  

This paper gives an overview of DSTM, with the goals 
of (1) presenting the main methods for establishing dam-
age data sets in shield tunnel, (2) analyzing the application 
of different algorithms in tunnel defects, (3) comparing the 
benefits and drawbacks of DSTM, and (4) listing common 
devices used in tunnel lining defect detection. Finally, 
it discusses the problems of DSTM and offers advice on 
how to build and optimize DSTM.

2 Overview of DSTM
Shield tunnel lining involves many components, like expan-
sion joints, structural joints, pipes, cables, etc. Besides, 
many factors that affect the unfavorable detection includ-
ing irregular crack shapes, lacking of light, and uneven 
image brightness in the tunnel. They increase the challenge 
of defect detection compared to other structures such as 
roads, bridges, and dams. Fig. 1 shows the interference in 

target image recognition of shield tunnel. Machine learn-
ing can extract the image features that are unaffected or 
less affected by the above factors and can exert their advan-
tages in the defect detection of shield tunnel lining. As the 
system of DSTM is shown in Fig. 2, the machine learn-
ing algorithms' model is conducted in computer language 
and trained using labeled training data from the shield tun-
nel’s defect data set. Data set consists of a large amount 
of cracks, water leakage, and background interference fea-
ture information, such as segment joints, pipes, bolt holes, 
injection holes, etc. To achieve defect detection, the model 
continuously fits feature information using a machine 
learning algorithm. Then the trained model is used to pro-
cess image data obtained from image acquisition devices 
in shielding tunnels. Various machine learning methods 
are used for data processing and tunnel defect detection, 
such as image classification (identifying the content of an 
image), target location (determining the image's content as 
well as its location), and semantic segmentation (labeling 
each pixel in the image) of cracks, water leakage, etc. 

2.1 Algorithm overview of machine learning
The automatic detection algorithms of concrete crack 
images can be divided into two categories: digital image 
processing and machine learning. Digital image process-
ing needs to manually design a unique rule in single image 
feature detection. It leads to poor adaptability of the algo-
rithms and makes it challenging to apply in shield tun-
nel with complex background noise and changing lighting 
conditions. To tackle the generalization problem, many 
researchers have utilized machine learning methods to the 

(a) (b)

(c) (d)

Fig. 1 Images of tunnel shield: (a) Lining surface, and (b)~(d) Several 
interferences on image recognition
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detection of cracks in shield tunnel, water leakage, and 
other defects by learning multidimensional features in the 
image sample data.

Convolutional Neural Network (CNN), Artificial Neural 
Network (ANN), Support Vector Machine (SVM), Decision 
Tree (DT), K-nearest Neighbor (KNN), and Genetic Algo-
rithm (GA) are commonly used for defect detection in 
shield tunnel lining. Among them, CNN is the most widely 
used algorithm for defect detection of shield tunnel lining, 
which has the property of automatically learning features 
from data [12]. CNN provides significant advantages in 
terms of algorithm running time when compared to tra-
ditional image recognition algorithms [13]. Besides, com-
pared with ANN, SVM, DT, and KNN algorithms, CNN is 
superior to the other four algorithms in terms of image rec-
ognition accuracy and miss rate, as shown in Fig. 3 [14, 15]. 
Accuracy refers to the ability of the model to judge the 
overall sample correctly, and higher values indicate better 
performance. The miss rate reflects the model's ability to 
correctly predict negative samples, and smaller values rep-
resent better performance.

In addition, ANN, SVM, DT, KNN, and GA require 
researchers to manually design several complex features 
to extract defects. Among them, KNN and DT are rela-
tively intuitive. The former one is nonparametric strate-
gies that uses similarity measurement to identify instances 
more similar to specific data. The latter is tree structures 
in which each node studies the value of a specific feature. 
ANN and the SVM are more complex method. ANN is 
a general-function approximator made up of multi-layer 
interconnected nodes and neurons with several optimal 
solutions. SVM can efficiently perform nonlinear clas-
sification and implicitly map the input to a high-dimen-
sional feature space in which the different classes are 

linearly separable. GA applies a large number of filters 
to the previously manually processed data set and uses 
the algorithm to select the best combination of filters. 
The purpose is to achieve the best detection results [16].

Fig. 2 Defect detection system in Lining

(a)

(b)
Fig. 3 Comparison of five kinds of algorithms: (a) Comparison of 

accuracy, and (b) Comparison of miss rate
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2.2 Performance evaluation of DSTM
The advantages and disadvantages of the DSTM are mea-
sured based on the fitting effect between the test results 
of image data and the real defect results by the classifier. 
Due to the complex background disturbance information 
of the shield tunnel, many factors must be considered in 
performance evaluation. Table 1 lists various performance 
indices and their corresponding calculation formulas used 
to evaluate the performance of DSTM. These performance 
indicators are mainly used to evaluate the detection effect 
of the DSTM and can also be used to compare the differ-
ences in the detection quality of different models. It is not 
enough to evaluate a model only by a certain performance 
index, which lacks scientificity and comprehensiveness. 
Therefore, when comparing the recognition performance 
of multiple models, the joint use of multiple evaluation 
methods can more objectively describe the detection effec-
tiveness of the model.

3 Method of DSTM
First, the method of DSTM requires to establish an image 
data set and select a suitable algorithm, and then using 
the sample data to train the prediction model. By learn-
ing the characteristics of the defect marked in the sample 
data, it can realize the defect detection in a specific scene. 
Currently, there are many studies on road and bridge 
detection using machine learning algorithms, but there 
aren’t many studies on defect detection in subway tunnel. 
Besides, there are many studies on crack detection but not 
many on water leakage and concrete shedding detection. 

To fully understand the development of DSTM, the fol-
lowing section collects and analyses the machine learning 
methods used in previous literature and attempts to dis-
cuss the indicative function of monitoring defect develop-
ment for structural health and decay.

3.1 Data set establishment
Currently, data, computing power, and algorithms are 
major influence elements in the development of artificial 
intelligence, which complement and reinforce each other. 
Among them, data is the foundation, and any research 
cannot be separated from it. There are usually two solu-
tions to the source of the data set: one is to find out a pub-
licly shared data set on the Internet, and the other is to 
create a new data set personally. The method of creating 
a new data set is usually chosen in most studies due to the 
lack of a publicly shared data set. Therefore, the impact of 
a data set on defect detection performance is discussed in 
terms of creation method, sample size, and universality. 

The way for creating the data set has a significant impact 
on subsequent detection accuracy. In addition, ensuring 
clarity and contrast of crack features can improve the 
accuracy of the algorithm results. When establishing the 
data set, labeling the data set is an important step which 
is usually done manually. Besides, labeling is extremely 
time-consuming and can easily cause wasted efforts and 
labeling errors when processing a large amount of image 
data. This problem affects the accuracy of defect detection 
in shield tunnel [17, 18]. Therefore, researchers have pro-
posed transfer learning [19, 20] and active learning [21] 
to reduce the labeling time and workload. Currently, 
there aren’t many studies on DSTM, so it is difficult to 
obtain the relevant imaging data. Transfer learning can be 
used to label sparse data (target domain) by using auxil-
iary domain data (source domain) to train a model. Fig. 4 
shows an intuitive example about transfer learning. It can 
not only solve the problem of difficult to obtain labeled 
data in the tunnel but also save the cost of manual label-
ing. Transfer learning can improve the precision of the 
classification model [22], which uses a small number of 
pre-labeled samples to train the model. However, its per-
formance is not preferable compared with the whole-pro-
cess manual labeling. Additionally, active learning uses 
both labeled and unlabeled samples to establish models, 
which selects high-quality and important samples through 
a sample selection strategy. Then asks human experts to 
accurately label images. Though this process can’t still do 
without manual involvement, the labor time and workload 

Table 1 Performance evaluation of DSTM [14]

performance index Formula

Sensitivity (TPR) TPR = TP/P

Specificity (SPC) SPC = TN/N

Precision (PPV) PPV = TP/(TP + FP)

Negative predictive value (NPV) NPV = TN/(TN + FN)

False positive rate (FPR) FPR = FP/N

False discovery rate (FDR) FDR = 1-PPV

Miss Rate (FNR) FNR = FN/P

Accuracy (ACC) ACC = (TP +TN)/(P + N)

F1 score (F1) F1 = 2TP/(2TP + FP + FN)

Where: P is the defect sample, that is, the positive sample; N is the defect 
free sample, i.e., negative sample; TN is called true negative rate, which 
denotes that the actual number of negative samples equals the number of 
samples projected to be negative; FP is false positive rate, which indicates 
that the actual number of negative samples is predicted to be positive 
samples; FN is false negative rate, which indicates the number of samples 
predicted to be negative from positive samples; TP is true positive rate, 
which indicates the number of samples predicted to be positive samples. 
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have been significantly reduced compared to the tradi-
tional method of manual labeling. What's more, the intro-
duction of incorrect labels can be avoided by asking human 
experts to label the selected samples [23]. Active learning 
could be expected to achieve the performance of training 
with full-sample manual labeling eventually by iteratively 
querying unlabeled samples and asking human experts to 
label images. The general process is shown in Fig. 5. 

The sample size has the same effect on the detection per-
formance of the model in addition to the influence of the 
method used to create the data set. As for crack detection, 
the vast majority of research's sample size exceed 2,000, 
and some even reach 200,000. There are many sample 
features because of the influence of complex background 
information like light, interference, and segmental connec-
tions in the shield tunnel. To increase the size of the train-
ing sample data set and avoid the occurrence of over-fitting, 
the researchers have enhanced the diversity of data by uti-
lizing random rotation, horizontal flip, translation, reflec-
tion, random clipping, and contrast adjustment [24–27]. 
As seen in Fig. 6, single and insufficient sample of training 
data set will lead to over-fitting. Therefore, it is suggested 
that the scale of the data set used for model training should 
be large. Only when there are enough samples can a model 
with better performance be trained.

Additionally, the data set's universality also affects 
the detection performance of the algorithm. The lack of 
high-quality data sets with complete annotations [28, 29] 
is one of the major obstacles when developing new algo-
rithms. In most studies, researchers rely on their own data 
sets to test proposed methods, and the number of pub-
licly shared data sets designed specifically for evaluating 
crack defect are very restricted. When creating the data 
set, researchers pay particular attention to the features of 

their algorithms while ignoring other features unrelated 
to their experiments. Therefore, it is not objective to rely 
on self-established data set to evaluate the performance of 
different algorithm models.

3.2 Algorithm selection
3.2.1 Crack detection
Crack is one of the most common defects in tunnel struc-
tures and also the most important control projects in any 
phase of tunnel's operation and maintenance. Therefore, 
the maximum allowable width of the crack is specified for 
security. The allowable width of the segment crack in shield 
tunnel is 0.2 mm, and it is 0.3 mm for other structures [30]. 
During patrol inspection, it is often impossible to notice 
such subtle defects, and crack width cannot be measured. 
Additionally, the image information of the crack defect on 
the shield tunnel lining surface mainly has the following 
three characteristics [31]: 1) the shape of the defect area is 
complex because the crack on the lining surface is gener-
ated spontaneously under a variety of actions. They are not 
regular lines, circles, and other simple geometric shapes. 
2) the randomness of defect distribution is strong, and crack 

Fig. 4 Intuitive example about transfer learning

Fig. 5 General process of active learning algorithm

Fig. 6 Over-fitting status
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defects may occur in any area of the segment. Therefore, 
it is difficult to accurately predict the specific location of the 
crack in the spatial coordinate system. 3) the connectivity 
of the defect area is poor, and the size of the crack defect is 
usually small. There are usually several independent crack 
defects at the same time, which are not connected. The rea-
sons of above phenomena are the lack of accurate detection 
equipment and sufficient detection time. 

Before the machine learning algorithm was intro-
duced into crack detection in the lining, the automatic 
detection algorithm was based on the image processing 
method, which used the created unique rules manually 
for individual image features to realize defect detection. 
However, as the complexity of the detection environment 
increased, the method's adaptability was low, which made 
it difficult to meet the accuracy demand in actual detec-
tion. Therefore, researchers applied the machine learning 
method into crack detection for its excellent generaliza-
tion ability and robustness. It can detect the crack infor-
mation in the image by learning the multidimensional 
features in the image sample data so that the problem of 
environmental adaptability could be solved. Additionally, 
detection methods based on traditional machine learn-
ing need to design manually multiple complex features of 
crack to be extracted. Then the crack detection was com-
pleted using Artificial Neural Network, Support Vector 
Machine, or Decision Tree.

Artificial Neural Network (ANN) technology has played 
a major role in the development of crack image recogni-
tion. Besides, BP neural network has been widely used in 
crack image detection as a typical ANN algorithm. The BP 
neural network can be used to train the model for its learn-
ing ability and fault tolerance [32, 33], and separate the 
crack pixels from the background by selecting a suitable 
threshold value [34]. The accuracy of conventional BP neu-
ral networks in crack detection is generally not high due to 
the choice of initial weight and threshold. Therefore, some 
researchers [35, 36] have proposed utilizing the genetic 
algorithm and the artificial bee colony algorithm to opti-
mize the BP neural network so that the accuracy of BP neu-
ral network is greatly improved. However, the problems of 
poor global searching ability, slow convergence, and easily 
falling into a local minimum have not been overcome.

Both BP neural network and Support Vector Machine 
(SVM) have been widely concerned. Some research-
ers [37–39] have compared the accuracy of the two and 
concluded that the crack detection algorithm based on 
SVM has higher detection accuracy. The reason is that 

it has globally optimal nonlinear classification ability, 
good generalization performance, and nonlinear classi-
fication ability based on the kernel function. Therefore, 
SVM has strong advantages in solving some classifica-
tion problems, e.g., small sample size, nonlinearity, and 
high-dimensional space [40]. To overcome the environ-
mental influence of crack detection accuracy, research-
ers improved the SVM algorithm. One way was to cre-
ate a Gaussian scale-space by convolution operation to 
remove illumination interference for extracting the crack 
image feature vector [41]. The other is by detecting cracks 
in concrete surfaces based on high-dimensional feature 
compression of the image [42]. Finally, the detection accu-
racy of both is more than 90% for the crack defect. 

Although Decision Tree's detection accuracy is lower 
than the neural network when used for concrete crack 
detection, it has a feature selection capability of extract-
ing the concrete crack's features. The most commonly 
used DT algorithms are ID3 and C4.5 [43]. ID3 algorithm 
is simple in structure, and the crack detection results are 
perfect. But this method is only suitable for a small amount 
of data, and it is not robust to noise [40]. To tackle the data 
volume problem existing in the ID3 algorithm in the pro-
cess of crack detection and classification, some research-
ers [44] proposed the C4.5 algorithm. They replaced the 
core information gain of the ID3 algorithm with the infor-
mation gain ratio so that it had a good detection effect for 
large data volumes. 

In summary, various crack image features and combina-
tions are used in research when using traditional machine 
learning methods to detect the crack in the shield tunnel. 
However, the complexity of crack features leads to serious 
deviation between the extracted features and the actual 
situation. In addition, the process of feature extraction 
relies on the designers' prior knowledge and experience 
in parameter fitting making the detection accuracy diffi-
cult to meet the application requirements [12]. Therefore, 
researchers have proposed Convolutional Neural Network 
(CNN) for automatic crack detection. With the support of 
a large amount of data, CNN can complete automatically 
feature extraction without designing artificially different 
feature extractors for different targets. It greatly improves 
the automatic detection's accuracy [45]. Besides, CNN 
has obvious advantages in the interference from com-
plex background information, e.g., segment connections, 
cables, pipes, and LED lights in shielding tunnels. CNN 
consists of an input layer, an output layer, and several 
hidden layers, as shown in Fig. 7. There is no connection 
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between neurons in the same layer and neurons in differ-
ent layers are fully forward connected. In a study, CNN 
was used to compare the performance with SVM and DT 
in detecting actual cracks, and the accuracy and F1 score 
of CNN were better than 10% [17]. According to a com-
binatory deep learning heuristic post-processing scheme, 
the steps of the algorithm that detects and pinpoint the 
crack position are shown in Fig. 8. Some CNN evolu-
tion algorithms have been optimized in terms of network 
structure, algorithm fusion, and generalization ability, 
which makes the model have conspicuous advantages in 

crack defect detection. Table 2 [24, 46–52] summarizes 
the evolutionary algorithms and application examples of 
the corresponding CNN. 

The CNN-based evolutionary algorithm optimizes the 
detection model to some extent from various aspects, e.g., 
training efficiency, algorithm fusion, and detection accu-
racy, as shown in Table 2. Although the accuracy of FCN is 
lower than the existing advanced crack detection algorithms 
such as Segnet, its training time has been greatly reduced. 
FCN is an end-to-end model, which does not require post- 
processing or pre-processing for crack detection [53–55]. 

Table 2 CNN evolutionary algorithms and application examples

Research objects Model of choice Sample size Detection accuracy Researchers and time

Crack GoogLeNet Convolutional Neural Network 7560 ACC = 95.24% Xue and Li, 2018 [46]

Crack and leakage Fully Convolutional Network (FCN) 299170 ACC = 99.20% Huang et al., 2018 [47]

Crack Dense connected Convolutional Network (DenseNet) 10800 ACC = 95.83% Gao et al., 2020 [48]

Crack AlexNet Convolutional Neural Network 2073 ACC = 96.64% Kim and Cho, 2018 [49]

Crack SegNet with focal loss function (FL-SegNet) 10000 ACC = 99.52% Dong et al., 2019 [24]

Crack Deep Convolution Neural Network (DCNN) 3420 ACC = 98% Dorafshan et al., 2018 [50]

Crack and leakage Faster R-CNN target detection algorithm 4139 ACC = 80.91% Xue et al., 2020 [51]

Crack Cascade R-CNN target detection algorithm 9661 ACC = 96% Gong, 2020 [52]

Fig. 7 CNN structure with two hidden layers

Fig. 8 Methodology flowchart of the combinatory deep learning heuristic post-processing
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By fine-tuning the CNN model, Alexnet reduces the train-
ing time. It starts training on a pre-trained model rather 
than a randomly initialized model to minimize the train-
ing process and improve the training efficiency of the algo-
rithm [56]. Segnet, a new end-to-end model based on FCN, 
consists of convolutional feature extraction, convolutional 
acceptance domain expansion, multi-scale maximum pool-
ing, and jump connection of the feature fusion module. It is 
superior to other algorithms in terms of accuracy [57]. Fast 
R-CNN is based on regional proposal network (RPN) and 
uses a candidate box instead of the original selective search 
algorithm [58, 59]. It has been improved based on R-CNN 
making the speed and accuracy of target detection and rec-
ognition higher. However, the proper end-to-end detection 
is not realized because the process of faster R-CNN target 
detection includes target identification and target detection, 
and the amount of computation is still large. Therefore, the 
real-time effect cannot be realized [60, 61]. Utilizing the 
optimized Cascade R-CNN can effectively improve the 
accuracy and efficiency of identification. Cascade R-CNN 
model achieves the goal of optimizing continuously the 
prediction results by cascading multiple detection net-
works [62, 63]. In addition, researchers compared the archi-
tecture of Faster R-CNN and Cascade R-CNN, shown in 
Fig. 9. In brief, various evolutionary models based on CNN 
go through an algorithm improvement's process to improve 
the training speed, environmental adaptability, and recog-
nition potential of the model.

3.2.2 Water leakage detection
Based on the selection of construction technology and lin-
ing structure, there are a large number of circumferential 
joints, longitudinal joints, bolt holes, and injection holes 
in the shield tunnel, which are potential leakage chan-
nels in shield tunnel. Water leakage, the main defect of 
underground shield tunnel and accounting for more than 
60% [64–66], which is the most important and difficult 
detection content in DSTM. Compared with crack detec-
tion, there aren't many relatively studies on water leak-
age defect, and the algorithm model used is similar to the 
crack detection algorithm model. The difference is that the 
focus of the quantization parameters of the two is different. 
Researchers often use the length, width, and shape of cracks 
to assess the severity of the defect, while water leakage is 
more concerned with area and type (e.g., wet trace, seepage, 
drip, and seepage sludge). In this section, the research con-
tent of water leakage defect is presented from two aspects: 
the characteristics of the water leakage image of the shield 
tunnel and the algorithm to detect water leakage. 

As for the characteristics of the water leakage image, 
the shape of the water leakage defect is random and the 
differences within the category are largely due to the influ-
ence of joint, interference shielding, background noise, 
and changing illumination. To eliminate the above effects, 
some researchers [13, 67] divided the water leakage pattern 
into six categories: joint + bolt hole, joint + bolt hole + pipe-
line, joint + bolt hole + pipeline + support, joint + bolt hole 
+ shadow, joint + bolt hole + pipeline shielding + shadow, 
and the area of water leakage is not connected. As shown in 
Fig. 10. This method is suitable for water leakage detection 
of various disturbance factors and has great advantages.

In terms of selecting the detection algorithm for water 
leakage, the traditional machine learning method cannot 
adapt to the complex image characteristics of water leak-
age. Additionally, CNN is widely used and has better per-
formance in water leakage detection because of its strong 
adaptability and high accuracy in complex environments. 
Table 3 [13, 67–69] lists the relevant research results based 
on machine learning methods for water leakage detec-
tion. In crack detection, some algorithms have the same 
functions as in water leakage detection, so they are not 
repeated here.

(b)
Fig. 9 The architectures of different frameworks [62]. "I" is input 

image, "conv" is backbone convolutions, "Pool" is region-wise 
feature extraction, "H" is network head, "B" is bounding box, and 

"C" is classification; (a) Faster R-CNN, (b) Cascade R-CNN

(a)
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3.2.3 Defect evolution monitoring
As discussed in the previous sections, most researchers 
are aimed at the length, width of cracks and water leakage 
area in shield tunnel lining to evaluate the defect grade 
of lining, which have some limitations. It is worth noting 
that the rate of defect development also has some influence 
on defect evaluation. Besides, some researchers [70] have 

proposed that the structural condition and deterioration of 
the tunnel can be determined by detecting the develop-
ment process of the defect.

Jenkins et al. [71] proposed a system to detect the devel-
opment of tunnel lining. They used a series of overlapping 
cameras placed on a tram to detect the change by compar-
ing the image of the previous scan as a template with the 
best matching image of the current scan. After matching the 
images, the normalized filter was applied to detect the dif-
ference between the two images. Tinspect, a tunnel lining 
evolution monitoring system proposed by Attard et al. [72], 
which relied on the low-cost camera equipment mounted 
on the monorail for train inspection to obtain image data. 
Then comparing and analyzing image data to determine the 
difference between the front and rear images. The detec-
tion accuracy of this system was high, but a camera can 
only monitor a limited area of the tunnel. Therefore, they 
improved it by using a CNN architecture to realize defect 
detection. If you accept a slightly higher false positive rate, 
this method is superior to other existing methods [70].

At present, most inspection studies are concerned with 
cracks and water leakage, rather than defect evolution. 
Sometimes it is more useful to study the evolution of this 
deformation, which can better reflect the condition of the 
tunnel structure and its deterioration. Deformation of tun-
nel segments leads to visible change in the lining, which is 
an important prerequisite for the prevention of structural 
damage in early detection. Additionally, the threshold 
value of defect development has not been determined, so 
it can only be used as a reference. Some research has been 
carried out to reveal the objective relationship between the 
defect development and the degree of damage in the struc-
ture, which provides an idea and basis for further research.

3.3 Image acquisition equipment
Fast, efficient, and accurate defect detection in tunnels 
requires excellent algorithms, high-quality data sets and 
the appropriate equipment. The combination of them can 
improve detection procedure. It can achieve comprehensive 
intelligent detection by integrating various defect detection 
technologies into patrol inspection equipment. 

(a) (b)

(c) (d)

(e) (f)
Fig. 10 Image categories of water leakage in shield tunnel [13, 67]: 

(a) joint + bolt hole; (b) joint + bolt hole + pipeline; (c) joint + bolt hole 
+ pipeline + support; (d) joint + bolt hole + shadow; (e) joint + bolt 

hole + pipeline shielding + shadow; (f) the area of water leakage is not 
connected

Table 3 Application example of water leakage defect detection

Research objects Model of choice Sample size Detection accuracy Researchers and time

Water leakage Fully Convolutional Network (FCN) 10000 ACC = 77.74% Xiong et al., 2020 [67]

Water leakage Fully Convolutional Network (FCN) 12000 ACC = 99.10% Huang, 2017 [13]

Water leakage FCN-RCNN 552 ACC = 98.10% Gao et al., 2019 [68]

Water leakage and Concrete spalling Mask R-CNN 9680 ACC = 88.76% Xu et al., 2020 [69]
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The selection of equipment has a certain impact on the 
detection performance of the model. The selected equip-
ment must collect all-around and high-resolution image 
data in the tunnel and meet the requirements for fast image 
data acquisition to achieve optimal detection performance. 
Currently, many countries or organizations have developed 
advanced detection equipment, as shown in Table 4 [74–81]. 
The sketch map and schematic of acquisition procedure of 
images acquisition system are shown in Fig. 11. For the 
high-resolution requirements of DSTM, most of researchers 
use industrial line-scan cameras to realize the goal of image 
acquisition. It essentially satisfies the image definition 
requirements of the detection model. Additionally, it should 
be noted that there are certain speed requirements for the 
detection equipment in the crack detection of the tunnel to 
ensure normal operation for image acquisition. At present, 

the speed of commercial detection models in various coun-
tries is generally 5–20 km/h [73], which does not yet meet 
the requirement on the scene of real-time detection.

Currently, many studies on tunnel detection equipment 
are still in the development and experimental stages, and 
there are imperfections in equipment technology and pro-
cessing methods. For example, if the acquisition speed of 
the detection model based on an industrial line scan camera 
is too fast, the captured image can be easily lost or distorted. 
Besides, when capturing tunnel images from a long dis-
tance, image processing, fusion, and defect quantification 
take a long time. So, it is difficult to ensure the accuracy and 
efficiency of analysis at the same time. Therefore, to take 
full advantage of the high precision and high efficiency of 
machine learning in practical applications, further improve-
ment of research on image acquisition equipment is needed.

Table 4 Defect detection equipment of tunnel

Research objects Visual system composition resolving power Image acquisition speed Research organization and time

Cracks and water leakage Linear array industrial camera 0.3 mm per pixel 5 km/h Tongji University, 2017 [74]

Cracks, concrete spalling 
and water leakage Area array industrial camera 0.3 mm per pixel 30 km/h Nanning rail transit Group Co., 

Ltd., 2020 [75]

Segment deformation Industrial camera 0.3 mm per pixel 5 km/h Tongji University, 2015 [76]

Crack Linear array industrial camera 0.3 mm per pixel 2.5 km/h A Swiss group, 2016 [77]

Crack Point Grey industrial camera 1 mm per pixel 8 km/h Carlos III University, Madrid, 
Spain, 2018 [78]

Cracks, concrete spalling 
and water leakage Area array industrial camera 0.3 mm per pixel 30~40 km/h Central South University,

2018 [79]

Crack Linear array industrial camera 0.5 mm per pixel 100 km/h Shandong University of science 
and technology, 2021 [80]

Cracks, falling blocks 
and water leakage Linear array industrial camera 0.2 mm per pixel 6 km/h Tongji University, 2017 [81]

Where: "image acquisition speed" denotes the control system calculates the distance walked by the detection device through the encoder and triggers 
the cameras after reaching the pre-determined limit. Therefore, the image acquisition speed is equal to the speed of the cart. The image needs to 
be acquired in a stable and clear manner, so a robust lighting system and the vibration of the camera decide the running speed of the equipment.

               (a)                                              (b)
Fig. 11 Images acquisition system used in Huang et al. [74] (a) Sketch map of the equipment, and (b) Schematic of acquisition procedure
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4 Challenges in DSTM
At present, the research and application of machine learn-
ing represented by deep learning have gotten some achieve-
ments in the field of defect detection in tunnel lining. It has 
effectively improved the technical level of subway oper-
ation, which promoted the cross-domain penetration of 
railway engineering in China. However, it should also be 
recognized that the research on deep learning is still in an 
immature stage, and most of the results are obtained through 
experiments or empirical methods. Theoretical research 
should be more in-depth, and its application in practical 
engineering also faces great challenges. An overall analy-
sis of previous literature has shown that the existing models 
for defect detection generally have the following problems:

(1) Problems of quantitatively analyzing the damage 
degree caused by cracks, water leakage, and other defects 
in the tunnel structure still exist. The geometric size 
(including length, width, and depth), shape (e.g., transverse 
crack, longitudinal crack, block crack, and mesh crack), 
cause (loaded crack and unloaded crack), and location of 
the crack all affect the evaluation of the risk degree of the 
shield tunnel structure. However, most of the research still 
focus on the geometric size and shape of cracks, which 
have some limitations in assessing the degree of crack 
damage in structures.

(2) Currently, there is a large gap between the technical 
system and the corresponding guidelines for tunnel defect 
assessment in China. The existing technical standards for 
tunnel maintenance and inspection mainly refer to bridges 
and the inspection objects in the existing standards are 
mainly for mountain tunnels. It is a pity that there aren't 
many standards for urban shield tunnel. The research 
detached from the standard specifications is unrealistic, 
and its practical significance is not enough.

(3) The speed of image acquisition of the detection 
system cannot meet the requirements. In addition to the 
requirement for detection accuracy, there is also a cer-
tain speed requirement for image acquisition so as not to 
affect the safety of train operation and normal operation. 
At present, the detection model based on machine learn-
ing is unable to achieve high precision and efficiency when 
applied to practical projects, so it is rarely used in subway 
operation practice.

(4) The universality of the data set is not high. There is 
no publicly shared data set on defect detection of shield 
tunnel lining. Most researchers create data sets according 
to the characteristics they are interested in and then com-
pare the accuracy of different models in their own data sets. 
Therefore, the experimental results are difficult to convince.

5 Conclusions
This paper presented an overview of DSTM and focuses 
on machine learning techniques for crack and water leak-
age detection. It summarized the machine learning mod-
els' performance evaluation of differing shield tunnel dete-
rioration indices. The impacts of method selection, data set 
creation, and detecting equipment on the machine learn-
ing model's detection performance were also explored. 
The following conclusions can be drawn: 

(1) In small data sets, CNN is prone to over-fitting 
resulting in a decline in detection accuracy, but SVM has 
global optimal nonlinear classification ability and good 
generalization performance. Therefore, SVM can be pre-
ferred applied in the small data sets.

(2) Compared with traditional machine learning meth-
ods, CNN have obvious advantages in detection accuracy. 
CNN can automatically complete feature extraction without 
designing different feature extractors for differing targets.

(3) The size and universality of the data set have a sig-
nificant impact on the accuracy of the DSTM method. 
A small sample size will lead to poor adaptability of the 
model in the complex environment of the shield tunnel. 
The diversity of data can be enhanced by random rotation, 
horizontal turnover, translation, reflection, random clip-
ping, adjusting contrast, and other methods to improve the 
detection accuracy.

(4) To achieve the best detection performance of the 
detection model, matching equipment and instruments are 
also needed. The selected equipment is required to collect 
all-around high-definition image data in the shield tunnel 
and meet the requirements for rapid image data collection.
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