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Abstract

Doppler Effect (DE) is a physical phenomenon observed by Doppler, an Austrian mathematician, in 1842. In recent years, the 

mathematical formulation of this phenomenon has been used to improve the frequency equation of the standard Bat Algorithm 

(BA) developed by Yang in 2010. In this paper, we use the mathematical formulation of DE with some idealized rules to update 

the observer velocity existing in the Doppler equation. Thus, a new physics-based Metaheuristic (MH) optimizer is developed. In 

the proposed algorithm, the observers’ velocities as the algorithm’s search agents are updated based on the DE equation. A new 

mechanism named Mean Euclidian Distance Threshold (MEDT) is introduced to enhance the quality of the observers. The proposed 

MEDT mechanism is also employed to avoid the locally optimum solutions and increase the convergence rate of the presented 

optimizer. Since the proposed algorithm simultaneously utilizes the DE equation and MEDT mechanism, it is called the Doppler Effect-

Mean Euclidian Distance Threshold (DE-MEDT) metaheuristic algorithm. The proposed DE-MEDT algorithm’s efficiency is evaluated 

by solving well-known unconstrained and constrained optimization problems. In the unconstrained optimization problems, 23 well-

known optimization functions are used to assess the exploratory, exploitative, and convergence behaviors of the DE-MEDT algorithm.
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1 Introduction
Most real-world optimization problems in science and engi-
neering applications are highly complex and have nonlin-
ear limitations with non-convex search space. Since they 
have these challenging characteristics, it can be hard or 
even impossible to solve them using mathematical-based 
optimization methods. These methods are mostly deter-
ministic-based and suffer from local optima entrapment. 
Moreover, the most popular of them, known as gradi-
ent-based algorithms, require gradient information to search 
near an initial starting point [1]. Many research items have 
recently revealed that these algorithms are not sufficiently 
efficient when dealing with complex problems. The com-
petitive alternative solver, known as meta-heuristic (MH), 
does not have the handicaps of the gradient-based meth-
ods. They are free from requiring gradient information and 
have a high local optima avoidance ability [2]. Inspiring 
by a simple concept existing in natural phenomena and 
having easy implementation when optimizing the prob-
lems are the other reasons that show why MH algorithms 
have become considerably common in recent years [3]. 

In a general form, each MH algorithm can be either 
single solution-based or population-based. The number 
of candidate solutions improving during the optimization 
process determines the type of MH technique in terms of 
being single solution-based or population-based. In the 
former case, the optimization process starts with a single 
random solution. After that, it is iteratively improved in 
the cyclic body of the optimizer until satisfying a termi-
nation criterion, such as Maximum Number of Function 
Evaluations (MaxNFEs). In the latter case, the MH algo-
rithm begins the optimization process with a set of ran-
domly generated solutions, and the solutions are itera-
tively evolved until the termination criterion is met. Both 
of these types have their own advantages and disadvan-
tages. For example, the advantages and disadvantages of 
individual-based metaheuristics are needing fewer func-
tion evaluations but suffering from unwanted premature 
convergence. On the contrary, population-based meta-
heuristics suffer from more function evaluations but bene-
fit from high search ability to avoid local optima. In other 
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words, population-based metaheuristics have a higher 
search ability to avoid local optima compared to individu-
al-based ones because more than one solution is involved 
during the optimization process. Furthermore, informa-
tion obtained by the candidate solutions can be exchanged 
between themselves. This mechanism can help the can-
didate solutions to search different areas of the solution 
space more efficiently.

Based on the source of inspiration of the different 
MH methods, they can be roughly categorized into four 
main groups: Evolutionary Algorithms (EAs), Swarm 
Intelligence Algorithms (SIAs), Human-based Algorithms 
(HAs), and Physics-based algorithms (PAs).

EAs are inspired by biological evolution behaviors, 
such as crossover, mutation, and selection. GA is the 
most well-known EA that attempts to simulate the phe-
nomenon of natural evolution. SIAs, as the second class 
of MH algorithms, are inspired by the social behavior of 
organisms living in a group, which can be swarm, herd, 
or flock. Particle Swarm Optimization (PSO) [4] is the 
most popular SIA simulating the social behavior of bird 
flocking. Ant Colony Optimization (ACO) [5] and Bat 
Algorithm (BA) [6] are the other popular examples of 
SIAs. The third classification of MH algorithms is com-
posed of optimizers that mimic some human behaviors. 
For example, Teaching–Learning-Based Optimization 
(TLBO) [7] is one of the most well-known HAs pro-
posed based on the effect of a teacher on the grade of 
the learners in a class. PAs, as the fourth class of MH 
algorithms, are inspired by physical laws. Examples of 
well-established and recently developed MHs that belong 
to this category are Ray Optimization (RO) [8], Colliding 
Bodies Optimization (CBO) [9], and Plasma Generation 
Optimization (PGO) [10].

Regardless of the inspiration source of various MH 
techniques, the searching steps of each MH algorithm are 
composed of two conflicting phases: exploration (diversifi-
cation) and exploitation (intensification). In the exploration 
phase, the algorithm should explore deeply various regions 
of the solution space using its randomized operators. 
In contrast, in the exploitation phase, normally performed 
after the exploration phase, the metaheuristic attempts to 
search around solutions with higher fitness located inside 
the search space. The agents of a metaheuristic will trap 
into a local optimum without exploratory behavior. On the 
other hand, the lack of exploitative behavior decreases the 
metaheuristic performance in terms of finding better-qual-
ity solutions. In this case, the metaheuristic can never 

converge to the optimum solution. Thus, making a reason-
able and fine balance between exploration and exploitation 
tendencies results in a well-organized metaheuristic.

As a challenging problem, some optimization problems 
require extreme exploratory behavior, and others may 
need extreme exploitative behavior to find the optimum 
solution. Making a proper trade-off between exploration 
and exploitation tendencies of the algorithms is another 
challenging issue. On the other hand, based on the No Free 
Launch (NFL) theorem [11], no unique MH algorithm can 
solve all types of optimization problems. It means that 
a specific MH method can provide promising results 
for a set of optimization problems. In contrast, the same 
method may not have enough efficiency for a different set 
of problems. Thus, this theorem encourages developing 
more efficient MH optimizers to solve the current problems 
better or test the performance of the existing MH optimiz-
ers in the new problems. For example, Kaveh et al. [12] 
introduced the Enhanced Shuffled Shepherd Optimization 
algorithm (ESSOA) for the optimal design of large-scale 
space structures. Kaveh and Zaerreza [13] introduced 
a new framework for reliability-based design optimization 
using ESSOA. The performance of this framework can be 
evaluated in different reliability problems presented by 
Movahedi Rad et al. [14], Lógó et al. [15], and Movahedi 
Rad and Khaleel Ibrahim [16].

In the present paper, a physics-based MH algorithm is 
developed to compete with other MH algorithms. The main 
idea behind the proposed algorithm is inspired by a phys-
ical phenomenon observed by Christian Andreas Doppler 
in 1842 [17]. According to the observed phenomenon, the 
Doppler Effect (DE), perceived frequency by the observer 
is determined based on its movement relative to the source. 
Compared to the frequency emitted by the source, the 
received frequency is higher when the observer approaches 
the source and is lower when the observer moves away 
from the source [18]. In recent years, DE has been used to 
improve BA by incorporating compensation of this effect in 
echoes of bats [19] or updating the frequency equation [20]. 
However, here, we inspire the formulation of Doppler in the 
sense of updating the velocities of observers as the search 
agents of the proposed algorithm. Accordingly, we propose 
a new mathematical model. Then, a new MH algorithm is 
designed based on the proposed mathematical framework 
to tackle different optimization problems. A new mecha-
nism called Mean Euclidian Distance Threshold is devel-
oped to enhance the quality of the observers generated 
by the proposed algorithm. Since the proposed algorithm 
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integrates DE equation and MEDT mechanism simulta-
neously, it is named the Doppler Effect-Mean Euclidian 
Distance Threshold (DE-MEDT) optimization algorithm. 
Two collections of well-known constrained and uncon-
strained optimization problems are used to evaluate the 
DE-MEDT algorithm's performance. All obtained results 
indicate the superior performance of this algorithm com-
pared to the considered MH optimization algorithms.

The rest of this paper is organized as follows. Section 2 
provides a summarized review of the DE phenome-
non in physics and metaheuristic. Section 3 presents the 
background inspiration and mathematical model of the 
DE-MEDT algorithm. The efficiency of the proposed 
algorithm in optimizing different benchmark test func-
tions is evaluated in Section 4. Section 5 gives the result of 
the DE-MEDT to solve engineering design problems. The 
conclusion and potential research directions are finally 
presented in Section 6.  

2 Overview of Doppler effect phenomenon in physics 
and metaheuristic
2.1 Historical background 
In 1842, Christian Andreas Doppler, an Austrian mathema-
tician, observed a phenomenon in the colored light of the 
binary stars and some other stars of the heavens [17]. Based 
on this phenomenon, the movement of the light source 
changes its apparent color. When a light source moves 
toward an observer, the light appears bluer. On the con-
trary, the light source appears redder when the light moves 
away from an observer. The observed event was known as 
the Doppler Effect (DE) or Doppler shift, and Doppler dis-
covered it for the first time. In 1845, Buys Ballot tested this 
observation experimentally for sound waves [21]. He found 
out that the sound's pitch was higher than the emitted fre-
quency when the sound source approached him, and it was 
lower than the emitted frequency when the sound source 
moved away from him. In today's world, the DE has many 
applications in human life. For example, the policeman can 
estimate the velocity of a vehicle using the DE. 

DE elucidates that either the frequency of a light source 
or its wavelength depends on the velocity of the source 
relative to the observer [22]. As shown in Fig. 1, the light 
source movement compresses and stretches the waves in 
front of and back of the source, respectively.

2.2 Description and formulation 
The primary formulation of the DE can be expressed as 
follows [22]:

f f v v
v vo s

o

s

�
�
�

�

�
�

�

�
� , (1)

in which fo is the frequency perceived by the observer, fs 
is the frequency of the source, and ν, νo, and νs are respec-
tively the velocity of the wave in a stationary medium, and 
the velocities of the observer and source with respect to 
this medium. 

Based on the movement of the source and the observer, 
whether they move toward each other or move away from 
each other, two possible cases can be generally occurred 
(see Fig. 2). In the first case, observers A and B with the 
velocities of VO

A and VO
B move toward the source, respec-

tively. According to this state, the perceived frequencies 
of observers A and B are respectively lower and higher 
than the emitted frequency by the source. In the latter 
case, when the observers C and D with the velocities of 
VO

C and VO
D move away from the source, observers C and 

D hear the sound with lower and higher frequencies than 
the source frequency, respectively.

The following equation states the mathematical rela-
tionship between the wavelength and frequency [23]:

v f� � , (2)

where ν, f, and λ respectively denote the propagation 
speed in the medium (m/s), the frequency (Hz), and wave-
length (m). According to this equation, the frequency and 
wavelength are inversely proportional to each other so 
that an increase in frequency leads to decreasing in wave-
length and vice versa [23]. Using Eq. (2), the mathematical 
relationship between the wavelength and frequency can be 
also obtained for both observer and source as follows:

Fig. 1 Compressing and stretching the waves in front of and back of the 
light source
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2.3 Overview of DE in metaheuristic
DE in metaheuristic has been only used to improve the 
Bat algorithm (BA). This algorithm is a population-based 
metaheuristic developed by Yang [6] in 2010. BA has been 
inspired by the echolocation behavior of bats in nature. 
Bats are fascinating birds. Although BA has been suc-
cessfully applied to a wide range of optimization applica-
tions [24], many studies have focused on solving the basic 
BA's shortcomings, including local optima entrapment 
and unwanted premature convergence, especially when 
dealing with complex optimization problems [25]. One of 
the ways to improve the standard BA is to change the fre-
quency equation existing in the position updating formula-
tion of virtual bats [6]. Thus, many studies have been con-
ducted based on changing the frequency equation of BA. 
Since DE has been formulated based on the changes in the 
frequency of the periodic event, researchers tried to incor-
porate DE in the frequency equation of BA. For example, 
Meng et al. [19] proposed Novel Bat Algorithm (NBA) 
and incorporated the formulation DE in the basic BA to 
enhance its performance. This research item or other rel-
evant studies use the DE phenomenon to modify the fre-
quency equation existing in the standard BA. However, 

the mathematical formulation of DE can be used differ-
ently and can be formulated with some idealized rules as 
a new optimization algorithm.

3 Doppler effect-mean Euclidian distance threshold 
algorithm
The main objective of this section is to formulate the new 
physics-based metaheuristic algorithm based on the DE 
phenomenon and a new mechanism called Mean Euclidian 
Distance Threshold Algorithm (MEDT). Since both these 
concepts are simultaneously utilized in this paper, the pro-
posed metaheuristic is abbreviated as DE-MEDT.

3.1 Inspiration 
In DE-MEDT algorithm, the search agents are defined as 
observers, and the population size is fixed equal to the num-
ber of observers in the search space. Thus, the DE-MEDT 
algorithm is a population-based optimizer in which each 
candidate solution containing a number of optimization 
variables is considered as an observer. The observers update 
their positions based on the DE formulation as discussed in 
Section 2 and Eqs. (1)–(4). In our implementation, we use 
the velocities of the observer and source to simulate an effi-
cient search mechanism. We virtually eliminate the effect of 
perceived frequency by the observer and emitted frequency 
by the source from the DE equation. For this purpose, the 
propagation speed in the numerator of Eqs. (3) and (4) is 
respectively replaced with the velocities of vo and vs:

(b)

Fig. 2 The possible movement of source and observer relative to each other 
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By substituting Eqs. (5) and (6) in Eq. (1) and manip-
ulating it, the new velocity, νo

new, as stepsize for updating 
the position of the observers is calculated as follows: 

v v v v
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3.2 Mathematical model of the DE-MEDT optimization 
algorithm 
In this subsection, the mathematical model of DE-MEDT 
algorithm is described in detail. 

3.2.1 Initialization step
In the initialization step, DE-MEDT randomly initializes 
a set of agents within the allowed range. In this regard, 
nOs positions are randomly generated with the population 
size equal to nOs. Each member of the population called 
an observer, Oi, is a solution containing nd design vari-
ables for an optimization problem. Mathematically speak-
ing, the jth design variable of ith observer in the initializa-
tion phase, Oi j,0 , is randomly generated as:  

O O rand O O

i nOs j nd

i j j min j max j min, , , , ;

, , , , , ,.., ,

0

1 2 1 2

� � � �� �
� � �

 (8)

in which rand is a random number from a uniform distri-
bution in the interval [0,1]. This random number is gen-
erated separately for any observer and any optimization 
variable; Oj,max and Oj,min represent the maximum and mini-
mum permissible values of the jth design variable, respec-
tively. Each randomly-generated observer is then evalu-
ated by the objective function of the optimization problem. 
When all observers are evaluated, the quality vector can 
be obtained as follows:

QV 0

1

0

2

0 0 0� � � � � � � � � � ��� ��fobj O fobj O fobj O fobj Oi nOs, , , , , ,

 (9)
where QV 0 is the quality vector of observers in the initial-
ization phase, and f obj(Oi

0) is the objective function value 
of the ith observer in the initialization step. If the QV 0 
is sorted based on the value of the objective function in 
ascending order, the first and last elements of the QV 0 vec-
tor will become the best and worst members of the initial 
population, respectively.

3.2.2 Updating the mean position 
The cyclic body of the DE-MEDT is started from this 
step. In this step, the mean position of the observers is 
obtained. Since each member of the population has nd 
design variables, the mean value of each design variable 
should be first determined. To do this, the mean value of 
the jth design variable is obtained from averaging of the 
nOs observers as follows:  

Mean
nOs

Oj
i

nOs

i j�
�
�1

1

, , (10)

where Meanj is the mean value of the jth design vari-
able. By obtaining the mean value of all design variables 
(j = 1,2,…,nd), the mean position of the algorithm agents, 
MP[1:nOs], will be determined:

MP Mean Mean Mean MeannOs j nd1 1 2:
, , , , ,� � � � ��� �� . (11)

3.2.3 Updating the Euclidian distance 
This step deals with calculating the Euclidian distance of 
each observer from the mean position of the observers. 
Using Eq. (10), the Euclidian distance of th observer in jth 
design variable is obtained as follows:

ED O Meani
j

nd

i j j� �� �
�
�
1

2

,
. (12)

3.2.4 Determining the velocities 
In this step, for each observer, the velocities of the 
observer, source, and propagation velocity of the medium 
are determined. To this end, for the respective observer 
(i.e., Oi ), the agent with better quality is selected randomly 
from the sorted population based on the quality of observ-
ers. This selected agent is called the determinative agent 
(Xdet) for the Oi and is calculated as follows: 

if

elseif

end

O O

X randi O O

O O

X O

i

det i

i

det

�

� � �
�

�

�

1

1 1

1

1

,

 (13)

in which randi(O1, Oi–1) returns a random observer from 
the sorted population of O1 to Oi–1. Using Eq. (13), the 
velocities of the observer (vo ) and source (vs ), and the 
propagation velocity of the medium (v) are obtained by the 
following equations:

v X Oo det i� � , (14)
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v X Os det nOs� � ,  (15)

v Xdet= .  (16)

3.2.5 Determining wavelength 
This step determines the wavelengths emitted by the source 
and received by the observer. According to Eqs. (2)–(4), the 
frequency of a wave is inversely proportional to its wave-
length so that the waves with a low frequency have a lon-
ger wavelength and vice versa. If the wavelength perceived 
by an observer (λo) smaller than or equal to the wavelength 
emitted by the source (λs), the λo/λs will become lower than 
or equal to 1. This result means that the frequency per-
ceived by an observer is more than the frequency emitted 
by the source (λo > λs). Using Eq. (7), for each observer in 
each iteration, we replace the λo/λs with a number randomly 
generated in the [0,1] interval as:

�
�
o

s

rand� . (17)

Thus, using Eq. (17), Eq. (7) can be rewritten as below:

v rand v v v
v vo

new
s

o

s

� �
�
�

�

�
�

�

�
�� . (18)

3.2.6 Calculating the position of the observer
In this step, the new position of the th observer, Oi

new, is 
calculated as follows:

O O vi
new

i o
new� � , (19)

in which Oi is the position of ith observer in the current 
iteration, and stepsize is obtained based on Eq. (18). Fig. 3 
schematically shows how the new position of the iith 
observer is obtained.

3.2.7 Mean Euclidean distance threshold
MH algorithms should be equipped with a mechanism to 
escape from the local optima, especially when they are 
close to the optimum solutions. Moreover, balancing each 
metaheuristic's exploration and exploitation phases is an 
essential issue in finding the global optimum in the solution 
space. Accordingly, an efficient mechanism called Mean 
Euclidean Distance Threshold (MEDT) is proposed here to 
improve the quality of solutions generated by the proposed 
algorithm. The proposed MEDT mechanism makes a good 
trade-off between the exploration and exploitation phases 
of the proposed DE-MEDT algorithm and causes escape 
from local minima. MEDT comprises two definitions. The 
first definition is a radius determining how much the agents 

are ideally close to each other in the search space of the cur-
rent iteration. This radius is called the Scatter Radius Index 
(SRI) and is obtained by averaging all agents' Euclidian 
distances using Eq. (12) as follows:

SRI
nOs

EDIter

i

nOs

i�
�
�1

1

, (20)

where SRI Iter is the scatter radius in the current iteration, 
and EDi is the Euclidian distance of ith agent obtained by 
Eq. (12). If the SRI Iter is normalized to the search space of 
the optimization problem, the following equation can be 
obtained: 

NSRI SRI
max

Iter
Iter

nd
max

nd
min

�
�� �� � � �Var Var1 1: :

, (21)

where Var1:nd
max
� �  and Var1:nd

min
� �  are two vectors representing 

the maximum and minimum permissible values of the 
design variables. By defining the NSRI Iter in each itera-
tion, we can ideally eliminate the effect of SRI Iter  depen-
dency on the search space of the optimization problem. 

The second definition is a criterion that indicates the 
convergence of the solutions in the current iteration. This 
index is called the Convergence Index (CI). The value of 
NSRI Iter determines the value of the CI as follows:

CI NSRI if NSRI
Otherwise

Iter Iter
�

� ��
�
�

��

� �1
1

/
, (22)

in which α is a sensitive parameter that determines the 
convergence criterion of the algorithm. In this paper, α is 
fixed equal to 10 based on the sensitivity analysis per-
formed in the next sections. The following scheme is exe-
cuted to change Nth design variable of the Oi

new in Eq. (19) 
by using the proposed MEDT:

Fig. 3 Position updating of the ith observer in DE-MEDT algorithm
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if rand pa CI

N randi nd

O O Uinfrnd SRIi N
new

N
new
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� ��

1

1 1

1

, ,

, ,
IIter

end

 (23)

in which rand is a random number in the range of [0,1]; 
CI is the convergence index obtained by Eq. (22); N returns 
a value from the integer 1 to the number of design variables 
(nd) by randi(nd,1,1) operator; O N

new
1,  and Oi Nnew,  represent 

the Nth design variable of the first and ith newly gener-
ated observers, respectively, and Uinfrnd is a continuous 
uniform random number in the range of [–1,1]. It is worth 
mentioning that O1

new is not necessarily the best observer 
and is just the first newly generated observer in the current 
iteration. Since the convergence of the DE-MEDT algo-
rithm to local or global optimum is unknown, the possibil-
ity of working the proposed MEDT depends on the value 
of pa × (1 – CI). It means that the maximum probability of 
occurrence of MEDT is equal to pa %. In this study, the 
value of pa is set equal to 0.5 according to the sensitiv-
ity analysis carried out in the following sections. As the 
iteration number increases, the value of NSRIIter decreases. 
Thus, CI decreases and the probability of performing this 
mechanism based on Eq. (23) will increase. The proposed 
MEDT mechanism indicates the local search or intensifi-
cation capability of the algorithm. Mathematically speak-
ing, one dimension of the newly generated solution by 
Eq. (19) is randomly selected and intelligently changed 
around the best observer O1

new based on the value of SRIIter. 
Fig. 4 schematically indicates how the proposed mecha-
nism works during the course of iterations.

3.2.8 Checking the boundary condition limitation 
After generating each new solution by the DE-MEDT 
algorithm, the design variables of the solution should be 
checked to be in the permissible range. In DE-MEDT, 

if the jth design variable of the newly generated observer 
(Oi jnew, ) lies out the allowed boundary, Oi jnew,  will be 
clipped on the closer boundary, whether it is upper bound 
or lower bound. For example, let us consider that the jth 
design variable has the lower and upper bounds equal to 0 
and 1, respectively. If the DE-MEDT generates a value for 
the jth variable equal to -0.2, this value will be replaced 
by 0 due to being closer to the lower bound. On the con-
trary, if the algorithm generates a value for the jth design 
value equal to 1.1, it will be replaced by 1 due to being 
closer to the upper bound. Following this strategy makes 
that the newly generated solutions are being in the per-
missible range. Mathematically speaking, the following 
scheme is employed to check the boundary condition of 
the jth design variable:

O max O Oi j
new

j min i j
new

, , ,,�� � � , (24)

O min O Oi j
new

j max i j
new

, , ,,�� � � , (25)

where Oj,min and Oj,max are the lower bound and upper 
bound of the jth design variable. 

3.2.9 Evaluating and sorting the agents
In this step, the newly generated observers are evaluated 
after checking the boundary condition of the design vari-
ables. Like the initialization step, each observer generated 
by the DE-MEDT algorithm in the previous steps is then 
evaluated by the objective function of the optimization 
problem. After evaluation of all observers in the current 
iteration, we can form the quality vector of the observer in 
the current iteration, QViter, as follows:

QV
fobj O fobj O

fobj O fobj O
iter

new new

i
new

nOs
new

�
� � � � �
� � �
1 2, , ,

, , �� �
�

�

�
�
�

�

�

�
�
�

. (26)

Fig. 4 Schematic demonstration of working the proposed MEDT during the optimization process
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Then, the greedy strategy between the population of 
observers in the current iteration and those in the previous 
iteration is carried out. Based on this strategy, the newly 
generated observers and those created in the previous 
iteration are merged. Then, the best nOs observers with 
better objective function values than other observers are 
selected from the merged population. The selected observ-
ers are considered as the current population, and they will 
contribute in the next iteration for the same selection. 
Applying this strategy makes the proposed DE-MEDT 
algorithm consider the higher quality agents by comparing 
the current and previous iteration solutions. In this regard, 
this technique can help the intensification ability of the 
DE-MEDT. It should be noted that in the first iteration of 
the algorithm, the previous population is generated in the 
initialization step. Then, the population of the initializa-
tion phase is merged with the current population to select 
the best nOs agents.  

3.2.10 Checking termination criterion of the DE-
MEDT algorithm 
As the last step of the proposed algorithm, the termina-
tion criterion of the DE-MEDT algorithm is checked. 
The algorithm terminates and reports the best solution 
if the termination criterion is satisfied. Otherwise, if the 
termination condition is not met, the algorithm goes to 

Step 2 (Section 3.2.2.) for a new loop of the DE-MEDT. 
Like other population-based optimizers, two common ter-
mination conditions can be considered as stopping crite-
ria of the DE-MEDT: the maximum number of iterations 
(MaxIter) and the maximum number of function evalua-
tions (MaxNFEs).

3.3 Pseudo-code and flowchart of DE-MEDT algorithm
The pseudo-code and flowchart of the proposed DE-MEDT 
are presented in Algorithm 1 and Fig. 5, respectively. As it 
can be seen, the proposed algorithm can be easily imple-
mented in programming languages. 

3.4 Computational complexity of the DE-MEDT 
algorithm
The computational complexity is a key metric for evaluat-
ing the run time of an algorithm taken to execute. For cal-
culating the computational complexity of the DE-MEDT 
algorithm, four main factors are considered: the initial-
ization process, objective function, sorting, and position 
updating of the observers. In the initialization process, 
the N observers are randomly initialized. In this regard, 
the computational complexity of the initialization pro-
cess is obtained equal to O(N). The second process deals 
with the computational complexity of the objective func-
tion. Since it depends on the optimization problem, we do 

Algorithm 1 Pseudo-code of the DE-MEDT algorithm

Initialize the DE-MEDT algorithm parameters: pa, nOs, and MaxIter.
Initialize the observer's positions randomly using Eq.(8).
Evaluate observers, sort them, and form the initial quality vector using Eq. (9).
while (Iter < MaxIter) do 

Calculate the mean position of the observers (MP[1:nOs]) using Eq. (10)–(11).
Calculate the Euclidean distance of each observer from the mean position of the observers (EDi) using Eq. (12).
for (each observer, Oi) do

Determine the determinative agent, Xdet, from the sorted population of the observers using Eq.(13).
Calculate the velocities of the observer and source, and propagation velocity of the medium using Eq. (14)–(16).
Determine the wavelength emitted by the source and received by the observer using Eq. (17).
Calculate the ith observer position using Eq. (19).
Determine scatter radius index of the current iteration (SRIIter) using Eq. (20).
Normalize the SRIIter to the search space of the optimization problem using Eq. (21).
Determine the convergence index (CI) using Eq. (22).
if rand < pa × (1 – CI) then

Update the th observer position by the proposed MEDT mechanism using Eq. (23).
end if
Check the boundary condition limitation of the ith observer using Eq. (24)–(25).
Evaluate the new position of the ith observer using the objective function of the optimization problem.  

end for
Form the quality vector for the newly generated observers using Eq. (26).
Apply greedy strategy between the observers generated in the current iteration and those generated in the previous iteration.
Iter = Iter + 1

end while
Report the best observer found by the DE-MEDT.
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Fig. 5 The flowchart of the DE-MEDT algorithm

not explain this complexity here. The computational com-
plexity of sorting is O(NlogN). The last factor is related to 
calculating the computational complexity of the observ-
ers' positions updated iteratively in the main loop of the 

DE-MEDT. This complexity is equal to O(M × N), where 
M indicates the iterations. From these calculations, we 
can get the complexity of the whole algorithm as follows: 
O N M logN MlogN� � � �� �� �1 .
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4 Mathematical benchmark functions
In this section, the performance of the proposed DE-MEDT 
algorithm is examined through a set of 23 commonly used 
unimodal and multimodal benchmark functions. These 
benchmarks include three families of mathematical func-
tions: unimodal functions (F1–F7), multimodal functions 

(F8–F13), and fixed dimension multimodal functions 
(F14–F23). Table 1 gives the mathematical description of 
these commonly used benchmark functions. In this table, 
Dim represents the dimension of the functions, Range is 
the definition domain of the function, and fmin refers to the 
optimal value of the function.  

Table 1 Description of 23 commonly used mathematical benchmark functions

Function ID Function Equation Dim Range fmin

Unimodal functions

F1 30 [–100,100] 0

F2 30 [–10,10] 0

F3 30 [–100,100] 0

F4 30 [–100,100] 0

F5 30 [–30,30] 0

F6 30 [–100,100] 0

F7 30 [–1.28,1.28] 0

Multimodal functions

F8 30 [–500,500]

F9 30 [–5.12,5.12] 0

F10 30 [–32,32] 0

F11 30 [–600,600] 0

F12 30 [–50,50] 0

F13 30 [–50,50] 0
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4.1 Qualitative results of the DE-MEDT algorithm
Fig. 6 shows the qualitative results of some commonly used 
mathematical benchmark functions using the proposed 
DE-MEDT algorithm. The qualitative results shown in this 
figure include search history, trajectory of the first individ-
ual, the average fitness of all agents, and convergence curve. 

The search history displays the position of all agents 
from the first to the last iteration. Trajectory of the first 
individual shows how the position of the first dimension 
in the respective function is changed during the optimi-
zation task. The average fitness of all agents is obtained 
by averaging the objective function values of all search 
agents in each iteration. It indicates how the average fit-
ness of all algorithm individuals is changed in the whole 
optimization process. The convergence history shows the 

relationship between the values of the objective function 
and the number of iterations. Moreover, it reveals the trend 
of the algorithm from explorative behavior to exploitative 
behavior. 

From observing the history position of algorithm indi-
viduals, first, we can see that individuals of the DE-MEDT 
explore a significant part of the search space. This obser-
vation reveals that the proposed algorithm has a strong 
capability of searching and indicates that the DE-MEDT 
algorithm can avoid falling into a local optimum. On the 
other hand, we can see that the algorithm can simultane-
ously find most of the positions around the neighborhood 
of the optimum solution. Both of these observations prove 
a good balance between the exploration and exploitation 
tendencies of the algorithm. 

Continuation of Table 1

Function ID Function Equation Dim Range fmin

Fixed-dimension multimodal functions

F14 2 1

F15 4 0.00030

F16 2 -1.0316

F17 2 0.398

F18 2 3

F19 3 -3.86

F20 6 -3.32

F21 4 -10.1532

F22 4 -10.4028

F23 4 -10.5363
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A close examination of the trajectory of the first indi-
vidual demonstrates the sudden fluctuation of the posi-
tion in the initial stages of the search process. As it can be 
seen, the range of this fluctuation coverages about 100% 
of the solution space. This behavior shows the explora-
tion tendency of the DE-MEDT. As the iteration number 
increases, the fluctuation converges to a value and tends to 
be more stable. It means that the search mechanism of the 
algorithm is changed from the exploration to the exploita-
tion phase. In some functions, such as F7 and F8, the fluc-
tuation tends to converge and then diverge. This obser-
vation means the DE-MEDT algorithm can jump out of 
a local minima entrapment. 

By examining the average of all fitness from Fig. 6, we 
can understand that the proposed algorithm tends to con-
verge so fast by monitoring the average of all individuals. 
When the number of iterations increases, the downward 
trend slows down and goes with variations. However, the 
overall average gradually decreases, indicating the high 
searching abilities of the DE-MEDT. 

The last qualitative result examined in the DE-MEDT 
algorithm is the convergence curve. This curve is usu-
ally employed to assess the convergence performance of 
algorithms. Fig. 6 shows the convergence curves of the 
DE-MEDT in different mathematical benchmark func-
tions. As seen from these curves, the proposed method 
has an accelerated reducing pattern, especially in the early 
stage of the optimization task. 

4.2 Comparison of DE-MEDT algorithm with other 
optimizers
In this section, the exploration and exploitation tendencies 
of the DE-MEDT algorithm are evaluated using a set of 23 
well-known unimodal, multimodal, and fixed-dimension 
multimodal benchmark functions. Typically, unimodal 
functions (F1–F7) are used to evaluate the exploitation capa-
bility of the algorithm due to having only one global best 
solution. In contrast, the multimodal functions (F8–F13) and 
fixed-dimension multimodal function (F14–F23) are suitable 
for assessing the exploratory behavior of the algorithm. 

Table 2 compares the statistical results (i.e., aver-
age (AVG) and standard deviation (SD) values) of the 
proposed DE-MEDT algorithm with other well-estab-
lished and advanced metaheuristic algorithms, includ-
ing Bat Algorithm (BA), a hybrid algorithm (PSOGSA) 
with the combination of Particle Swarm Optimization 
(PSO) and Gravitational Search Algorithm (GSA) [26], 
Novel Bat Algorithm (NBA) [19], High Exploration PSO 
(HEPSO) [27], a hybrid metaheuristic based on Firefly 

and PSO algorithms (HFPSO) [28], and Fractional Lévy 
flight Bat Algorithm (FLFBA) [29]. For a fair comparison, 
in all algorithms, the value of the Maximum Number of 
Function Evaluations (MaxNFEs) is considered equal to 
5,000 × Dim. To achieve statistically meaningful results 
for comparison, each algorithm is run 30 times inde-
pendently with a population size equal to 30. The algo-
rithm-specific parameters of the involved metaheuristics 
are set based on the recommendation of their source paper. 
For the proposed DE-MEDT, the values of α and pa are 
taken 10 and 0.5, respectively according to the sensivity 
analysis carried out in Section 4.3. 

According to the statistical results reported in Table 2, 
the DE-MEDT found the minimum average in 18 func-
tions. After the DE-MEDT, NBA and HFPSO obtained 
the minimum average in 5 and 4 functions, respectively. 
A close examination of the results for unimodal func-
tions indicates that the DE-MEDT stands in the first place, 
reflecting the good exploitation behavior of the proposed 
DE-MEDT algorithm. For multimodal functions, the 
comparison of DE-MEDT with six other MH algorithms 
revealed that DE-MEDT is the best optimizer and pro-
vides competitive results. Thus, the results acquired for 
multimodal functions illustrated an excellent exploration 
ability of the DE-MEDT algorithm.  

4.3 Parameter sensitivity analysis of DE-MEDT 
algorithm
This section analyzes the sensitivity of the algorithm-spe-
cific parameters of the proposed algorithm, which are α 
and pa. This analysis is performed to determine which 
values of the parameters α and pa can give better results. 
For this purpose, three test functions from each collec-
tion of the unimodal and multimodal benchmark functions 
(i.e., F1, F5, F6, F8, F10, and F12) are taken for sensitivity 
analysis of these parameters. In this regard, the values of 
each parameter are defined as follows: α = [5,10,50,100] 
and pa = [0,0.25,0.5,0.75,1]. Since α and pa, respectively, 
have 4 and 5 values, there are 20 combinations of the 
design. For each design, the MaxNFEs and nOs are fixed 
equal to 5,000 × Dim and 30, respectively. Furthermore, 
each design is evaluated by averaging the objective func-
tion value acquired from 30 independent runs. Table 3 
illustrates the average results of these functions at each 
designed combination. From the obtained results, it can be 
observed that the values of α and pa, respectively, equal to 
10 and 0.5, reports better results due to achieving the first 
rank among the other combinations. 
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Fig. 6 Qualitative results for eight commonly used benchmark functions
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Table 2 Comparison of the results from DE-MEDT and other optimization methods for the 23 commonly used mathematical benchmark functions

BA PSOGSA NBA HEPSO HFPSO FLFBA DE-MEDT

F1 AVG 3.29E-03 1.67E+03 9.33E-62 1.00E-03 7.73E-23 2.60E-16 1.63E-148

SD 3.84E-03 3.79E+03 5.10E-61 8.65E-04 6.87E-23 6.65E-16 4.94E-148

F2 AVG 3.51E+02 2.00E+00 2.16E-36 2.11E-04 3.73E-12 3.63E-11 1.00E-92

SD 1.67E+03 4.07E+00 1.14E-35 1.11E-03 2.49E-12 7.15E-11 1.83E-92

F3 AVG 4.08E-03 8.06E+03 1.73E-35 3.88E+03 1.59E-06 7.54E-07 5.88E-05

SD 3.96E-03 8.43E+03 9.35E-35 1.28E+03 1.43E-06 2.55E-06 1.69E-04

F4 AVG 3.42E+01 4.24E+01 2.80E-01 1.46E+01 2.56E-05 2.29E-01 6.40E-28

SD 1.14E+01 3.86E+01 1.50E+00 4.16E+00 1.60E-05 2.43E-01 2.44E-27

F5 AVG 7.48E+01 4.87E+01 2.00E+01 6.85E+01 2.71E+01 1.76E+01 2.09E+01

SD 1.32E+02 1.02E+02 1.68E+00 2.72E+01 2.31E+01 2.82E+00 1.12E+00

F6 AVG 3.02E-03 2.33E+03 1.48E-01 1.05E-03 1.64E-22 1.65E-13 2.77E-32

SD 2.27E-03 5.04E+03 2.28E-01 8.05E-04 1.64E-22 3.04E-13 5.97E-32

F7 AVG 1.50E-02 1.61E-02 1.19E-03 2.80E-04 2.77E-03 2.77E-02 2.21E-03

SD 9.11E-03 6.79E-03 1.03E-03 2.53E-04 1.11E-03 8.79E-03 9.55E-04

F8 AVG -7.34E+03 -7.40E+03 -7.49E+03 -9.30E+03 -7.43E+03 -9.63E+03 -1.26E+04

SD 7.88E+02 8.06E+02 2.31E+03 2.61E+02 8.52E+02 6.45E+02 3.68E-12

F9 AVG 1.96E+02 1.22E+02 3.64E+01 7.52E+00 4.53E+01 1.44E+01 0.00E+00

SD 1.02E+02 3.83E+01 3.47E+01 2.09E+00 2.04E+01 4.34E+00 0.00E+00

F10 AVG 1.89E+01 5.19E+00 4.91E-15 2.07E-01 5.77E-12 2.68E+00 5.51E-15

SD 1.16E+00 8.12E+00 1.23E-15 1.27E-01 2.96E-12 4.01E+00 1.66E-15

F11 AVG 7.19E+01 2.11E+01 6.64E-03 1.14E-02 1.39E-02 1.43E-02 0.00E+00

SD 6.10E+01 3.88E+01 2.25E-02 2.25E-02 1.53E-02 1.87E-02 0.00E+00

F12 AVG 2.39E+01 8.53E+06 8.64E-02 1.13E-05 3.46E-03 4.49E-02 1.60E-32

SD 1.06E+01 4.67E+07 4.21E-01 3.23E-05 1.89E-02 7.55E-02 1.83E-34

F13 AVG 6.02E+01 1.86E-20 8.15E-02 4.57E-04 1.04E-21 2.43E-02 1.69E-32

SD 1.50E+01 3.15E-21 1.13E-01 5.18E-04 5.46E-21 6.10E-02 2.07E-33

F14 AVG 6.89E+00 5.14E+00 7.08E+00 9.98E-01 2.71E+00 1.13E+01 1.10E+00

SD 6.37E+00 4.55E+00 5.00E+00 7.31E-06 1.98E+00 7.18E+00 3.03E-01

F15 AVG 6.78E-03 6.30E-03 2.42E-03 8.76E-04 2.14E-03 5.75E-03 3.07E-04

SD 1.23E-02 8.58E-03 6.09E-03 3.70E-04 4.99E-03 1.22E-02 1.12E-18

F16 AVG -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -9.77E-01 -1.03E+00

SD 4.90E-04 5.76E-16 4.81E-16 4.55E-07 4.70E-16 2.07E-01 6.78E-16

F17 AVG 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01

SD 1.83E-04 0.00E+00 6.14E-16 3.53E-05 0.00E+00 2.43E-15 0.00E+00

F18 AVG 5.73E+00 3.00E+00 5.70E+00 3.04E+00 3.00E+00 3.90E+00 3.00E+00

SD 1.48E+01 2.59E-15 1.48E+01 7.33E-02 2.60E-15 4.93E+00 1.33E-15

F19 AVG -3.85E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.84E+00 -3.86E+00

SD 8.00E-03 2.48E-15 2.15E-15 6.99E-07 2.41E-15 1.41E-01 2.71E-15

F20 AVG -3.04E+00 -3.26E+00 -3.28E+00 -3.29E+00 -3.28E+00 -3.27E+00 -3.30E+00

SD 8.95E-02 6.72E-02 5.83E-02 5.07E-02 5.83E-02 5.99E-02 4.39E-02

F21 AVG -4.45E+00 -5.15E+00 -7.22E+00 -8.40E+00 -6.39E+00 -5.33E+00 -9.14E+00

SD 2.61E+00 3.21E+00 3.30E+00 2.77E+00 3.27E+00 3.52E+00 1.18E+00

F22 AVG -6.02E+00 -6.97E+00 -8.87E+00 -9.07E+00 -7.31E+00 -4.01E+00 -1.04E+01

SD 3.23E+00 3.36E+00 2.62E+00 2.56E+00 3.29E+00 2.01E+00 8.73E-16

F23 AVG -4.58E+00 -6.60E+00 -7.38E+00 -9.12E+00 -7.98E+00 -3.74E+00 -1.05E+01

SD 3.24E+00 3.80E+00 3.58E+00 2.75E+00 3.50E+00 2.48E+00 1.81E-15
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Table 3 Sensitivity analysis for the control parameters of DE-MEDT optimizer with different test functions.

α pa F1 F5 F6 F8 F10 F12 Mean 
Rank

Final 
Ranking

AVG Rank AVG Rank AVG Rank AVG Rank AVG Rank AVG Rank AVG Rank

5

0 2.58E-108 19 2.62E+01 12 2.22E-30 12 -1.01E+04 18 7.16E-15 16 3.46E-02 20 16.17 19

0.25 2.98E-128 16 3.20E+01 18 2.13E-32 1 -1.20E+04 16 6.57E-15 14 1.81E-32 5 11.67 15

0.5 2.43E-146 11 3.43E+01 20 3.55E-32 4 -1.25E+04 8 5.86E-15 11 1.68E-32 4 9.67 10

0.75 1.62E-164 8 3.03E+01 16 3.41E-20 15 -1.26E+04 2 5.15E-15 4 7.99E-22 10 9.17 8

1 5.40E-179 4 2.28E+01 3 1.19E-01 20 -1.26E+04 6 5.03E-15 2 8.87E-04 15 8.33 4

10

0 2.98E-110 18 2.36E+01 5 5.87E-32 8 -1.01E+04 17 7.64E-15 19 1.04E-02 17 14.00 17

0.25 1.28E-128 15 2.06E+01 1 3.71E-32 5 -1.23E+04 12 6.45E-15 12 1.63E-32 2 7.83 2

0.5 1.63E-148 9 2.09E+01 2 2.77E-32 2 -1.26E+04 1 5.51E-15 6 1.60E-32 1 3.50 1

0.75 4.68E-165 5 2.75E+01 13 2.98E-20 14 -1.26E+04 3 5.39E-15 5 3.84E-22 9 8.17 3

1 3.07E-180 2 2.59E+01 11 8.94E-02 19 -1.26E+04 5 5.03E-15 3 6.94E-04 14 9.00 7

50

0 1.42E-111 17 2.29E+01 4 5.67E-32 7 -9.86E+03 20 7.40E-15 18 2.42E-02 19 14.17 18

0.25 2.46E-130 13 2.37E+01 6 5.51E-32 6 -1.22E+04 14 6.57E-15 15 1.67E-32 3 9.50 9

0.5 3.47E-148 10 2.37E+01 7 1.02E-31 9 -1.25E+04 10 5.74E-15 9 1.93E-32 6 8.50 6

0.75 5.60E-165 6 3.23E+01 19 3.72E-20 16 -1.26E+04 7 5.63E-15 7 1.11E-22 8 10.50 12

1 2.06E-179 3 2.83E+01 15 1.47E-02 18 -1.23E+04 13 4.68E-15 1 1.86E-05 13 10.50 13

100

0 7.13E-107 20 2.78E+01 14 6.74E-31 11 -1.00E+04 19 7.64E-15 20 1.38E-02 18 17.00 20

0.25 7.27E-129 14 2.45E+01 10 2.96E-32 3 -1.22E+04 15 7.28E-15 17 3.46E-03 16 12.50 16

0.5 3.98E-146 12 2.43E+01 9 1.38E-31 10 -1.25E+04 11 6.45E-15 13 6.84E-32 7 10.33 11

0.75 1.36E-164 7 3.04E+01 17 9.00E-21 13 -1.25E+04 9 5.74E-15 10 1.24E-21 11 11.17 14

1 1.17E-180 1 2.41E+01 8 3.29E-03 17 -1.26E+04 4 5.63E-15 8 5.01E-06 12 8.33 5

5 Engineering design problems 
In many real-world problems, it is well-known that there 
are many restrictions. One main difference between global 
benchmark cases, examined in the previous section, and 
engineering design problems is considering constraints 
for design variables and their effects on finding the opti-
mum value for their objective functions. For this purpose, 
DE-MEDT algorithm is further evaluated through three 
constrained engineering design problems. The problems 
include a 72-bar spatial truss, a 200-bar planar truss, and 
a 3-bay 24-story frame. The optimization results acquired 
by DE-MEDT are compared with those of other well-
known optimizers presented in the literature. Like the pre-
vious section, each engineering problem is implemented 
30 times independently to achieve statistically meaningful 
results. Moreover, the number of observers is considered 
equal to 30 for all examined problems. 

5.1 A 72-bar spatial truss design problem 
The first engineering design problem is a 72-bar spatial 
truss structure, one of the most well-known problems in 
the area of structural optimization. The schematic repre-
sentation of the truss structure is shown in Fig. 7. This fig-
ure also exhibits the total number of structure nodes and 

the numbering of nodes and elements in each typical story. 
The 72 members are categorized into 16 element groups 
using structural symmetry; hence, this problem includes 
16 sizing variables. The elasticity modulus and material 
density are E = 10,000 ksi and ρ = 0.1 lb/in3, respectively. 
All nodes in three directions are subjected to the displace-
ment limitation of ± 0.25 in. The cross-sectional area of 
structural elements can vary between 0.1 in.2 and 3.0 in.2. 
The truss structure must be designed for two independent 
load cases, as listed in Table 4.

Fig. 7 The 72-bar spatial truss design problem
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Table 5 [30–34] presents the optimization results gained 
by the proposed DE-MEDT algorithm in comparison with 
previous studies conducted by other researchers. It can be 
seen that DE-MEDT acquires the best weight (379.62 lb) 
and the best average weight (379.68 lb) among all consid-
ered algorithms. Fig. 8 provides the constrained boundar-
ies of the problem evaluated at the best optimum design 
by the DE-MEDT algorithm. It can be seen that all design 
constraints have been satisfied.  

5.2 A 200-bar planar truss design problem 
The second engineering design problem is a 200-bar pla-
nar truss, one of the challenging benchmark problems in 

size optimization of truss structures. Fig. 9 shows the sche-
matic view of this truss structure. Due to structural symme-
try, the 200 bars of the truss are categorized into 29 element 
groups; hence, this problem includes 29 sizing variables. 
Information about which members belong to which element 
groups is given in Fig. 9. The elasticity modulus and mate-
rial density are E = 30,000 ksi and ρ = 0.283 lb/in3, respec-
tively. Although no displacement constraints are consid-
ered for the problem, it is designed optimally subjected to 
three independent loading conditions as follows: (1) 1.0 kip 
applied in the positive x-direction at nodes 1, 6, 15, 20, 29, 
34, 43, 48, 57, 62, and 71; (2) 10.0 kips applied in the neg-
ative Y-direction at nodes 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 
16, 17, 18, 19, 20, 22, 24, 26, 28, 29, 30, 31, 32, 33, 34, 36, 
38, 40, 42, 43, 44, 45, 46, 47, 48, 50, 52, 54, 56, 57, 58, 59, 
60, 61, 62, 64, 66, 68, 70, 71, 72, 73, 74 and 75; (3) loading 
conditions (1) and (2) applied together. The lower bound of 
cross-sectional area in structure elements is 0.1 in.2.

Table 6 [31, 32, 34–37]compares the optimization results 
achieved by the DE-MEDT optimization method and those 
found by other techniques like SAHS, TLBO, ADEA, 

Table 4 Load cases for the 72-bar spatial truss design problem

Case Node Fx (kips) Fy (kips) Fz (kips)

1 17 5.0 5.0 -5.0

2

17 0.0 0.0 -5.0

18 0.0 0.0 -5.0

19 0.0 0.0 -5.0

20 0.0 0.0 -5.0

Table 5 Comparison of the results from DE-MEDT and other optimization methods for the 72-bar spatial truss design problem

Element group
Optimal values of cross-sectional areas with continuous design variables (in2) 

Kaveh and 
Talatahari [30] Degertekin [31] Degertekin and 

Hayalioglu [32]
Jafari and 

Salajeghheh [33]
Kaveh and Zakian 

[34] Present work

HBB-BC SAHS TLBO PSOC IGWO DE-MEDT

1 A1–A4 1.9042 1.860 1.9064 1.8733 1.8585 1.8941

2 A5–A12 0.5162 0.521 0.50612 0.5135 0.5021 0.5167

3 A13–A16 0.1000 0.100 0.100 0.1000 0.1002 0.1000

4 A17–A18 0.1000 0.100 0.100 0.1000 0.1000 0.1000

5 A19–A22 1.2582 1.271 1.2617 1.2766 1.3011 1.2668

6 A23–A30 0.5035 0.509 0.5111 0.5133 0.5151 0.5111

7 A31–A34 0.1000 0.100 0.100 0.1000 0.1000 0.1000

8 A35–A36 0.1000 0.100 0.100 0.1000 0.1001 0.1000

9 A37–A40 0.5178 0.485 0.5317 0.5187 0.5311 0.5213

10 A41–A48 0.5214 0.501 0.51591 0.5132 0.5122 0.5155

11 A49–A52 0.1000 0.100 0.100 0.1000 0.1008 0.1000

12 A53–A54 0.1007 0.100 0.100 0.1000 0.1030 0.1000

13 A55–A58 0.1566 0.168 0.1562 0.1562 0.1560 0.1566

14 A59–A66 0.5421 0.584 0.54927 0.5596 0.5472 0.5432

15 A67–A70 0.4132 0.433 0.40966 0.3890 0.4202 0.4115

16 A71–A72 0.5756 0.520 0.56976 0.5679 0.5793 0.5663

Best weight (lb) 379.66 380.62 379.63 379.68 379.7615 379.62

Average weight (lb) 381.85 382.42 380.20 380.48 380.6811 379.68

Worst weight (lb) N/A 383.89 380.83 N/A N/A 380.40

SD (lb) 1.201 1.38 0.41 0.58 0.73 0.14

NSAs 13,200 13,742 19,709 8,050 11,960 17,040
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(a)                                                                                                            (b)
Fig. 8 Constraint boundaries of the 72-bar spatial truss evaluated at the optimized design by the DE-MEDT algorithm: (a) Displacement and (b) Stress

Fig. 9 The 200-bar planar truss design problem
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IGWO, CNNT-PSO, and MCOA. Based on the obtained 
results, it can be observed that the proposed DE-MEDT 
algorithm outperforms other considered methods in terms 
of solution accuracy. Fig. 10 displays the stress constraint 
boundaries of the truss structure obtained at the best opti-
mum design, indicating that the design constraint of the 
problem has not been violated. 

5.3 A 3-bay 24-story frame design problem 
The last design problem is a 3-bay 24-story frame, as 
shown in Fig. 11. The frame structure has 168 members 
(96 columns and 72 beams) and is a well-known engineer-
ing benchmark in structural optimization with discrete 
design variables. Davison and Adams [38] first proposed 
this benchmark problem in which the modulus of elasticity 

Table 6 Comparison of the results from DE-MEDT and other optimization methods for the 200-bar planar truss design problem

Element group
Optimal values of cross-sectional areas with continuous design variables (in2) 

Degertekin [31] Degertekin and 
Hayalioglu [32]

Bureerat and 
Pholdee [35]

Kaveh and 
Zakian [34]

Kim and Byun 
[36]

Pierezan et al. 
[37] Present work

SAHS TLBO ADEA IGWO CNNT-PSO MCOA DE-MEDT

1 0.154 0.146 0.1020 0.1024 0.1482 0.1390 0.1483

2 0.941 0.941 1.1193 0.9654 0.9405 0.9355 0.9772

3 0.100 0.100 0.1000 0.1391 0.1000 0.1000 0.1000

4 0.100 0.101 0.1223 0.1741 0.1000 0.1000 0.1020

5 1.942 1.941 1.9622 1.9613 1.9408 1.9355 1.9797

6 0.301 0.296 0.2693 0.2899 0.2975 0.2909 0.2952

7 0.100 0.100 0.1719 0.1294 0.1000 0.1000 0.1010

8 3.108 3.121 3.0690 3.1511 3.1067 3.0816 3.1089

9 0.100 0.100 0.1004 0.1251 0.1000 0.1000 0.1000

10 4.106 4.173 4.1509 4.0627 4.1067 4.0816 4.0990

11 0.409 0.401 0.4317 0.4131 0.4057 0.3967 0.4087

12 0.191 0.181 0.2122 0.4043 0.1897 0.2959 0.2215

13 5.428 5.423 5.3974 5.3357 5.4343 5.3854 5.4287

14 0.100 0.100 0.1102 0.2632 0.1000 0.1000 0.1313

15 6.427 6.422 6.3959 6.3226 6.4340 6.3853 6.4323

16 0.581 0.571 0.6141 0.7972 0.5745 0.6332 0.5315

17 0.151 0.156 0.2666 0.1791 0.1366 0.1842 0.1416

18 7.973 7.958 7.9408 8.1268 7.9803 8.0396 7.9617

19 0.100 0.100 0.1471 0.1141 0.1000 0.1000 0.1000

20 8.974 8.958 8.9445 9.1337 8.9802 9.0395 8.9584

21 0.719 0.720 0.8141 0.8000 0.71089 0.7460 0.6954

22 0.422 0.478 1.1050 0.2487 0.4659 0.1306 0.6196

23 10.892 10.897 11.2893 11.2008 10.9110 10.9114 10.9674

24 0.100 0.100 0.1004 0.1136 0.1000 0.1000 0.1023

25 11.887 11.897 12.2891 12.1703 11.9112 11.9114 11.9635

26 1.040 1.080 1.4742 0.9947 1.0712 0.8627 1.1796

27 6.646 6.462 5.3417 6.3377 6.5030 6.9169 6.0056

28 10.804 10.799 9.8931 10.5338 10.7210 10.9674 10.4521

29 13.870 13.922 14.9127 14.0917 13.9310 13.6742 14.1025

Best weight (lb) 25,491.9 25,488.15 25800.5708 25,771.78 25,453.0957 25,450.18 25,350.28

Average weight (lb) 25,610.2 25,533.14 26438.1058 26,699.19 25,459.1089 25,522.07 25,516.21

Worst weight (lb) 25,799.3 25,563.05 26851.1460 N/A 25,466.0958 25,557.53 25,650.79

SD (lb) 141.85 27.44 2,288.7184 410.40 3.1544 47.62 87.40

NSAs 19,670 28,059 20,000 23,760 1500000 27,720 30,000
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(a)

(b)

(c)
Fig. 10 Stress constraint boundaries of the 200-bar planar truss 

evaluated at the optimized design by the DE-MEDT: (a) Case 1; (b) 
Case 2 and (c) Case 3 Fig. 11 The 3-bay 24-story frame design problem
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and yield stress of the steel material are considered as 
E = 29,732ksi and Fy = 33.4 ksi, respectively. All 168 mem-
bers are categorized into 20 distinct groups (16 column 
groups and 4 beam groups). Information about which 
members of the frame belong to which element groups 
is shown in Fig. 11. The strength and displacement con-
straints are according to the AISC-LRFD requirements.

Table 7 [39–42] provides the comparisons between the 
results of the weight optimization process obtained by the 
proposed DE-MEDT and those obtained by Eagle Strategy 
with Differential Evolution (ES-DE) [39], Accelerated 
WEO [40], Improved Black Hole (IBH) [41], Self-Adaptive 
Multi-Population-based Jaya (SAMP-Jaya) [42], and 
Improved Shuffled based Jaya (IS-Jaya) [42]. This table 
shows that DE-MEDT found the best weight (201,402) 
against other considered methods.

The constraints of the problem, including the inter-
story drift and stress ratio of all structural elements, are 
evaluated at the best optimum design and displayed in 
Fig. 12. From this figure, it can be observed that all design 
constraints of the problem are satisfied. 

6 Conclusions 
This paper introduced a physically inspired popula-
tion-based MH algorithm named Doppler Effect-Mean 
Euclidian Distance Threshold (DE-MEDT) Optimization 
Algorithm. The mathematical formulation of the DE with 
some idealized rules acted as the stepsize of the proposed 
DE-MEDT to update the observers' positions. The qual-
ity of the observers was then enhanced based on the pro-
posed Mean Euclidian Distance Threshold (MEDT). This 
new efficient mechanism was also presented to improve 

Table 7 Comparison of the results from DE-MEDT and other optimization methods for the 3-bay 24-story frame design problem

Element group
Optimal cross-sectional areas with discrete design variables (W shape sections)

Talatahari et al. 
[39]

Kaveh and 
Bakhshpoori [40]

Gholizadeh et al. 
[41] Kaveh et al. [42] Present work

ES-DE AWEO IBH SAMP-Jaya IS-Jaya DE-MEDT

1 W14 × 145 W14 × 159 W14 × 132 W14 × 159 W14 × 145 W14 × 159

2 W14 × 99 W14 × 132 W14 × 99 W14 × 109 W14 × 132 W14 × 109

3 W14 × 109 W14 × 99 W14 × 109 W14 × 132 W14 × 99 W14 × 99

4 W14 × 132 W14 × 109 W14 × 109 W14 × 90 W14 × 90 W14 × 82

5 W14 × 99 W14 × 68 W14 × 109 W14 × 61 W14 × 61 W14 × 68

6 W14 × 109 W14 × 38 W14 × 99 W14 × 38 W14 × 53 W14 × 43

7 W14 × 145 W14 × 30 W14 × 90 W14 × 34 W14 × 38 W14 × 34

8 W14 × 68 W14 × 22 W14 × 90 W14 × 22 W14 × 22 W14 × 22

9 W14 × 109 W14 × 90 W14 × 68 W14 × 90 W14 × 99 W14 × 90

10 W14 × 68 W14 × 99 W14 × 74 W14 × 109 W14 × 99 W14 × 109

11 W14 × 48 W14 × 99 W14 × 53 W14 × 90 W14 × 99 W14 × 99

12 W14 × 68 W14 × 74 W14 × 53 W14 × 82 W14 × 82 W14 × 90

13 W14 × 38 W14 × 68 W14 × 30 W14 × 74 W14 × 74 W14 × 74

14 W14 × 61 W14 × 61 W14 × 38 W14 × 61 W14 × 53 W14 × 61

15 W14 × 30 W14 × 34 W14 × 22 W14 × 34 W14 × 30 W14 × 34

16 W14 × 22 W14 × 22 W14 × 22 W14 × 22 W14 × 22 W14 × 22

17 W30 × 90 W30 × 90 W30 × 90 W30 × 90 W30 × 90 W30 × 90

18 W21 × 55 W8 × 18 W6 × 16 W8 × 18 W6 × 15 W6 × 15

19 W21 × 48 W24 × 55 W24 × 55 W24 × 55 W24 × 55 W24 × 55

20 W10 × 45 W6 × 8.5 W6 × 9 W6 × 8.5 W6 × 8.5 W6 × 8.5

Best weight (lb) 212,479.17 202,194.02 208,719 202,410.034 201,618.034 201,402

Average weight (lb) N/A 203,412.88 215,226 207979.482 203,169.205 203,321

Worst weight (lb) N/A N/A N/A 230,940.004 209,586.084 213,240

SD (lb) N/A N/A N/A 7,031.549 1,877.119 2,447

NSAs 12,500 11,300 10,000 16,600 14,100 17,550
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the local optima avoidance capability and convergence 
speed of the DE-MEDT algorithm. Easy implementation 
and requiring few control parameters are the main advan-
tages of the proposed algorithm. Qualitative analysis of 
DE-MEDT was conducted using four criteria, including 
search history, trajectory of the first individual, the aver-
age fitness of all agents, and convergence curve. Two well-
known collections of constrained and unconstrained opti-
mization problems were considered for evaluating the 
effectiveness of DE-MEDT against its other counterparts. 

Twenty-three classical unimodal and multimodal test 
functions were utilized in the first collection. In solv-
ing this set of benchmark functions, six well-established 

and recently developed MH algorithms abbreviated as 
BA, PSOGSA, NBA, HEPSO, HFPSO, and FLFBA were 
considered for comparison with the proposed DE-MEDT 
optimizer. The results of numerical experiments yielded 
wondrous results, showing that DE-MEDT has excellent 
exploration and exploitation abilities. 

Three constrained engineering design problems were 
considered in the second collection, including a 72-bar 
spatial truss, a 200-bar planar truss, and a 3-bay 24-story 
frame. Based on the obtained results from engineering 
design problems, the DE-MEDT optimization method 
showed better performance than other state-of-art MH 
optimization algorithms developed in the literature. 

(a)

(b)
Fig. 12 Constraint boundaries of the 3-bay 24-story frame evaluated at the optimized design by DE-MEDT: (a) Inter-story drift, (b) Stress ratio 
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