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Abstract

In structural reliability analysis, Hasofer-Lind and Rackwitz-Fiessler (HL-RF) method is a widely used approximation method for evaluating 

the reliability index. However, by increasing the nonlinearity or complexity in the limit state function of a structure, HL-RF may get in 

trouble for convergence. This paper represents an iterative algorithm that tries to minimize the Lagrange function, associated with 

the reliability problem. In each iteration of this method, two steps are followed, to satisfy the minimization condition and the existing 

constraint. In the first step, a movement for minimization in a descent direction is followed. In the second step, another search direction 

contributes to approach limit state surface, and therefore the next iteration can start from the vicinity of the surface. Employing 

Lagrange reliability function and limit state function simultaneously in the proposed two-step Lagrangian-based method (TSLB) can help 

to control the numerical instability in highly nonlinear problems. The accuracy and robustness of the proposed algorithm are shown 

in illustrative examples of the literature.
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1 Introduction
Structural reliability analysis deals with the issue of uncer-
tainty in structural problems [1–3]. In a structure, uncer-
tainty can be observed in materials, loads and geometry. 
Evaluation of the probability of failure in the presence of 
uncertainty is the main purpose in structural reliability 
analysis [4–6]. The following definite multi-dimensional 
integral gives the probability of failure

P f df
g

�
�
� X ( )

( )

X X
X 0

,	 (1)

where the vector X = [X1, X2,…,Xn]
T represents n random 

variables. fX(X) is the joint probability density function 
(JPDF) of the vector X. g(X) is limit state function (LSF) 
and g(X) < 0 defines failure domain. Direct evaluation of 
the integral of Eq. (1) will be extremely challenging if the 
problem is complex. Simulation methods such as Monte 
Carlo simulation (MCS) [7–9], or approximation meth-
ods [10–12] are brought up as the alternatives. The exact 
solution is accessible in MCS, but at the cost of generating 

too many samples. Besides, MCS may not be reliable 
when the probability of failure is too small  [13]. Among 
approximation methods, first-order reliability method 
(FORM) has been greatly developed for practice. In 1969, 
Cornell [14] proposed to linearize about the mean value of 
LSF. Reliability index in his method is the proportion of the 
mean to standard deviation of LSF. This method depends 
on the mathematical formulation of the problem and actu-
ally fails to be invariant. Hasofer and Lind [15] proposed 
to linearize about the so-called design point or most prob-
able point (MPP). This point lies in the limit state surface 
and has the minimum distance from the origin of the stan-
dard normal coordinate system. Hasofer and Lind defined 
this minimum distance reliability index. Rackwitz and 
Fiessler [16] extended the Hasofer-Lind method to consider 
the distribution of random variables. The Hasofer-Lind 
method modified by Rackwitz and Fiessler, is denoted by 
HL-RF. For many situations, this method converges very 
fast. However, in highly nonlinear LSFs, the method may 
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result in divergence. Liu and Der Kiureghian [17] modified 
HL-RF by introducing a merit function to monitor the con-
vergence. Wang and Grandhi [18] improved HL-RF using 
intervening variables. Santosh et al. [19] applied an efficient 
step length selection rule in iterations. Yang et al. [20] and 
Yang [21] used chaos theory and represented stability trans-
formation method (STM). Gong and Yi  [22] introduced 
a step size parameter in the direction of gradient vector of 
limit state function. As the step size goes extremely large 
the method reduces to HL-RF. Keshtegar and Miri  [23] 
proposed relaxed HL-RF (RHL-RF) by applying a relaxed 
coefficient and second-order fitting of the reliability func-
tion. Gong et al. [24] proposed a non-gradient-based algo-
rithm in reliability analysis. Roudak et  al.  [25] proposed 
a robust two-parameter method as the generalization of 
HL-RF. Specific values for each of these two parameters, 
reduce the method to HL-RF. When only the first parame-
ter takes a specific value, the method reduces to the method 
proposed by Gong and Yi. In another study, Roudak 
et al.  [26] proposed a three-phase algorithm by introduc-
tion of a moving fitness function. Combining the concepts 
of approximation methods and sampling of simulation 
methods, Shayanfar et al. [27, 28] represented two methods 
of searching design point. Shayanfar et  al.  [29] included 
a new transformation in HL-RF to deal with skew-distrib-
uted random variables. Roudak and Karamloo [30] estab-
lished the non-negative constraint method as an improve-
ment in the category of first-order reliability methods.

In this paper, an algorithm is proposed to compute reli-
ability index. This algorithm minimizes the Lagrange func-
tion of reliability problems iteratively and using two steps. 
This two-step Lagrangian-based method (TSLB) is imple-
mented in mathematical and structural problems. The rep-
resented search direction vectors and step sizes have made 
the proposed algorithm robust and relatively efficient.

2 HL-RF method
The main purpose in HL-RF method is to minimize 
the distance of LSF from the origin of standard normal 
coordinate system or U-space. This minimum distance, 
denoted by β, is reliability index. Thus, the calculation of 
the reliability index can be formulated as the following 
constrained optimization problem
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where G(U) is LSF in U-space. Random variables in 
HL-RF, according to the suggestion of Rackwitz and 

Fiessler [16], are transformed from the original X-space to 
the transformed U-space by the following transformation
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where μ'Xi and σ'Xi are called mean and standard deviation 
of the equivalent normal distribution, respectively. These 
are calculated by
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ϕ and Φ are the probability density function (PDF) and 
cumulative distribution function (CDF) of standard normal 
distribution, respectively. Design point in HL-RF method 
can be computed by the following recursive formula
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where Uk and Uk+1 are design points at iteration k and k + 1, 
respectively.

3 Proposed algorithm
In this section, an iterative algorithm for finding design 
point is to be proposed. To do so, suppose design point of 
iteration k (Uk) is known and the next design point at iter-
ation k + 1 (Uk+1) is to be found. At the first step of each 
iteration, Uk is moved on a descent direction to reach U'k. 
Since this point is not necessarily located on limit state 
surface, at the second step, it is moved on another vector 
such that it approaches limit state surface. A design point 
on limit state surface provides a more appropriate seedbed 
for the next iterations [17]. The point that is now closer to 
limit state surface, is new design point of iteration k + 1, 
denoted by Uk+1. Two movements from Uk to U'k and from 
U'k to Uk+1 can be seen in Fig. 1. Two step sizes αk and γk 
and two search direction vectors dk and Sk, illustrated in 
the figure, will be introduced in the following.

For starting the formulation of the proposed Two-Step 
Lagrangian-Based method (TSLB), consider the Lagrange 
or reliability function

f GT( ) ( )U U U U� �
1

2
� ,	 (7)

associated with the reliability problem of Eq. (2). Design 
point is the point minimizing this function. For a local min-
imum point, the following equations should be satisfied
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U U� � �� G( ) 0 ,	 (8)

G( )U = 0 ,	 (9)

where λ is Lagrange multiplier. Equation (8) results in the 
following relation for λ at iteration k [17, 23]
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.	 (10)

On the other hand, in order to satisfy both conditions 
of the constrained minimization problem two movements 
are followed in each iteration, one to minimize the value 
of the objective function f, and the other to satisfy the 
constraint G = 0. The movement of the first step from Uk, 
results in U'k as

� � �U U dk k k k� ,	 (11)

where the scalar αk and the vector dk are step size and search 
direction vector, respectively. For minimizing the function 
f of Eq. (7), dk should be a descent direction. In fact, at this 
step, the purpose is just to move on such a descent direc-
tion, and then the resulted point will be modified at the 
next step.

Among many possible descent directions, opposite of 
the gradient vector of f at Uk, i.e., −∇f(Uk), is selected, of 
course after dividing by its magnitude to make it a unit 
vector. Thus, dk to be used in Eq. (11) is

d U
Uk
k

k

f
f

� �
�
�

( )

( )
,	 (12)

where ∇f(Uk), according to Eq. (7), is

� � � �f Gk k k k( ) ( )U U U� ,	 (13)

in which λk is replaced from Eq. (10). It is noted that 
the coefficient λk is not to be chosen arbitrarily. In fact, 
Lagrange multiplier λk is required to designate Lagrange 
function of Eq. (7), and this is carried out by λk taking the 
specific value presented in Eq. (10). This step of the pro-
posed algorithm is completed by selecting a value for the 
coefficient αk as step size of the movement. Since the move-
ment is on a descent direction, any relatively small value 
for αk can be used for this proposed algorithm. However, 
this value needs to be smaller for nonlinear LSFs. Our sug-
gestion is to start with a specific value and reduce it in iter-
ations if necessary, although a fixed value is also possible. 
To do so, the initial value is selected to be 0.5 and it will be 
divided by a constant (e.g., 1.5) if the value of f increases 
in iterations, instead of decreasing. Thus
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After moving on the descent direction dk and determi-
nation of U'k, the second step starts. At this step, Uk+1 is 
obtained by transferring U'k to limit state surface. This 
transferring at each iteration helps to satisfy Eq. (9) and 
provides a better seedbed for movement at the proceeding 
iteration. Suppose Uk+1 and U'k are related by

U U Sk k k k� � � �1 � ,	 (15)

where Sk is a vector on which the value of G is to change. 
Thus, Sk is selected to be

S U
Uk
k

k

G
G

� �
� �
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( )

( )
.	 (16)

The scalar γk in Eq. (15) is computed such that the con-
dition of Eq. (9) is satisfied. Since G can be generally 
a complicated nonlinear function, the first-order approx-
imation of Taylor expansion around U'k is used instead of 
the original G. Thus, setting this approximation to zero, 
to satisfy Eq. (9), results in

G G Gk k
T

k k k( ) ( ) ( )( )U U U U U� �� � �� � � � �1 1 0 .	 (17)

Equation (15) is placed in the above equation to reach

G Gk k
T

k k( ) ( )� � � � �U U S� 0 ,	 (18)

and therefore γk is computed as

� k
k

T
k k

G
G
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�
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U
U S

.	 (19)

Fig. 1 General two-step movement of the proposed algorithm
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Now Uk+1 of Eq. (15) can be found. Consequently, reli-
ability index of iteration k + 1 is computed by

�k k� ��1 1U .	 (20)

The applied points (Uk, U'k and Uk+1), step sizes (αk 
and γk), search direction vectors (dk and Sk), alongside the 
direction of each vector (i.e., −∇f(Uk) and −∇G(U'k)) are 
summarized in Fig. 2. It will be shown in numerical exam-
ples that making use of the gradient of both functions f and 
G can effectively work.

To sum up briefly, the present paper proposes an iter-
ative formulation to find Uk+1 from Uk. First, U'k is com-
puted by Eq. (11). The constituents of this equation are 
computed by Eqs. (12)–(14). Then, Eq. (15) is used to 
compute Uk+1, the constituents of which are computed by 
Eqs. (16) and (19). To clarify the implementation of TSLB 
in reliability problems, flowchart of TSLB is provided in 
Fig. 3, showing that the steps are very simple. However, 
according to the results of the following numerical exam-
ples, these simple steps can effectively work.

4 Results and discussion
Several numerical examples have been brought herein 
from the literature, to show the behavior of the proposed 
algorithm. In each example, iteration history of TSLB is 
compared with HL-RF, Relaxed HL-RF (RHL-RF) and 
stability transformation method (STM). Moreover, a table 
is provided to compare the final values of these methods. 
In the following, nine reliability examples are presented 
and after that, they will be analyzed by reliability methods 
including the proposed TSLB.

Example 1. The following cubic polynomial is consid-
ered the LSF of this example

g x x x( ) � � �1

3

2

3 18 ,	 (21)

where x1 and x2 have normal distribution with means 
µ1 = 10, µ2 = 9.9 and standard deviations σ1 = σ2 = 5.

Example 2. Keeping the same statistics as the previous 
example, in this example a mixed term is added to the LSF

g x x x x x( ) � � � �1

3

1

2

2 2

3 18 .	 (22)

Example 3. The quartic LSF in this example is defined

g x x x( ) � � �1

4

2

42 20 ,	 (23)

where x1 and x2 have normal distribution with means 
µ1 = µ2 = 10 and standard deviations σ1 = σ2 = 5.

Example 4. This example investigates the polynomial

g x x x( ) .� � �1

3

2

3 67 5 ,	 (24)

where x1 and x2 have normal distribution with means 
µ1 = 10, µ2 = 9.9 and standard deviations σ1 = σ2 = 5.

Example 5. A cosine function is added to a polynomial as

g x x x x x( ) . ( ) . cos( )� � � � � �0 16 1 4 0 041

3

2 1 2
,	 (25)

with x1 and x2 as standard normal variables.Fig. 2 Direction of movements using reliability function f and LSF G

Fig. 3 Flowchart of TSLB
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Example 6. A highly nonlinear LSF with six lognormal 
variables is to be investigated in this example. This LSF is 
composed of linear terms and noise terms as follows

g x x x x x x x

xi
i

( )

. sin( ).

� � � � � �

�
�
�

1 2 3 4 5 6

1

6

2 2 5 5

0 001 100
	 (26)

The statistics of the random variables are listed in Table 1.
Example 7. As a severe test for the proposed algorithm, 

a highly nonlinear LSF corresponding to the 2-degree-of-
freedom primary-secondary system of Fig. 4 is studied. 
The random variables of this problem are the masses mp 
and ms, stiffnesses kp and ks, damping ratios ζp and ζs, the 
force capacity of the secondary spring Fs, and the intensity 
of a white-noise base excitation of the system S0. The sub-
scripts p and s denote the primary and secondary oscilla-
tors, respectively. The statistics of these random variables 
are summarized in Table 2.

The LSF of this dynamic system is expressed by 

g F k p Es s� � ,	 (27)

E S
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with ωp = (kp/mp)0.5, ωs = (ks/ms)0.5, ωa = (ωp  + ωs)/2, 
ζa = (ζp + ζs)/2, υ = ms/mp, η = (ωp − ωs)/ωa and p = 3.

Example 8. Consider the column of Fig. 5 with length L, 
modulus of elasticity E and moment of inertia I, under the 
loads H and P. This column is connected to the base by 
a rotational spring with constant b. The LSF is defined

g � � �10 ,	 (29)
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The characteristics of random variables are provided in 
Table 3.

Example 9. The cantilever tube of Fig. 6 is subjected to 
three forces F1, F2 and P, and one torsion T.

Table 1 Statistics of random variables in Example 6

Variable Distribution Mean Standard deviation

x1 Lognormal 120 12

x2 Lognormal 120 12

x3 Lognormal 120 12

x4 Lognormal 120 12

x5 Lognormal 50 15

x6 Lognormal 40 12

Table 2 Statistics of random variables in Example 7

Variable Distribution Mean Standard deviation

mp Lognormal 1 0.1

ms Lognormal 0.01 0.001

kp Lognormal 1 0.2

ks Lognormal 0.01 0.002

ζp Lognormal 0.05 0.02

ζs Lognormal 0.02 0.01

Fs Lognormal 15 1.5

S0 Lognormal 100 10

Fig. 4 Primary-secondary dynamic system of Example 7 [30]

Fig. 5 Column of example 8 [30]

Table 3 Statistics of random variables in Example 8

Variable Distribution Mean Standard deviation

P (kips) Lognormal 10 3

H (kips) Lognormal 5.8 1.16

E (ksi) Lognormal 2.9 × 104 0.58 × 104

L (in) Lognormal 144 7.2

I (in4) Lognormal 88.6 8.86

b (in.kips/rad) Lognormal 3 × 104 0.3 × 104
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The LSF of this example is defined as

g Sy x zx� � �� �2 23 ,	 (31)

in which Sy is the strength. σx and τzx are given by
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The characteristics of the variables are summarized in 
Table 4.

In this part, the above-mentioned examples are to be 
investigated. For 2-dimensional examples, i.e., examples 
1 to 5, the LSFs have been drawn to reflect the character-
istics of the functions schematically (Figs. 7–11).

Figs. 12–20 illustrate the performance of TSLB, HL-RF, 
RHL-RF and STM in the above examples. Besides, the 
answers for reliability indices and the number of iterations 

Fig. 6 Cantilever tube of Example 9 [30]

Table 4 Statistics of random variables in Example 9

Variable Distribution Mean Standard deviation

t (mm) Normal 5 0.1

d (mm) Normal 42 0.5

L1 (mm) Normal 119.75 11.975

L2 (mm) Normal 59.75 5.975

F1 (N) Lognormal 3000 300

F2 (N) Lognormal 3000 300

P (N) Lognormal 12000 1200

T (N.mm) Gumbel 90000 9000

Sy (MPa) Normal 220 22

θ1 (rad) Normal 0 π/4

θ2 (rad) Normal 0 π/4

Fig. 7 Limit state function of example 1 in U-space

Fig. 8 Limit state function of example 2 in U-space

Fig. 9 Limit state function of example 3 in U-space
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Fig. 10 Limit state function of example 4 in U-space Fig. 11 Limit state function of example 5 in U-space

Fig. 15 Iteration history in example 4Fig. 14 Iteration history in example 3

Fig. 13 Iteration history in example 2Fig. 12 Iteration history in example 1
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are gathered in Table 5. According to Figs.  12–20 or 
Table  5, in all problems, HL-RF shows instability and 
fails to stabilize and converge. In examples 1 and 2, whose 

difference is only in a mixed term, a slight oscillation pre-
vents HL-RF from convergence. In example 3, the peri-
odic behavior of HL-RF can be observed more clearly. 
The slight oscillation of HL-RF can be seen in example 4, 
too. The general form of the diagrams for examples 1–4 
(Figs. 12–15) are similar but the final values are different, 
as reported in Table 5. In these four examples, three other 
methods are successful in convergence with TSLB taking 
the least iterations. Besides, in these examples, RHL-RF 
requires fewer iterations than STM except in example 3.

After considering the polynomials of examples  1–4, 
in example 5, a cosine function is added to a polyno-
mial to increase the nonlinearity. As seen in Fig.  16, 
HL-RF cannot deal with this nonlinearity and behaves 
chaotically. Such behaviors have been investigated by 
Yang et al.  [20]. Fig. 21 is presented to show the reason. 
As it can be observed in the figure, in some cases the gra-
dient vector at U1 takes the design point of the current 

Fig. 16 Iteration history in example 5

Fig. 17 Iteration history in example 6

Fig. 18 Iteration history in example 7

Fig. 19 Iteration history in example 8

Fig. 20 Iteration history in example 9
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iteration to  U2. Then the gradient vector at U2 takes it 
back to U1 (or close to it). This is the reason HLRF falls in 
such traps and expresses unstable behaviors. Employing 
smaller step sizes or changing step sizes in iterations are 
the possible choices for this problem. Among three other 
methods converging in this problem, RHL-RF need the 
least iterations and STM needs the most. TSLB stands at 

the middle in this problem. Example 6 represents a sen-
sitive LSF including noise terms. This function is usu-
ally employed in reliability literature to test the strength 
of new proposed methods. Fig. 17 shows the iteration his-
tory of the investigated methods. As one can observe, 
the noise of the LSF is such disruptive that all methods 
except TSLB fail to converge. HL-RF and STM do not get 

Table 5 Comparison of the results in numerical examples

Example
TSLB HLRF RHLRF STM

Literature
β Iter. time (sec) β Iter. β Iter. time (sec) β Iter. time (sec)

1 2.2260 63 0.0262 NC 2.2260 111 0.0414 2.2260 141 0.0333

–β = 2.2260 [31]
–β = 2.2259 [19]
–β = 2.2260 [24]

–β = 2.5328 (MCS)
–β = 2.6163 (SORM)

2 2.2983 63 0.0298 NC 2.2982 124 0.0470 2.2982 144 0.0350

–β = 2.2983 [18]
–β = 2.2983 [24]
–β = 2.2982 [32]
–β = 2.2983 [25]

–β = 2.5274 (MCS)
–β = 2.6259 (SORM)

3 2.3655 61 0.0280 NC 2.3654 195 0.0522 2.3654 163 0.0344

–β = 2.3633 [18]
–β = 2.3628 [24]
–β = 2.3655 [33]
–β = 2.3655 [25]

–β = 2.9019 (MCS)
–β = 2.8450 (SORM)

4 1.9003 65 0.0411 NC 1.9003 74 0.0701 1.9003 132 0.0585

–β = 1.9002 [19]
–β = 1.9003 [34]

–β = 2.2296 (MCS)
–β = 2.2372 (SORM)

5 4.0519 68 0.0581 NC 4.0519 29 0.0621 4.0519 124 0.0615

–β = 4.275 [35]
–β = 4.12 [24]

–β = 3.7190 (MCS)
–β = 4.2244 (SORM)

6 2.3482 71 0.0702 NC NC NC

–β = 2.3482 [17]
–β = 2.3483 [31]
–β = 2.3483 [24]

–β = 2.2523 (MCS)
–β = 2.2625 (SORM)

7 2.0982 68 0.0733 NC 2.0966 105 0.1940 2.0981 124 0.0892

–β = 2.12 [36]
–β = 2.0163 [32]
–β = 2.1231 [25]
–β = 2.1373 [30]

–β = 2.7360 (MCS)
–β = 2.6706 (SORM)

8 4.1108 71 0.0712 NC NC 127 0.0890
–β = 4.1165 [30]

–β = 4.0253 (MCS)
–β = 4.0932 (SORM)

9 3.3997 67 0.0741 NC NC 135 0.0973
–β = 3.3753 [30]

–β = 3.7852 (MCS)
–β = 3.8316 (SORM)

NC: Not Converged
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stable around the answer in 400 iterations and RHL-RF 
goes infinitely high after iteration 350. However, even in 
such a nonlinear case, TSLB stably finds the answer after 
71 iterations. This can be a sign for the robustness of the 
proposed method. Spring system of example 7 is another 
nonlinear case in which HL-RF fails very soon before iter-
ation 20, as depicted in Fig. 18. According to this figure, 
TSLB and STM converge with the least and most itera-
tions, respectively. The LSF of Eq.  (29), associated with 
the structural element of example 8, is a highly nonlinear 
case, too. The nonlinearity of this problem is so extreme 
that HL-RF and RHL-RF diverge simultaneously before 
the second iteration (Fig. 19). However, TSLB and STM 
express robustness in this example. Besides, the required 
iterations for convergence in TSLB are fewer than that 
in STM. In example  9, a cantilever tube is investigated. 
The highly nonlinear LSF of this tube causes HL-RF to 
behave improperly. The periodic behavior of HL-RF can 
be observed in Fig. 20. Due to the extreme nonlinearity of 
the LSF, RHL-RF encounters chaotic behavior in the ini-
tial iterations and then oscillates around the answer with-
out getting stable in 200 iterations. Like example 8, TSLB 
and STM are the successful methods and TSLB finishes 
the job using fewer iterations.

The values of Figs. 12–20 are represented in Table 5 for 
convenience. Based on this table, or the represented fig-
ures and aforementioned explanations, HL-RF diverges 
in all 9  examples, RHL-RF diverges in 3 examples (6, 
8 and  9) and STM diverges in example  6. In contrast, 
TSLB is the only method, which could converge in all 
represented numerical examples, without any failure and 
divergence. In fact, the diagrams clearly show that TSLB 
finally finds a way for convergence in all nonlinear exam-
ples, without any sign of periodic or chaotic behaviors. 
The stability of the proposed algorithm in the represented 

highly nonlinear mathematical and structural problems 
indicates the robustness of the algorithm. This stability in 
the proposed algorithm can be associated with the second 
step of each iteration, in which U'k is pushed such that it 
approaches limit state surface. By this movement, the next 
iteration can start from a point closer to limit state surface. 
In fact, starting each iteration from the neighborhood of 
limit state surface helps to stabilize the process, especially 
in highly nonlinear cases where large distances from limit 
state surface may result in divergence. It is noteworthy 
that examples like examples 6, 8 and 9 are of those exam-
ples usually employed to test the robustness of the pro-
posed methods of the literature. For instance, example 6 
without the sinuous terms and their relatively small mul-
tiplier can be solved by many methods. However, adding 
six sinuous terms multiplied by 0.001 creates a new chal-
lenge and generates instability, and therefore the problem 
becomes so sensitive to small movements. Many meth-
ods fail in encountering this challenge and show numer-
ical instability. In Table 5, it is observed that even STM, 
which benefits from the chaos control concept, fails in this 
robustness test. That is why this example is a very suitable 
and common example for testing the methods focusing on 
robustness. Examples 8 and 9 are two other examples of 
the literature, designed to test the robustness of the new 
represented methods. The ability of the proposed method 
in dealing with such examples is a sign for the robustness 
of the proposed method. As previously mentioned, this 
ability can be associated with: (1) separating the goals, 
generally followed in a reliability method (i.e., separating 
Eqs. (8) and (9) as two distinct goals), and (2) assigning a 
specific and separate tool to reach each goal (αkdk is the 
first tool and γkSk is the second tool to make Eqs. (8) and 
(9) satisfied). Since each single step concentrates on one 
goal, it pushes to that goal more properly. This can be con-
sidered an example of novelty of the proposed algorithm.

There is also another item providing a powerful tool for 
the robustness of the proposed method. This item is the 
potential of adjustable step size αk. The fact that αk can be 
adjusted (automatically like what proposed herein or by 
the user) gives a great possibility to the method to be able 
to deal with extremely nonlinear cases. Reliability func-
tion works here as a useful criterion. Actually, when non-
linearity is relatively high, it shows itself in f k increasing 
compared to f k−1. When this signal is sent in an iteration, 
αk is immediately reduced to adapt with the high exist-
ing nonlinearity and to keep the robustness. If the signal 
of f k > f k−1 is not sent, the computation process continues 

Fig. 21 Periodic or chaotic solution for design point in iterations [20]
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without any change in αk. Generally, the combination of 
the limit state function and reliability function (based on 
the above-mentioned separation of goals), alongside the 
effective application of a control parameter (αk) and a non-
linearity criterion (reliability function in two successive 
iterations) are the novelties of the current paper.

Comparing the reliability index of the proposed algo-
rithm with that of other methods of Table 5 (especially STM 
which is considered an accurate method), one can conclude 
that the proposed algorithm is accurate, too. It  should be 
noted that this accuracy is obtained using a reasonable num-
ber of iterations. As observed in the columns of "iterations" 
of Table 5, the proposed algorithm is sufficiently efficient 
and therefore can be employed in numerical problems.

Apart from four aforementioned methods, the answers 
existing in the literature are summarized in the last col-
umn of Table 5 as reference values. Besides, the results 
of MCS and second-order reliability method (SORM) are 
included at the end of this column. In MCS, 106 samples 
are generated, except examples 5, 8 and 9 in which 2 × 106 
samples are generated due to lower probability of failure 
or higher reliability index. For SORM, Breitung's formula 
have been applied. What should be mentioned about the 
table is that the relative difference with MCS or SORM is 
not due to the error in finding the location of design point, 
and it is actually the matter of different definitions. In fact, 
four investigated methods try to find the minimum dis-
tance of LSF from the origin of U-space, in the geomet-
ric sense. Other methods of the literature (as FORM) have 
reported the same values for reliability index (as seen in the 
last column), because they have the same target and this 
target has been defined to specify the location of design 
point. However, the target in MCS is to find the distribu-
tion of LSF and to compute probability of failure. Then 
reliability index is just reported using the popular relation 
of FORM, β = −Φ−1(Pf). Or in SORM the curvatures of the 
LSF at design point has been taken into account for better 
estimation of probability of failure, and reliability index is 
reported by the above-mentioned relation of FORM. This 
β may be different in some nonlinear cases from the com-
mon geometric reliability index defined by Hasofer and 
Lind [15]. Thus, in such cases, it may be better to compare 
the reliability index of the methods of FORM with each 
other to evaluate their accuracy in finding the location of 
design point. SORM is a powerful tool to improve the esti-
mation of probability of failure based on the value of reli-
ability index, the location of design point, and the curva-
tures of LSF at design point.

Another point in Table 5 is that the proposed algorithm 
shows a good performance in the examples including 
random variables with high coefficient of variation  (δ). 
In  examples 1–4 and 7 there are variables with δ  =  0.5 
which is considered a large value. According to Table 5, 
even in such examples the proposed algorithm can work 
properly in keeping convergence [17–19, 24, 25, 30–36].

It is noteworthy that the proposed algorithm, as an 
approximation gradient-based method, requires the 
explicit form of limit state function and its derivatives for 
the gradient vector. While in many problems, the func-
tion cannot be explicitly expressed, or it is not differen-
tiable. To circumvent this limitation of the proposed algo-
rithm, numerical methods for evaluation of the gradient 
vector should be applied (e.g., finite difference method). 
However, such numerical methods may impose larger 
computational burden compared to the non-gradient-based 
methods. There is also another limitation associated with 
the proposed algorithm. As it was mentioned before, the 
adjustable step size αk is a control tool for robustness, i.e., 
if convergence is not achieved by an initial assumption of 
αk, it can be reduced. By  this reduction of step size, the 
convergence can be achieved. However, it is not clear from 
the beginning whether there was another initial value of αk 
which could achieve convergence faster, and therefore it is 
up to the user's choice for initial αk.

One point about the proposed algorithm is that it has 
strongly focused on the robustness. The efficiency of the 
proposed algorithm can be increased by manipulating the 
control parameter αk in several ways. For instance, Barzilai-
Borwein gradient method is an efficient numerical method 
using line search in iterations. The same approach can be 
implemented on αk in each iteration to reach better values. 
In fact, line search could be one possible approach to speed 
up the rate of convergence, provided that a suitable crite-
rion could be found through an investigation to be applied 
within iterations.

To sum up briefly, the algorithm of the present paper is 
robust and relatively efficient, as it is clear from the results 
of numerical examples. Due to its robustness, it can be 
trusted in applications. Thus, the proposed algorithm can 
be a possible choice to be used in practical cases.

5 Conclusions
This paper proposes an iterative algorithm for structural reli-
ability analysis. The proposed algorithm benefits from the 
contribution of Lagrange function in its formulation. In each 
iteration, the purpose of minimizing the Lagrange function 
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is followed by moving in a descent direction. Besides, for 
satisfying the existing constraint and for a better search of 
design point, each iteration starts from the vicinity of limit 
state surface. The performance of the whole procedure has 
been shown in nonlinear mathematical and structural prob-
lems. While HL-RF is not sufficiently robust and simulation 
methods are time-consuming and inefficient, the proposed 

algorithm benefiting from reliability function and limit state 
function simultaneously, can be used as a possible alterna-
tive in structural reliability analysis.

Acknowledgments
This research did not receive any specific grant from funding 
agencies in the public, commercial, or not-for-profit sectors.

References
[1]	 Zaeimi, M., Ghoddosain, A. "System Reliability Based Design 

Optimization of Truss Structures with Interval Variables", 
Periodica Polytechnica Civil Engineering, 64(1), pp. 42–59, 2020.

	 https://doi.org/10.3311/PPci.14238
[2]	 Ding, F., Xiong, S., Zhang, H., Li, G., Zhao, P., Xiang, P. "Reliability 

analysis of axial bearing capacity of concrete filled steel tubular 
stub columns with different cross sections", Structures, 33, pp. 
4193–4202, 2021.

	 https://doi.org/10.1016/j.istruc.2021.04.006
[3]	 Asghshahr, M. S. "Reliability Based Design Optimization of 

Reinforced Concrete Frames Using Genetic Algorithm", Periodica 
Polytechnica Civil Engineering, 65(2), pp. 566–576, 2021.

	 https://doi.org/10.3311/PPci.17150
[4]	 Shayanfar, M. A., Barkhordari, M. A., Roudak, M. A. "An adaptive 

importance sampling-based algorithm using the first-order method 
for structural reliability", International Journal of Optimization in 
Civil Engineering, 7(1), pp. 93–107, 2017. [online] Available at: 
http://ijoce.iust.ac.ir/article-1-286-en.html

[5]	 Shayanfar, M. A., Barkhordari, M. A., Roudak, M. A. "A new 
effective approach for computation of reliability index in nonlinear 
problems of reliability analysis", Communications in Nonlinear 
Science and Numerical Simulation, 60, pp. 184–202, 2018.

	 https://doi.org/10.1016/j.cnsns.2018.01.016
[6]	 Kaveh, A., Biabani Hamedani, K., Kamalinejad, M. "Set Theoretical 

Variants of Optimization Algorithms for System Reliability-
based Design of Truss Structures", Periodica Polytechnica Civil 
Engineering, 65(3), pp. 717–729, 2021.

	 https://doi.org/10.3311/PPci.17519
[7]	 Xiao, N.-C., Zuo, M. J., Guo, W. "Efficient reliability analysis 

based on adaptive sequential sampling design and cross-valida-
tion", Applied Mathematical Modelling, 58, pp. 404–420, 2018.

	 https://doi.org/10.1016/j.apm.2018.02.012
[8]	 Seger, M. A., Kisgyörgy, L. "Estimation of Link Choice Probabilities 

Using Monte Carlo Simulation and Maximum Likelihood Estimation 
Method", Periodica Polytechnica Civil Engineering, 64(1), pp. 
20–32, 2020.

	 https://doi.org/10.3311/PPci.14366
[9]	 Liu, X., Zheng, S., Wu, X., Chen, D., He, J. "Research on a seismic 

connectivity reliability model of power systems based on the quasi- 
Monte Carlo method", Reliability Engineering & System Safety, 
215, 107888, 2021.

	 https://doi.org/10.1016/j.ress.2021.107888
[10]	 Roudak, M. A., Shayanfar, M. A., Karamloo, M. "Improvement 

in first-order reliability method using an adaptive chaos control 
factor", Structures, 16, pp. 150–156, 2018.

	 https://doi.org/10.1016/j.istruc.2018.09.010

[11]	 Zhang, X., Wu, Z., Ma, H., Pandey, M. D. "An effective Kriging-
based approximation for structural reliability analysis with ran-
dom and interval variables", Structural and Multidisciplinary 
Optimization, 63, pp. 2473–2491, 2021.

	 https://doi.org/10.1007/s00158-020-02825-8
[12]	 Kaveh, A., Hoseini Vaez, S. R., Hosseini, P., Fathali, M. A. "Heuristic 

Operator for Reliability Assessment of Frame Structures", Periodica 
Polytechnica Civil Engineering, 65(3), pp. 702–716, 2021.

	 https://doi.org/10.3311/PPci.17580
[13]	 Bucher, C. G. "Adaptive sampling — an iterative fast Monte Carlo 

procedure", Structural Safety, 5(2), pp. 119–126, 1988.
	 https://doi.org/10.1016/0167-4730(88)90020-3
[14]	 Cornell, C. A. "A probability based structural code", Journal 

Proceedings, 66(12), pp. 974–985, 1969. 
[15]	 Hasofer, A. M., Lind, N. C. "Exact and invariant second-moment 

code format", Journal of the Engineering Mechanics Division, 
100(1), pp. 111–121, 1974.

	 https://doi.org/10.1061/JMCEA3.0001848
[16]	 Rackwitz, R., Flessler, B. "Structural reliability under combined 

random load sequences", Computers & Structures, 9(5), pp. 489–
494, 1978.

	 https://doi.org/10.1016/0045-7949(78)90046-9
[17]	 Liu, P.-L., Der Kiureghian, A. "Optimization algorithms for struc-

tural reliability", Structural Safety, 9(3), pp. 161–177, 1991. 
	 https://doi.org/10.1016/0167-4730(91)90041-7
[18]	 Wang, L., Grandhi, R. V. "Safety index calculation using inter-

vening variables for structural reliability analysis", Computers & 
Structures, 59(6), pp. 1139–1148, 1996.

	 https://doi.org/10.1016/0045-7949(96)00291-X
[19]	 Santosh, T. V., Saraf, R. K., Ghosh, A. K., Kushwaha, H. S. 

"Optimum step length selection rule in modified HL–RF method 
for structural reliability", International Journal of Pressure Vessels 
and Piping, 83(10), pp. 742–748, 2006.

	 https://doi.org/10.1016/j.ijpvp.2006.07.004
[20]	 Yang, D., Li, G., Cheng, G. "Convergence analysis of first order 

reliability method using chaos theory", Computers & Structures, 
84(8–9), pp. 563–571, 2006.

	 https://doi.org/10.1016/j.compstruc.2005.11.009
[21]	 Yang, D. "Chaos control for numerical instability of first order 

reliability method", Communications in Nonlinear Science and 
Numerical Simulation, 15(10), pp. 3131–3141, 2010.

	 https://doi.org/10.1016/j.cnsns.2009.10.018
[22]	 Gong, J.-X., Yi, P. “A robust iterative algorithm for structural reli-

ability analysis”, Structural and Multidisciplinary Optimization, 
43, pp. 519–527, 2011.

	 https://doi.org/10.1007/s00158-010-0582-y

https://doi.org/10.3311/PPci.14238 
https://doi.org/10.1016/j.istruc.2021.04.006
https://doi.org/10.3311/PPci.17150 
http://ijoce.iust.ac.ir/article-1-286-en.html
https://doi.org/10.1016/j.cnsns.2018.01.016
https://doi.org/10.3311/PPci.17519
https://doi.org/10.1016/j.apm.2018.02.012
https://doi.org/10.3311/PPci.14366 
https://doi.org/10.1016/j.ress.2021.107888 
https://doi.org/10.1016/j.istruc.2018.09.010 
https://doi.org/10.1007/s00158-020-02825-8
https://doi.org/10.3311/PPci.17580
https://doi.org/10.1016/0167-4730(88)90020-3
https://doi.org/10.1061/JMCEA3.0001848 
https://doi.org/10.1016/0045-7949(78)90046-9
https://doi.org/10.1016/0167-4730(91)90041-7
https://doi.org/10.1016/0045-7949(96)00291-X
https://doi.org/10.1016/j.ijpvp.2006.07.004 
https://doi.org/10.1016/j.compstruc.2005.11.009 
https://doi.org/10.1016/j.cnsns.2009.10.018 
https://doi.org/10.1007/s00158-010-0582-y


Roudak et al.
Period. Polytech. Civ. Eng., 66(4), pp. 1207–1219, 2022|1219

[23]	 Keshtegar, B., Miri, M. "An enhanced HL-RF method for the com-
putation of structural failure probability based on relaxed approach", 
Civil Engineering Infrastructures Journal, 46(1), pp. 69–80, 2013.

	 https://doi.org/10.7508/CEIJ.2013.01.005
[24]	 Gong, J., Yi, P., Zhao, N. "Non-Gradient–Based Algorithm for 

Structural Reliability Analysis", Journal of Engineering Mechanics, 
140(6), 04014029, 2014.

	 https://doi.org/10.1061/(asce)em.1943-7889.0000722
[25]	 Roudak, M. A., Shayanfar, M. A., Barkhordari, M. A., Karamloo, 

M. "A robust approximation method for nonlinear cases of struc-
tural reliability analysis", International Journal of Mechanical 
Sciences, 133, pp. 11–20, 2017.

	 https://doi.org/10.1016/j.ijmecsci.2017.08.038
[26]	 Roudak, M. A., Shayanfar, M. A., Barkhordari, M. A., Karamloo, 

M. "A new three-phase algorithm for computation of reliability 
index and its application in structural mechanics", Mechanics 
Research Communications, 85, pp. 53–60, 2017.

	 https://doi.org/10.1016/j.mechrescom.2017.08.008
[27]	 Shayanfar, M. A., Barkhordari, M. A., Roudak, M. A. "An effi-

cient reliability algorithm for locating design point using the com-
bination of importance sampling concepts and response surface 
method", Communications in Nonlinear Science and Numerical 
Simulation, 47, pp. 223–237, 2017.

	 https://doi.org/10.1016/j.cnsns.2016.11.021
[28]	 Shayanfar, M. A., Barkhordari, M. A., Roudak, Mohammad A. 

"Locating design point in structural reliability analysis by intro-
duction of a control parameter and moving limited regions", Inter-
national Journal of Mechanical Sciences, 126, pp. 196–202, 2017. 

	 https://doi.org/10.1016/j.ijmecsci.2017.04.003
[29]	 Shayanfar, M. A., Barkhordari, M. A., Roudak, M. A. "A Modifi-

cation to HL-RF Method for Computation of Structural Reliability 
Index in Problems with Skew-distributed Variables", KSCE Journal 
of Civil Engineering, 22(8), pp. 2899–2905, 2018. 

	 https://doi.org/10.1007/s12205-017-1473-1

[30]	 Roudak, M. A., Karamloo, M. "Establishment of non-negative 
constraint method as a robust and efficient first-order reliability 
method", Applied Mathematical Modelling, 68, pp. 281–305, 2019. 

	 https://doi.org/10.1016/j.apm.2018.11.021
[31]	 Wang, L., Grandhi, R. V. "Efficient safety index calculation for 

structural reliability analysis", Computers & Structures, 52(1), pp. 
103–111, 1994.

	 https://doi.org/10.1016/0045-7949(94)90260-7
[32]	 Keshtegar, B. "Chaotic conjugate stability transformation method 

for structural reliability analysis", Computer Methods in Applied 
Mechanics and Engineering, 310, pp. 866–885, 2016.

	 https://doi.org/10.1016/j.cma.2016.07.046
[33]	 Periçaro, G. A., Santos, S. R., Ribeiro, A. A., Matioli, L. C. 

"HLRF–BFGS optimization algorithm for structural reliability", 
Applied Mathematical Modelling, 39(7), pp. 2025–2035, 2015.

	 https://doi.org/10.1016/j.apm.2014.10.024
[34]	 Santos, S. R., Matioli, L. C., Beck, A. T. "New Optimization 

Algorithms for Structural Reliability Analysis", Computer 
Modeling in Engineering & Sciences, 83(1), pp. 23–56, 2012.

	 https://doi.org/10.3970/cmes.2012.083.023
[35]	 Gavin, H. P., Yau, S. C. "High-order limit state functions in the 

response surface method for structural reliability analysis", 
Structural Safety, 30(2), pp. 162–179, 2008.

	 https://doi.org/10.1016/j.strusafe.2006.10.003
[36]	 Der Kiureghian, A., De Stefano, M. "Efficient algorithm for sec-

ond-order reliability analysis", Journal of Engineering Mechanics, 
117(12), pp. 2904–2923, 1991.

	 https://doi.org/10.1061/(ASCE)0733-9399(1991)117:12(2904)

https://doi.org/10.7508/CEIJ.2013.01.005 
https://doi.org/10.1061/(asce)em.1943-7889.0000722 
https://doi.org/10.1016/j.ijmecsci.2017.08.038
https://doi.org/10.1016/j.mechrescom.2017.08.008
https://doi.org/10.1016/j.cnsns.2016.11.021
https://doi.org/10.1016/j.ijmecsci.2017.04.003
https://doi.org/10.1007/s12205-017-1473-1
https://doi.org/10.1016/j.apm.2018.11.021 
https://doi.org/10.1016/0045-7949(94)90260-7 
https://doi.org/10.1016/j.cma.2016.07.046 
https://doi.org/10.1016/j.apm.2014.10.024 
https://doi.org/10.3970/cmes.2012.083.023 
https://doi.org/10.1016/j.strusafe.2006.10.003 
https://doi.org/10.1061/(ASCE)0733-9399(1991)117:12(2904)

	1 Introduction
	2 HL-RF method
	3 Proposed algorithm
	4 Results and discussion
	5 Conclusions 
	Acknowledgments

