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Abstract

Rao algorithms are metaheuristic algorithms that are based on population and do not have metaphors. These algorithms are extremely 

simple and do not require the use of any parameters that are dependent on the problem. Although these algorithms have some other 

benefits to, they are vulnerable of being trapped in local optima. The present work proposes Enhanced Rao algorithms denoted by 

ERao as a means of alleviating this drawback. In the ERao algorithms, the modified version of the statistically regenerated mechanism 

is added. Additionally, the mechanism that sticks the candidate solution to the border of the search space is modified. The efficiency 

of the ERao algorithms is tested on three structural design optimization problems with probabilistic and deterministic constraints. 

The optimization results are compared to those of the Rao algorithms and some other state-of-art optimization methods. The results 

show that the proposed optimization method can be an effective tool for solving structural design problems with probabilistic and 

deterministic constraints.
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1 Introduction
Optimization methods have been very popular in the recent 
three decades. Especially engineers have employed opti-
mization approaches to solve design challenges in order 
to obtain the optimal solution [1]. Thus, new optimization 
algorithms and their improvements are developed in order 
to achieve a better outcome for optimization problems. 
Gradient-based approaches and metaheuristic methods 
are two types of optimization algorithms [2]. Gradient-
based methods can find the exact solution. However, the 
results are dependent on the starting point and can quickly 
get trapped in the local optimum [3]. Metaheuristics tech-
niques are created to address these issues. Metaheuristic 
algorithms are not dependent on the start point and can 
quickly get out of the local optimum. Also, implementa-
tion of the metaheuristic algorithms is easier than gradi-
ent-based methods. Hence, metaheuristic algorithms are 
prevalent than gradient-based methods.

A metaheuristic optimization algorithm comprises of 
two conflicting abilities: exploration and exploitation. 
Exploration is the ability to explore entirely new regions 
of the solution space, whereas exploitation is the ability to 
search around solutions with higher fitness [4]. The agents 

of a metaheuristic may trap into a local optimum with-
out exploratory behavior. On the other hand, the lack of 
exploitation behavior decreases the performance of the 
metaheuristic. In this case, the metaheuristic can never con-
verge to the optimum solution. Thus, a good balance between 
these two behaviors results in an efficient metaheuristic. 
Nevertheless, some optimization problems require extreme 
exploration behavior, and others need extreme exploitation 
behavior to find the optimum solution [5].

According to the no-free lunch theory [6], the meta-
heuristic algorithms cannot perform well in all the optimi-
zation problems. To this goal, researchers try to improve 
the different metaheuristic algorithms to be capable in 
other areas or test the performance of the algorithms in 
the different fields. For instance, Kaveh et al. [7] improved 
the Ray optimization algorithm, and Kaveh and Zakian [8] 
enhanced the Bat algorithm. Yoo and Han  [9] modi-
fied the ant colony optimization method to solve prob-
lems involving dynamic topology optimization. Kaveh 
and Vazirinia [10] upgraded the sine cosine algorithm for 
tower crane selection and layout problems. Kazemzadeh 
Azad et  al.  [11] improved a metaheuristic by using the 
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upper bound technique. Kaveh, et al. [12] tested the per-
formance of the four metaheuristic algorithms in the opti-
mum design of the portal frames. Artificial bee colony 
has been enhanced by Latif and Saka  [13] for the opti-
mal design of tied-arch bridges. Abdollahzadeh et al. [14] 
enhanced the binary slime mold algorithm for solving the 
knapsack problem. Kaveh and Zaerreza  [15] investigate 
the ability of SSOA in the layout optimization of trusses. 
Das and Dhang [16] improved the hybrid teaching-learn-
ing-based – particle swarm optimization technique to 
identify structural damage. Makiabadi and Maheri  [17] 
developed the enhanced symbiotic organisms search for 
optimum design of the truss structures.

In this study, we have concentrated on the Rao algo-
rithms. These algorithms are metaphor-less based on the 
best candidate solution, worst candidate solution, and inter-
actions between the candidate solutions  [18]. Rao algo-
rithms have been applied in various fields; several of them 
are summarized here. Premkumar et  al.  [19] estimated 
photovoltaic cell parameters using Rao algorithms. Rao 
and Pawar [20] applied the Rao algorithms for the optimum 
design of mechanical system components. Kalemci and 
Ikizler  [21] optimized the cantilever retaining wall using 
the Rao-3 algorithm. Manam et al. [22] employed the Rao 
algorithms for the economic dispatch problem. Rao and 
Pawar [23] created the self-adaptive multi-population Rao 
algorithms for benchmark problem optimization. Hassan 
et al. [24] made modifications to the second Rao algorithm 
for solving the optimal power flow problem. 

Rao algorithms are highly capable in finding the opti-
mum solution of different problems. However, they can be 
trapped in the local optimum due to not having a mecha-
nism for escaping from local and sticking the solution to 
the search space boundaries when the solution violates the 
search space. Thus, a modified statistically regenerated 
mechanism is added to the basic Rao algorithms. Also, the 
mechanism that keeps the solution in search space is mod-
ified. These modifications have enhanced the performance 
of the basic Rao algorithms to get out of the local optimum; 
thus, the modified algorithms are named ERao algorithms. 
ERao algorithms performances are tasted on three struc-
tural design problems. One of these problems has prob-
abilistic constraints, and two of them have deterministic 
constraints. The statistical results indicate that ERao algo-
rithms are robust compared to the basic Rao algorithms.

The rest of the paper is organized as follows: in Section 2, 
Rao's algorithms are provided. In Section  3, ERao algo-
rithms are presented. Three structure design examples 

containing one example with probabilistic constraints and 
two examples with deterministic constraints are given in 
Section 4. Finally, the conclusion is provided in Section 5.

2 Algorithms of Rao
Rao developed three metaphor-less optimization algorithms 
and called them Rao-1, Rao-2, and Rao-3 in 2020  [18]. 
These methods are easy to implement and need only basic 
control parameters. Algorithms of Rao consist of 5 steps, 
and only step 2 is different in the Rao algorithms. 
Step 1: Initialization
Similar to other metaheuristic algorithms, the initial can-
didate solutions of Rao algorithms are generated randomly 
in the search space using the following equation. 
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where, Xi j,0  is initial value of the jth variable of the ith can-
didate solution; X min and X max represent the search space's 
lower and upper bounds, respectively; n and m are the num-
ber of candidate solutions and design variables, respec-
tively; r is the random number generator that produces 
numbers in the range [0,1].
Step 2: Generate the new candidate solution
The step size used to generate the new solution is differ-
ent in the Rao algorithms; yet, they are very similar. To 
generate the new solution in all Rao algorithms, the worst 
and best solution of the entire solution should be deter-
mined. In the Rao-1, only the difference between the best 
and worst solution is utilized to generate the new solution, 
as given in Eq. (2).
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where, Xi jnew,  indicates the jth variable of the ith solution 
which generated; Xi jbest,  and Xi jworst,  are the best and worst 
solution of the entire solution. 

Rao-2, like Rao-1, requires the difference between the 
best and worst solutions to generate a new solution. How-
ever, the interaction between the candidate solutions is 
added to the equation of Rao-2, as shown in Eq. (3).
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where Xk, j is the candidate solution randomly selected for 
Xi, j.
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The equation used to generate the new candidate solu-
tion in the Rao-3 algorithm is similar to the equation used in 
the Rao-2 algorithm. However, the location where the abso-
lute value operator is applied differs. The equation to gener-
ate the new candidate solution in Rao-3 is given in Eq. (4).

X X r X X

r X X if X bet

i j
new

i j i j
best

i j
worst

i j k j i j

, , , ,

, , ,

� � � �� �

�
� �� � tter than X

r X X if X better than X

k j

k j i j k j i j

,

, , , ,

�
,

� �� �
�
�
�

��

	 (4)

Step 3: Checking the search space boundaries which are 
not violated
After generating the new candidate solution, the new can-
didate solutions are checked to find out if the candidates 
are in the search space or not. If any variable of the new 
solutions is not in the search space, it will stick to the clos-
est boundary of the search space.
Step 4: Replacement strategy
First, the new candidate solutions are evaluated. Then, 
their new objective values are compared to their old objec-
tive values. If the new objective value of a candidate solu-
tion is better than the old one, the old candidate solution is 
omitted. Otherwise, the new candidate solution is deleted.
Step 5: Checking termination condition
The termination condition of the algorithms of Rao is the 
maximum number of iterations (MaxIt), and the optimi-
zation process stops when the iteration is reached MaxIt. 
Otherwise, the algorithm goes to step 2 for the next opti-
mization iteration.

As further clarity, the flowchart of the Rao-1 algorithm 
is presented in Fig. 1.

3 Enhanced Rao algorithms
Although the algorithms of Rao do not require user-de-
fined parameters and are easy to implement, however, they 
can be trapped in local optimums. This difficulty arises 
from the absence of a mechanism to escape from the local 
optimum and stick the solution to the nearest search space 
border if the search space boundary is violated. Hence, 
these two difficulties result in algorithms being trapped 
in local optimums. Here, an enhanced version of the Rao 
algorithms named Enhanced Rao algorithms (ERao) is 
introduced. A modified version of the statistically regen-
erated mechanism is used in the ERao as the method for 
escaping from the local optimum. Additionally, the tech-
nique that keeps the solutions in the search space to have 
acceptable results is improved to overcome the trapping in 
the local optimum of the algorithms of Rao.

3.1 Modified statistically regenerated mechanism
Statistically regenerated mechanism (SRM) is a powerful 
mechanism for escaping from local optimum introduced 
by Kaveh et al. [25]. In SRM, 80 percent of the candidate 
solutions are selected randomly, then 20 percent of their 
variables are regenerated using the statistic information of 
the solutions. The average and standard deviation of each 
variable of candidate solutions are used as the statistic 
information in this mechanism. The general formulation 
of the SRM is as follows:

Fig. 1 Flowchart of the Rao-1 algorithm
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where UNFIRAND is the operator that generates a random 
integer from a continuous uniform distribution whose lower 
and upper bounds are defined by Means  –  stds  –  sigmas 
and Means + stds + sigmas, respectively; Means and stds are 
the mean and standard deviation of the sth design variables 
of candidate solutions. sigman is a parameter that aids the 
functioning of the SRM and is defined as follows:
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The SRM performs well in the escape from the local 
optimum, however, when the variables of candidate solu-
tions are close to each other in the early iterations of algo-
rithm, the standard deviation of the solution becomes 
a small value. Thus, the SRM performing the local search, 
and the algorithm can be trapped in the local optimum. 
To this end, to increase the performance of the SRM, the 
modified statistically regenerated mechanism (MSRM) is 
introduced in this study. In MSRM, only the value of the 
sigmas is modified to increase the performance of the SRM. 
Sigma is regarded five times larger in MSRM than in SRM 
and linearly reduces to zero, as demonstrated in Eq. (7).
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(7)
where, it is the current iteration number; MaxIt is the max-
imum iteration number.

By this modification, at the start of the optimization pro-
cess, solutions are regenerated at least in the ten percent of 
the search space. Thus, this modification helps the mecha-
nism to perform better exploitation than the previous ver-
sion in the early iterations. The linear decrease of the sigma 
causes the algorithm to perform the local search when the 
number of iterations gets close to the maximum number of 
iterations to find the better solution, so unlike the SRM, 
the local search never performs in the early iterations of 
the algorithm. The method MSRM is employed the same 
as SRM, so 80 percent of the candidate solutions in the 
ERao algorithms are picked randomly, and 20 percent of 
their variables are regenerated using the MSRM.

3.2 Improved mechanism for keeping solution in 
search space
In the Rao algorithms, if any variable of the solutions vio-
lates the search space, it is attached to the nearest border of 
the search space. This mechanism is the simplest method 
of ensuring for the solution to remain in the search space. 
However, if there is a local optimum in the border of the 
search space, the solution is trapped in this local optimum 
and cannot easily get out of it. On the other hand, it is pos-
sible that the optimal solution to be found on the border of 
the search space. In this case, this simple mechanism helps 
the optimization method to find the optimum solution faster. 
As a result, this method has both benefits and downsides, 
and in order to eliminate disadvantages, it must be modified.

Another mechanism is added to the primary mechanism 
in order to enhance it. The mechanism added is the regen-
eration mechanism that regenerates the solution randomly 
in search space. This regeneration technique enables the 
optimization algorithms to avoid being trapped at the 
boundary of search space. Thus, this mechanism omits the 
disadvantage of being trapped in the border of the search 
space. The search space of the optimization problem is 
unknown, and the best solution can be in the border of the 
search space, so there is no method to say which of these 
mechanisms is has more probability of happening. To this 
end, the probability of occurring of each of these mecha-
nisms is considered as 50 percent. For further clarify the 
improved mechanism is defined in Eq. (8).
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For further clarify, the flowchart of the ERao-1 algo-
rithm is presented in Fig. 2.

4 Design examples
In this study, four structural design examples are consid-
ered to investigate the ability of the ERao algorithms. These 
examples include two examples with probabilistic constraint 
and two examples with deterministic constraint. Sequential 
optimization and reliability assessment-double metaheuris-
tic (SORA-DM) framework of Kaveh and Zaerreza [26] 
is utilized to handle the probabilistic constraint for reli-
ability-based design optimization (RBDO). In this frame-
work, the reliability assessment and optimization process 
are performed using the metaheuristic algorithms. Thus, 
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Rao's algorithms in problem with probabilistic constraints 
are named SORA-DRao-1, SORA-DRao-2, and SORA-
DRao-3, and ERao algorithms in these problems are named 
SORA-DERao-1, SORA-DERao-2, and SORA-DERao-3. 
The difference between Rao-2 and Rao-3 algorithms is 
only where the absolute value operator is applied. On the 
other hand, there is no negative value for design variables 
in structural optimization. Hence, both Rao-2 and Rao-3 
have the same performance in these examples, and thus 
only ability of the Rao-2 algorithm is investigated.

The first example includes a 120-bar dome truss design 
problems with probabilistic constraints. The maximum 
number of iterations of the 120-bar dome truss design 

problem is set to 400, respectively, the same as the previ-
ous study [26]. In the 3-Bay 24-Story Frame and 1016-bar 
double-layer grid optimization problems, the maximum 
number of iterations is set to 1000. The number of candi-
date solutions is the same for all design examples and it 
is set to 20.

4.1 A 120-bar dome truss design problem
For the first time, Kaveh and Zaerreza [26] introduced 
probabilistic constraints based on displacement for the 
120-bar dome truss design problem. These probabilis-
tic constraints were imposed on the z-direction displace-
ments of nodes 1, 2, 14, and 15. As illustrated in Fig. 3, the 

Fig. 2 Flowchart of the ERao-1 algorithm
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truss elements are classified into seven classes. As with 
the previous example, the cross-sectional area of the ele-
ments (A) were considered as a random design variables 
with a normal distribution, and their mean value (μA) were 
considered as a design variable with a coefficient of vari-
ation of 0.05. Only the elasticity modulus (E) was consid-
ered as a random design parameter in this example. It has 
a normal distribution, an average value of 30450 ksi, and 
a coefficient of variation of 0.05. The applied load was 
considered as deterministic values, as given in Table  1. 
The material density was assumed to be the determinis-
tic value of equal to 0.288 lb/in3. The following formulas 
express the problem mathematically.

find
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(9)

The results of the SORA-DRao-1, SORA-DRao-2, 
SORA-DERao-1, and SORA-DERao-2 are provided in 
Table 2. SORA-DERao-1 outperforms other methods, and 
SORA-DERao-2 outperforms standard Rao algorithms, 
SORA-DESSOA, and SORA-DTLBO. The NFE required 
in the optimization parts for standard Rao and ERao 

Table 1 Loading condition of the 120-bar dome truss

Nodes Fx  Fy Fz 

1 0 0 -13.49 kip

2–13 0 0 -6.744 kip

14–37 0 0 -2.248 kip

Fig. 3 Schematic of the 120-bar dome truss structure 
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algorithms is the same and less than SORA-DESSOA and 
SORA-DTLBO. ERao algorithms need more NFE than 
Rao algorithms in the reliability assessment part. The total 
function evaluation of the SORA-DRao-1, SORA-DRao-2, 
and SORA-DERao-2 are less than SORA-DESSOA and 
SORA-DTLBO. Although the SORA-DRao-2 required 
less NFE than other methods, SORA-DRao-2 fails to do 
reality assessment correctly in 37 percent of the 30 inde-
pendent runs and is trapped in the local optimum, as shown 

in Fig. 4. However, SORA-DERao-2 do reliability assess-
ment correct for all 30 independent runs, as shown in Fig. 5. 
This indicated that the modification improved Rao's algo-
rithms perfectly, and ERao algorithms can easily escape 
from the local optimum. Like the previous example, the 
results are verified using the MCS. The reliability indexes 
found by MCS are more than 3 for all constraint functions. 
Rao and ERao algorithms need three optimization cycles 
to obtain the optimum result, as shown in Fig. 6.

Table 2 Comparative results of the ERao and Rao algorithms with other methods in the 120-bar dome truss

Design variable SORA-DTLBO 
[26]

SORA-DESSOA 
[26]

Present study

SORA-DRao-1 SORA-DRao-2 SORA-DERao-1 SORA-DERao-2

A1 2.2692 2.2942 2.2786 2.2539 2.2802 2.2731

A2 16.9854 17.1781 17.0643 16.8723 17.0620 17.0172

A3 6.6318 6.4836 6.6082 6.5750 6.5797 6.5981

A4 2.9090 2.9592 2.9042 2.9500 2.9178 2.9525

A5 11.5758 11.4084 11.4040 11.5554 11.4758 11.4481

A6 4.0656 4.0365 4.1812 4.0848 4.0694 4.1296

A7 2.2492 2.3002 2.2892 2.2745 2.2827 2.2500

Best weight (lb) 37278.11 37276.82 37278.17 37265.72 37263.88 37265.11

NFE in the optimization part 49020 49020 26540 26540 26540 26540

NFE in reliability analysis part 114720 72780 84860 54220 105860 64340

Total NFE 163920 121800 111460 80820 132400 90880

β1
MCS 3.01 3.01 3.0069 3.0084 3.0073 3.0107

β2
MCS 3.01 3.01 3.0071 3.0012 3.0030 3.0035

β3
MCS Infinite Infinite Infinite Infinite Infinite Infinite

β4
MCS Infinite Infinite Infinite Infinite Infinite Infinite

Mean weight (lb) 37285.75 37282.28 37290.06 N/A 37277.59 37276.12

Standard deviation (lb) 9.3667 2.8442 8.8307 N/A 6.9959 11.8642

Fig. 4 The structural weight of each independent run of the Rao algorithms for the 120-bar dome truss design problem 
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4.2 A 3-bay 24-story frame design problem
The second example is the 3-bay 24-story frame design 
problem. This example is one of the well-known examples 
of structural optimization. This structure contains 96 col-
umns and 72 beams, as depicted in Fig. 7. The beam ele-
ments are divided into 4 groups, and they are selected from 
W 14 sections. The columns are divided into 16 groups, and 
they are selected from the 267 W-shape section. The elas-
ticity modulus (E) and yield stress (Fy) are equal to 29732 
ksi and 33.4 ksi, respectively. The effective length factors 
of the member's sway-permitted frame (kx) are calculated, 
and the out-of-plane effective length factor (ky) is set to 1. 

All columns and beams are considered as non-braced along 
their lengths. According to the AISC-LRFD, this exam-
ple contains three constraints: maximum lateral displace-
ments, inter-story displacements, and strength constraints. 
The formulation of constraints is as follows.
(a) The maximum lateral displacement

�T
H

R� � 0 ,	 (10)

where ∆T is the maximum lateral displacement, H is the 
height of the frame structure, and R is the maximum drift 
index which is equal to 1/300.

Fig. 5 The structural weight for each independent run of the ERao algorithms for the 120-bar dome truss design problem

Fig. 6 Convergence histories of the best run of the Rao and ERao algorithms for the 120-bar dome truss design problem
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(b) The inter-story displacements

d
h

Ri

i
i� � 0 ,	 (11)

where di, hi, and Ri are inter-story drift, the story height, 
and allowable inter-story drift index of the ith story.
(c) The strength constraints
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where Pu is the required tension or compression strength; 
ϕc is the resistance factor, and it is equal to 0.9 for tension 
and 0.85 for compression; Mux and Muy are respectively the 
required flexural strength in the x and y directions, while 
Mnx and Mny are the nominal flexural strength in the x and 
y directions, respectively, and Mny is equal to zero due to 
a two-dimensional structure. ϕb is the flexural resistance 
reduction factor, and its value is set to 0.9. 

From Table 3, it can see that the ERao-2 found the 
smallest weight among the other methods [27–29]. The 
weights found by ERao-1 and ERao-2 are better than those 
found by Rao-1 and Rao-2, respectively. Although there 
is no significant difference between the required number 
of function evaluations of the Rao and ERao algorithms, 
the average and standard deviation of the results found by 
the ERao algorithms are significantly better than Rao algo-
rithms. Also, the worst weight found by ERao algorithms 
is significantly smaller than Rao algorithms, as shown in 
Figs. 8 and 9. This difference in the statistic results indicate 
that the Rao algorithms are trapped in the local optimum. 
However, the ERao algorithms can easily escape from the 
local optimum and find better results. The convergence 
histories of the Rao and ERao algorithms for finding the 
best solution is given in Fig. 10.

4.3 A 1016-bar double-layer grid
The last example of this study investigates a 1016-bar dou-
ble-layer grid with the configuration of the square on the 
diagonal grid. This structure has 320 nodes and 12 sup-
ports, as shown in Fig. 11. The connections of the mem-
bers are assumed to be ball-jointed, thus the members only 
sustain axial forces. The top layer joints are subjected to 
the gravity forces of 30 kN. The material density, modulus 
of elasticity (E), and yield stress (Fy) are 7833.413 kg/m3, 
205 GPa, and 248.2 MPa, respectively. The cross-sectional Fig. 7 The schematic of the 3-bay 24-story steel frame
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Table 3 Comparative results of the ERao and Rao algorithms with other methods in the 3-bay 24-story frame structure

Element group

Optimal cross-sectional areas (W shapes)

ES-DE [27] Acceleratd 
WEO [28] IBH [29]

Present study

Rao-1 Rao-2 ERao-1 ERao-2

1 W14×145 W14×159 W14 × 132 W14×159 W14×159 W14×159 W14×159

2 W14×99 W14×132 W14 × 99 W14×109 W14×132 W14×109 W14×132

3 W14×109 W14×99 W14 × 109 W14×99 W14×109 W14×99 W14×109

4 W14×132 W14×109 W14 × 109 W14×74 W14×90 W14×82 W14×74

5 W14×99 W14×68 W14 × 109 W14×68 W14×68 W14×68 W14×68

6 W14×109 W14×38 W14 × 99 W14×61 W14×48 W14×53 W14×38

7 W14×145 W14×30 W14 × 90 W14×34 W14×30 W14×38 W14×34

8 W14×68 W14×22 W14 × 90 W14×22 W14×22 W14×22 W14×22

9 W14×109 W14×90 W14 × 68 W14×90 W14×90 W14×90 W14×90

10 W14×68 W14×99 W14 × 74 W14×109 W14×99 W14×109 W14×99

11 W14×48 W14×99 W14 × 53 W14×99 W14×90 W14×99 W14×90

12 W14×68 W14×74 W14 × 53 W14×99 W14×82 W14×90 W14×90

13 W14×38 W14×68 W14 × 30 W14×74 W14×68 W14×74 W14×68

14 W14×61 W14×61 W14 × 38 W14×48 W14×53 W14×53 W14×61

15 W14×30 W14×34 W14 × 22 W14×34 W14×34 W14×30 W14×34

16 W14×22 W14×22 W14 × 22 W14×22 W14×22 W14×22 W14×22

17 W30×90 W30×90 W30 × 90 W30×90 W30×90 W30×90 W30×90

18 W21×55 W8×18 W6 × 16 W8×18 W8×18 W8×18 W8×18

19 W21×48 W24×55 W24 × 55 W24×55 W24×55 W24×55 W24×55

20 W10×45 W6×8.5 W6 × 9 W6×8.5 W6×8.5 W6×12 W6×8.5

Best weight (lb) 212479.17 202194.02 208719 201978.03 201618.03 201588.04 201186.03

NFE 12500 11300 10000 19480 14940 19740 13120

Mean weight (lb) 203412.88 211471 210272.24 206672.81 204450.89 203594.58

Standard deviation (lb) N/A 2934 8395.97 6654.71 1669.76 1978.29

Fig. 8 The structural weight of each independent run of Rao algorithms for the 3-bay 24-story frame structure 
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area of the members is selected from the list of steel pipe 
sections from AISC-LRFD, which is available in [30]. 
This structure has three constraints: the vertical displace-
ment of all nodes, the slender ratio of the members, and the 
stresses for the members.

Displacement of all the nodes are limited to 20/6 cm. 
Slenderness of the tension members are limited to 300, 
and slenderness of the compression members are lim-
ited to 200. The tension and compression stresses of the 

members are limited according to AISC-LRFD. The ten-
sion constraints of the members are defined using Eq. (14).

p p p
F A

F Au r r
t y g t

t u e t

� �
� � �

� � �

�
�
�

��
;

; .

; .
min

0 9

0 75
,	 (13)

where, pu and pr are the required strength and nominal 
axial strengths; Ag and Ae are the gross cross-sectional area 
and the effective net cross-sectional area of the members; 
Fy and Fu are the yield and ultimate tensile stresses.

Fig. 9 The structural weight for each independent run of the ERao algorithms for the 3-bay 24-story frame structure 

Fig. 10 Convergence histories of the best run of the Rao and ERao algorithms for the 3-bay 24-story frame structure
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The compression constraint of the member is defined 
using Eq. (15).

p p p F Au r r c cr g c� �� � �; ; .0 9 ,	 (14)
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where, Fe and Fcr are the elastic bulking stress and critical 
stress of the members, respectively; L is the length of the 
member; r is the corresponding radius of gyration; K is the 
effective length factor, which is taken as 1.

Table 4 compares the results obtained by the Rao and 
ERao algorithms to some other optimization methods. The 
result obtained by ERAO-2 is better than those of the other 
optimization methods [30-31]. Although the ERao algo-
rithms are required more NFE than other stat-art optimi-
zation methods, ERao algorithms have significantly better 
statistic results than other methods. Also, the averages of 
the 30 independent runs of the ERao algorithms are bet-
ter than the best run of the other methods. On the other 

Fig. 11 Schematic of the 1016-bar double layer grid; (a) 3D view, (b) Top layer members, (c) Bottom layer members, and (d) Web members 

(a) (b)

(c) (d)
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Table 4 Comparative results of the ERao and Rao algorithms with other in the 1016-bar double layer grid structure

Element group
ECBO [30] MDVC-

UVPS [30] SSOA [31] ESSOA [25]
Present study

Rao-1 Rao-2 ERao-1 ERao-2

1 EST 5 DEST 4 EST 5 ST 6 EST 6 EST 5 ST 6 ST 6

2 EST 5 DEST 3 ST 5 ST 5 ST 5 DEST 3 EST 4 EST 4

3 ST 3 ST 3½ ST 4 EST 3 ST 3½ EST 3 ST 3½ ST 3½

4 ST 3 ½ ST 2½ EST 2 ½ EST 2 ½ EST 2½ ST 2½ ST 2½ ST 2½

5 ST 2 ½ ST3 ST 3 ½ ST 3 ST 3 ST 2½ EST 2½ ST 2½

6 ST 2 EST 1½ EST 1 ½ EST 1 ½ EST 1½ EST 2 EST 1½ EST 1

7 DEST 2 EST 1½ EST 1 ½ EST 1 ½ ST 2 EST 1¼ EST 2 EST 2

8 DEST 2 EST 2½ EST 1 ½ ST 2 ½ EST 1½ EST 2 DEST 2 ST 3

9 EST 2 ST 3½ ST 4 EST 3 EST 2½ ST 3 ST 3 DEST 2

10 ST 6 DEST 2 DEST 2 ½ EST 2 ½ DEST 2 EST 2½ EST 3 EST 2½

11 ST 2 DEST 2½ ST 2 ½ EST 4 EST 12 DEST 8 DEST 2 ST 2½

12 EST 8 EST 8 ST 10 ST 10 ST 10 ST 12 ST 12 ST 12

13 EST 3 ½ EST 4 EST 4 ST 4 ST 5 ST 4 ST 4 ST 4

14 ST 5 ST 4 ST 4 ST 5 ST 5 ST 5 ST 5 ST 5

15 ST 4 ST 5 EST 4 EST 4 ST 5 EST 4 ST 5 ST 5

16 EST 5 ST 4 ST 6 ST 6 ST 4 ST 4 ST 6 EST 5

17 ST 5 ST 6 ST 5 EST 4 EST 4 ST 6 ST 6 EST 4

18 EST 5 ST 6 EST 5 ST 5 EST 4 ST 8 EST 4 ST 6

19 EST 5 EST 6 DEST 4 EST 6 ST 6 ST 5 EST 5 EST 5

20 ST 8 EST 6 DEST 4 EST 6 EST 8 ST 12 EST 6 DEST 5

21 ST 5 ST 5 ST 6 ST 6 EST 5 ST 5 ST 5 ST 5

22 ST 3 ST 3½ ST 3 ½ ST 3 ½ ST 3½ ST 3 ST 3 ST 3½

23 EST 2 ½ EST 2½ ST 3 ½ ST 3 ½ ST 3½ ST 3½ ST 3½ ST 3½

24 ST 5 ST 2½ ST 2 ½ EST 2 ½ EST 2½ ST 2½ ST 3½ ST 2½

25 ST 4 ST 2½ ST 3 ½ EST 1 ½ EST 2 EST 1½ EST 2 EST 1½

Best Weight (kg) 67,839 65,826 68,398 67,079 71,018 66,089 64,971 64,597

NFE 15,760 3,142 12,020 11,680 20,000 20,000 20,000 20,000

Average weight (kg) 73,042 70,488 72,084 70,408 650,811 828,792 67,200 66,955

Standard deviation (kg) 9,158 5,018 1,802 2703 1,149,928 1,896,425 1,189 1,071

hand, Rao algorithms, same as the previous examples, are 
trapped in the local optimum. Also, Fig. 12 shows that the 
Rao algorithms in some of the runs cannot get out of the 
penalized part of the search space. However, the ERao 
algorithms do not get trapped in the penalized part of the 
search space in any of the 30 independent runs, as shown 
in Fig. 13. The convergence histories of the Rao and ERao 
algorithms for finding the best solution is given in Fig. 14.

5 Conclusions 
This study introduced the enhanced versions of the Rao 
algorithms, called ERao algorithms. In the ERao algo-
rithms, a modified statistically regenerated mechanism 
(MSRM) is incorporated. MSRM avoids algorithms from 

being trapped in the local optima. Also, the technique that 
keeps the solution in the search space is modified. This 
change prevents the stuck at the border of the search space. 
The performance of the ERao algorithms is tested in the 
three structural design problem. One of these examples 
includes a 120-bar dome truss design problem with proba-
bilistic constraints. To handle the probabilistic constraint, 
sequential optimization and reliability assessment-double 
metaheuristic (SORA-DM) is utilized. The other examples 
include a 3-bay 24-story frame design problem and a 1016-
bar double-layer grid with deterministic constraints.

In all design examples examined, ERao algorithms sur-
passed Rao algorithms in terms of best weight, average 
weight, worst weight, and standard deviation. These results 
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demonstrated that ERao algorithms were superior and more 
robust than Rao algorithms. Additionally, the second Rao 
algorithm did not perform reliability assessment in some 
of the runs and becomes trapped in the local optimum. 
However, the second ERao method performed reliability 
evaluation flawlessly in all the runs. Moreover, comparing 
the results obtained by ERao algorithms to those obtained 

by certain other state-of-the-art metaheuristics indicated 
the superiority of ERao algorithms' in optimizing problems 
with deterministic and probabilistic constraints.
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Fig. 12 The structural weight of each independent run of the Rao algorithms in the 1016-bar double layer grid structure

Fig. 13 The structural weight of each independent run of the ERao algorithms in the 1016-bar double layer grid structure
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Fig. 14 Convergence histories of the best run of the Rao and ERao algorithms in the 1016-bar double layer grid structure
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