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Abstract

The natural frequencies of any structure contain useful information about the dynamic behavior of that structure, and by controlling 

these frequencies, the destructive effects of dynamic loads, including the resonance phenomenon, can be minimized. Truss 

optimization by applying dynamic constraints has been widely welcomed by researchers in recent decades and has been presented 

as a challenging topic. The main reason for this choice is quick access to dynamic information by examining natural frequencies. 

Also, frequency constraint relations are highly nonlinear and non-convex and have implicit variables, so using mathematical and 

derivative methods will be very difficult and time consuming. In this regard, the use of meta-heuristic algorithms in truss weight 

optimization with frequency constraints has good results, but with the introduction of form variables, these algorithms trap at 

local optima. In this research, by applying chaos map in meta-heuristic algorithms, suitable conditions have been provided to 

escape from local optima and access to global optimums. These algorithms include Chaotic Cyclical Parthenogenesis Algorithms 

(CCPA), Chaotic Biogeography-Based Optimization (CBBO), Chaotic Teaching-Learning-Based Optimization (CTLBO) and Chaotic 

Particle Swarm Optimization (CPSO), respectively. Also, by using different scenarios, a good balance has been achieved between 

the exploration and exploitation of the algorithms.
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1 Introduction
Due to the diversity in the use of truss structures, the opti-
mization of these structures has received more and more 
attention of the researchers. If these structures are selected 
to cover large openings, they will have a large number of 
members, and if used as telecommunication and transmis-
sion towers, they will usually be built in large numbers. 
Therefore, by optimizing this type of structures, resources 
and costs are significantly saved. For this reason, vari-
ables related to cost and efficiency along with engineer-
ing criteria such as strength and stability are considered. 
In most cases, the weight index is the main goal of the 
optimization, but in cases where structures are affected 
by dynamic loads such as earthquakes and storms, to pre-
vent resonance, their natural frequency should be limited 
to a certain range. To apply this type of constraint, the nat-
ural frequencies of the structures contain all the necessary 
information about the dynamic behavior of the structures. 
In low frequency vibration problems, the response of the 

structure depends on the base frequencies and the modal 
shape, and by applying a frequency limit, the dynamic 
behavior of the structure is easily controlled. In a number 
of optimization problems, by applying these relationships, 
the effects of some modes can be reduced. For example, 
in the design of aircraft wings, efforts are made to reduce 
bending and torsional modes. The design variables related 
to the cross section of the members are not explicitly pres-
ent in the dynamic equations of the structures and their 
presence is implicit, so if optimization is done with mathe-
matical methods and implicit derivatives, we will encoun-
ter strongly "nonlinear and non-convex equations that 
solve them." It will be very difficult and time consuming. 
Consequently, if we want to solve frequency constraints in 
an optimization using traditional methods, we must per-
form a sensitivity analysis. Derivatives of the eigenvalues 
and eigenvectors must therefore be calculated, and this will 
usually require some kind of approximation. In addition, 
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in some cases due to symmetry we will encounter repeti-
tive eigenvalues and repetitive frequencies that are indis-
tinguishable from ordinary studies and can only be deter-
mined with directional derivatives. When analyzing the 
sensitivity of structures, a certain complexity is created 
by the repetitive frequencies, mainly because the eigenval-
ues are not unique. Another limitation that greatly affects 
the traditional methods of mathematical optimization is 
the choice of a good starting point. In cases where the 
selected starting point is not appropriate, these methods 
are stopped when reaching the local optima, and no solu-
tion is provided to escape from these local optima. Today, 
with the complexity of issues and the increase in the num-
ber of decision variables, the unresponsiveness of classical 
methods becomes evident. Therefore, in order to overcome 
these challenges in the last decade, various types of pow-
erful optimization methods have been developed, in some 
of which the optimization of structures with frequency 
constraints has been considered. Most of these optimiza-
tion methods are inspired by meta-heuristic techniques. 
Meta-heuristic algorithms have been widely welcomed by 
researchers and are powerful tools for engineering optimi-
zation problems. The main features of these methods can 
be expressed in the following cases: 

They are based on the population. They are independent 
of the specific issue. They are inspired by natural phenom-
ena. They do not need any gradient information of objec-
tive function and constraints. The quality of the final solu-
tion does not depend on the starting point. They are based 
on decisions and principles of random search. In these 
algorithms, the value of the objective function itself is used 
instead of derivatives and they have global search capabil-
ities. Meta-heuristics are also suitable for complex, non-
linear, discrete and non-convex search spaces [1]. In the 
classification of these algorithms, the source of inspira-
tion has played an important role. Some of these sources 
of inspiration consist of algorithms based on evolution 
and evolution, algorithms based on collective intelligence, 
algorithms based on physical laws, algorithms based on 
environment and algorithms based on social and human 
laws. We introduce examples for each of these groups. 
Genetic Algorithms (GA) [2–3], Evolutionary Strategy 
(ES) [4] and Differential Evolution (DE) [5] are inspired 
by evolution. Cyclical Parthenogenesis Algorithms 
(CPA) [6], Particle Swarm Optimization (PSO) [7–8], 
Artificial Bee Colony (ABC) [9], Cuckoo Search (CS) [10], 
Ant Colony Optimization (ACO) [11], Gray Wolf 
Optimization (GWO) [12–13] and Whale Optimization 

Algorithm (WOA) [14] Inspired by swarming intelligence. 
Optimization algorithms based on water Evaporation 
Optimization (WEO) [15–16], Charged System Search 
(CSS) [17], Colliding Bodies Optimization (CBO) [18–20], 
Vibrating Particles System (VPS) [21–22], Thermal 
Exchange Optimization (TEO) [23], Big Bang-Big Crunch 
(BB-BC) [24–25], Ray Optimization (RO) [26–27] and 
Harmony Search (HS) [28] are inspired by the laws of phys-
ics. Also, Biogeography-Based Optimization (BBO) [29], 
Teaching-Learning-Based Optimization (TLBO) [30], 
Imperialist Competitive Algorithm (ICA) [31] and 
Shuffled Frog-Leaping Algorithm (SFLA) [32] are among 
the algorithms inspired by the environment, social and 
human laws and behavior, respectively. In each of these 
algorithms, a number of random numbers are involved 
that we use the system of alternative turbulence func-
tions to improve the escape conditions from local optima. 
Mathematically, chaos refers to the ability of a simple pat-
tern and model to show virtually no signs of random phe-
nomena, but to lead to the emergence of disordered reac-
tion behaviors in the environment. The salient features of 
a chaotic system are: 1) They are sensitive to initial con-
ditions. 2) Their alternating rotation is dense. 3) They 
have quasi-random and non-periodic behavior. At pres-
ent, these dynamic systems are considered by many sci-
entific societies and in various scientific disciplines such 
as engineering, medicine, biology and economics, the 
amazing effects of its use are observed. The term butter-
fly effect was suggested following an article by Edward 
Lawrence. At the 39th World Water Summit, Lawrence 
presented an article entitled: "Can a butterfly fly in Brazil 
cause strong winds in Texas?" [33]. Research shows that 
using chaos map instead of random distribution functions 
has yielded very valuable results. In structural optimiza-
tion applications, some of these turbulence functions are 
very likely to converge from a local minimum to a gen-
eral minimum, and can make significant improvements 
to meta-exploration algorithms with poor search perfor-
mance. In some other turbulence functions, unlike the pre-
vious case, the probability of being present in the range 
of local minima is higher and for algorithms that have 
poor extraction, a significant improvement is observed. 
Therefore, in this research, samples are selected from 
each of the groups of chaos map and applied with differ-
ent scenarios in meta-heuristic algorithms. Optimization 
algorithms include cyclic fertilization algorithm, biogeog-
raphy based algorithm, teaching and learning based algo-
rithm and particle swarm optimization algorithm. These 
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algorithms are combined with Gaussian, Liebovitch and 
Piecewise chaos map with different scenarios. In most 
cases, the placement of chaos map in the meta-heuristic 
algorithms has a significant improvement. This becomes 
evident from the comparison of the combined modes with 
the standard modes. In the following sections, this type of 
enhancement is investigated.

2 Natural frequencies and formulation of optimization 
problems
In this group of optimization problems, first the calcula-
tion of natural frequencies of the structure is examined 
and then the formulation of optimization problems with 
limitation of vibrational frequencies is presented. To cal-
culate the natural frequencies of the structure, the matrix 
form of the free vibration equation is a system of several 
degrees of freedom according to Eq. (1). In this equation, 
M represents the mass matrix, K the stiffness matrix, and 
Y is the displacement equation. To facilitate the solution of 
the equation, φn of the nth modal shape vector and qn(t) of 
the nth modem time curve are separated and the results are 
formed according to Eqs. (2) to (4). The values of An and Bn 
are integral constants that are determined from the initial 
conditions of velocity and displacement. Now, to deter-
mine the natural frequencies and deformation modes (ωn 
and φn), by placing Y(t) in the equation of free vibration, 
Eq. (5) is obtained. The roots of this characteristic equa-
tion are known as eigenvalues of frequencies. 

M K� � � �Y t Y t( ) ( ) 0  (1)

Y t q t n Nn n( ) ( ); , ,...,� � ��� 1 2  (2)

q t A t B tn n n n n( ) cos sin� �� �  (3)

Y t A t B tn n n n n( ) ( cos sin )� � ��� � �  (4)

K M K M��� � �� � � � � �� �n n n
2 20 0�� |  (5)

By expanding the determinant, the number N is the real 
and positive root for ωn

2, which contains the natural fre-
quencies of the structure. In optimization problems for 
the cross section and geometric shape of trusses that are 
associated with frequency constraints, the goal is to min-
imize the weight of the structure so that the constraints 
for a number of natural frequencies for vibration modes 
are satisfied. The cross section of the members along with 
the coordinates of some nodes are introduced as deci-
sion variables. These variables are selected continuously. 

The upper and lower bounds are also specified for vari-
ables in some cases. These optimization problems are 
defined in mathematical form according to Eq. (6):
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In this relation, X is the vector of decision variables, 
A is the variable of the cross-section of the members, 
na represents the number of variables of the cross-section, 
Ai is the value of the cross-section of the ith variable, S is 
the variable of shape and arrangement, ns is the number of 
shape variables with the same coordinates. Si is the numer-
ical value of the ith variable, W expresses the weight of the 
truss, nm indicates the total number of members, ρi the spe-
cific gravity of the material belonging to the ith member 
of the truss, Li the length corresponding to the ith member 
which can be expressed through the variables, ωi expres-
sion of the ith natural frequency of the truss, ωi

L and ωi
u, 

respectively, represent the lower limit and the upper limit 
of the fixed frequency of the base, nω indicates the total 
number of frequency restrictions, AјL and Aјu, respectively, 
express the lower limit and the upper limit of the Aј cross 
section, and Sk

L and Sk
U show the lower limit and limit of 

kth variable Sk. Then meta-heuristic algorithms are used 
for unbounded problems; we use the penalty function in 
modeling to convert the bounded state to unbounded state. 
In this method, if no violation has been committed, the 
amount of the fine will be zero, otherwise, if there is a vio-
lation, the amount of the penalty function will be obtained 
from Eqs. (7) to (10):
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In these relations γ represents the set of violations and 
ε1 and ε2 are selected based on the search and extraction 
ratio. In this study, ε1 units and ε2 are selected with incre-
mental linear changes in the range of 1.3 to 3 at the end 
of the iteration. Finally, Mer is the merit function or the 
objective function after the penalty is imposed.

3 Introduction chaos maps and forming chaos series
In most meta-heuristic algorithms, the optimization results 
stagnate and stop when they reach the local optimal posi-
tion. In such cases, premature convergence occurs. In 
order to escape from the trap of local optima, chaos series 
create suitable conditions that by creating disorder in 
the search space, the possibility of jumping and settling 
in most scattered positions of the search space is imple-
mented. Therefore, the general optima will not have the 
opportunity to escape from their target. How to apply them 
to meta-exploration algorithms is shown in the flowchart 
of Fig. 1. Chaos series consists of the arrangement of cha-
otic function sentences. These series have no traces of ran-
dom behaviors, but they cause very disordered behaviors 
in the search space. One of the most important features of 
these series is sensitivity to initial conditions and non-peri-
odic and ergodic behaviors, and the functions that make up 
the chaos series are very diverse and have no inverse [34]. 

In this research, Gaussian, Liebovitch and Piecewise chaos 
maps have been selected to form chaos series. In the chaos 
maps, Liebovitch converges with a very high probability 
from a local minimum to a general minimum. Therefore, 
this map is suitable for improving the exploration condi-
tions of algorithms. The chaos Gaussian map is most likely 
in the local minimum range and is suitable for improv-
ing exploitation conditions. Finally, the chaotic map of 
Piecewise simultaneously improves both exploration and 
exploitation conditions. Therefore, by selecting these cha-
otic functions, the weakness of algorithms of any kind is 
improved. The numerical distribution of these chaos maps 
for 100 iterations is presented in Fig. 2. In the following, we 
will first introduce chaos functions and then chaos series to 
form chaos scenarios are presented.

3.1 Gaussian map
Using this function in nonlinear dynamic behaviors has 
good results [35]. The statements of chaotic sequences in the 
Gaussian function are obtained according to the Eq. (11):
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Fig. 1 Flowchart of applying chaos functions to meta-heuristic algorithms
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3.2 Liebovitch map
This function consists of three separate linear rules and 
there will be no common or repetitive sentences in these 
intervals [36]. The chaotic sequence sentences in this 
function are expressed by the Eq. (12):
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Here the values d1 = 1/3 and d2 = 2/3 are selected. Α1 

and α2 are also calculated based on the Eqs. (13) and (14): 
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3.3 Piecewise map
The piecewise map is the same as the Liebovitch map of 
three criteria, and the value of P is considered as the con-
trol parameter [33]. The range of changes of P is in the 
range of 0 to 0.5, which in this study we have considered 
1/3, and the following category of equations indicates the 
relationship between the sentences of chaotic sequences in 
this function that expressed by the Eq. (15):

X

X
p

X p

X p
p

p X

p X
p

X p

X
p

p

n

n
n

n
n

n
n

n

� �

� �

�
�

� �

� �
�

� � �

�
�

1

0

0 5

1

2

1

0 5

1

2
1

1
1

.

.

�� �

�

�

�
�
�
�
�

�

�
�
�
�
�

Xn 1

 (15)

3.4 Chaos series and alternative scenarios
By selecting the chaos maps, two groups of chaos series 
CHM1 and CHM2 are formed and replace the probable 
parameters of the meta-heuristic algorithms according to 
the required number of sentences. CHM1 chaotic series 
sentences are related to the first scenario and replace the 
probable parameters related to the exploration stage, the 
sentences of the CHM2 chaos series are related to the 
second scenario and will replace the probable parameters 
related to the exploitation stage, and finally, for the third 
scenario, the simultaneous application of the CHM1 and 
CHM2 chaos series in both the exploration and exploita-
tion stages will be considered.

4 Meta-heuristic algorithms and chaos map
Each meta-heuristic algorithm goes through two main 
stages of exploration and exploitation in the optimization 
stages to converge towards the optimal answers. In other 
words, it first settles in scattered parts of the search space 
and then examines their neighborhood. For example, in the 
Genetic Algorithm, in the stage of mutation, the establish-
ment takes place in scattered areas of the search space, and 
in the stage of crossover, in the neighborhood, the move-
ment towards better answers takes place. Correspondingly, 
in the Imperialist Competitive Algorithm, settling in dif-
ferent parts of the search space with the action of revolution 
and moving in the neighborhood towards better answers 
will be done with the policy of assimilation. In each of 
these two stages, random coefficients are predicted to cre-
ate diversity in the search space and their values are rec-
ommended based on a specific probabilistic distribution. 
In some meta-heuristic algorithms, uniform probabilistic 
distribution is used, which naturally would not be a good 
distribution, but a Normal or Cauchy distribution, is asso-
ciated with admirable results. Especially the normal distri-
bution has a very wide range and creates a good diversity. 

Fig. 2 Distribution of numerical values of chaos functions in 100 repetitions
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Since the random selection has always been accompanied 
by doubt, the idea of using chaos maps that their values 
are definite and alternatives are good for random distri-
butions. Scientific studies have recorded valuable results 
and significant improvements for them. Chaos systems 
can provide an inclination towards global responses and 
have the potential to prevent them from falling into the 
trap of local optima. If these conditions are met, one will 
no longer see premature convergence. Lorenz points out 
the following important points about series formed by 
chaos maps: Although series created by chaotic functions 
appear to be similar to sentences with random distribu-
tions, there are major differences. Some of these differ-
ences are: their values are deterministic, they have non-
linear behavior, they are dynamic state, the sentences 
of the series related to them are non-repetitive, most 
of them have no inverse functions and finally non-con-
vergent to a certain boundary [33]. Now, by replacing 
chaos series in meta-heuristic algorithms, the nonlin-
ear and non-convex behavior of the objective function 
in truss weight optimization can be easily controlled and 
adjusted by them. In this research, in order to investi-
gate the effects of chaos series in improving the optimiza-
tion results of algorithms, by selecting four meta- heuris-
tic algorithms, a wide range of chaotic modes have been 
formed and challenging competition has been obtained. 
The selection of meta- heuristic algorithms is such that 
the standard mode of the algorithm has excellent effi-
ciency in at least one of the exploration or exploitation 
cases to compensate for the weakness related to the other 
case by chaotic series. These algorithms include Chaotic 
Cyclical Parthenogenesis Algorithms (CCPA), Chaotic 
Biogeography-Based Optimization (CBBO), Chaotic 
Teaching-Learning-Based Optimization (CTLBO) and 
Chaotic Particle Swarm Optimization (CPSO), respec-
tively. Each standard state is compared with 9 chaotic 
states. Therefore, the final optimal state is selected from 
forty optimization designs with different methods and 
inspirations. Due to the wide statistical space to intro-
duce the optimal design, we will have intensive chal-
lenge and competition for the desire for absolute opti-
mality. Therefore, the possibility of accessing optimal 
global responses with high accuracy has increased. Other 
important results in this research can be the introduction 
of the best algorithm, the best chaotic function and the 
best scenario. In the following studies, we will introduce 
each of the algorithms in standard and chaotic mode.

4.1 Standard cyclical Parthenogenesis algorithm (CPA)
The idea of this algorithm was presented by Kaveh and 
Zolghadr [6] and it has significantly improved the shape and 
cross section of structures with frequency constraints. In this 
algorithm, the key aspects of aphids' life are discussed. Their 
ability to reproduce sexually and asexually provides the con-
ditions for the rapidly growing population of aphids to form 
and take advantage of favorable conditions. Research shows 
that in sexual reproduction, two different solutions share 
information, while in asexual reproduction, the new solution 
is produced solely using the information of a female parent. 
Applying this inspiration to meta-heuristic algorithms cre-
ates the best conditions for balancing between exploration 
and exploitation, and provides a high capability for escap-
ing local optimization and moving toward global optimiza-
tion. In the sexual reproduction stage, the initial response 
vector is located in scattered areas of the search space, and 
in the asexual reproduction stage, the neighborhood care-
fully examines the resulting responses. Therefore, general 
answers cannot be far from the scope of this algorithm. 

4.1.1 Basic steps of cyclical parthenogenesis algorithm
Step 1. Creating an initial population of aphids: Within 

the search space, a population of aphids is formed as the 
primary population. The selection of this population is 
random. In the following relation, the method of selecting 
the initial population is presented from Eq. (16):

x x rand x x
i nA j n
ij j j j
0

1 2 1 2

� � � �

� �
,min ,max ,min( )

, ,..., , , ,..., varr
 (16)

Where xij
0 denotes the jth variable of the ith population 

of aphids, xj,max and xj,min, respectively expresses the upper 
and lower bounds of the variable j. The total population of 
aphids is nA, which are located in colonies with nC number 
and each with nM population. It is clear that nM = nA/nC 
and nM is constant during the optimization operation.

Step 2. Formation of the population of children: To form 
the population of offspring in each colony, the number of 
Fr × nM offspring without mating is formed. The parents 
of these children are female, and their selection is done 
randomly and from the best answers. In MATLAB coding, 
this selection and formation of the children population is 
as Eqs. (17) and (18). 
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In relation to Eq. (17), the index related to the female 
parent is determined and in relation to (18) new children 
related to the state without mating, it is placed in the new 
cell array. Now it is time to form offspring by mating. The 
number of these offspring is (1–Fr)xnM in which each 
male parent M randomly selects a female parent F and is 
placed in a new cell array according to the relationship of 
the Eq. (19) new children related to mating.

x M F M
j n
ij
k

j
k

j
k

j
k� � � � � �

�

1

2

1 2

� rand ( )

, ,..., var
 (19)

Step 3. Fly the best aphid and death to the worst aphid: 
After the formation of a new generation of offspring, the 
target function is evaluated and with a probability of Pf, 
one of the best winged aphid is selected from colony 1 and 
by reproducing it, it replaces the worst aphid in colony 2. 
To keep the colony population stable, removing the worst 
colony 2 aphid is compared to the death of the aphid and 
replacing the best aphid with flying. The probability of 
this step is based on Eq. (20):

pf NITs
NITs

�
�
�
1

1max
 (20)

Step 4. Replacing the best aphid: In each colony, the 
population of parents is compared with that of children, 
and the number of nM from the best is selected to form 
the next generation. 

Step 5. Check the terminating conditions and repeat the 
operation from step 2 if necessary.

4.1.2 Chaotic enhanced cyclical parthenogenesis 
algorithm (CCPA)
In this algorithm, two important modes are selected to 
form the population of offspring, including reproduction 
with and without mating. These two steps have the role of 
exploration and exploitation of the algorithm. By replac-
ing chaos maps instead of random selection, one will 
have a significant improvement in optimization results. 
This replacement is done with the following proposed 
scenarios:

Scenario 1. Apply the chaos map in reproduction stage 
without mating: In this case, the first chaos map CHM1 
is applied in Eq. (17) and replaces the random selection of 
the algorithm that the result will be Eq. (21):

rf round Fr nMi � � � � �( ( ) )1 1 CHM1 . (21)

Scenario 2. Apply the chaos map in reproduction stage 
with mating: In this case, the second chaos map CHM2 is 

applied in Eq. (19) and replace the random selection of the 
algorithm that the result will be Eq. (22):

x M F M
j n
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j
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�
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� CHM2 ( )

, ,..., var
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Scenario 3. Apply the chaos maps in both steps simul-
taneously: In this case, both chaos maps are applied 
simultaneously in Eqs. (17) and (19) and replace the ran-
dom selection of the algorithm.

4.2 Standard biogeography-based optimization (BBO)
The idea for this algorithm was proposed in 2008 by 
Simon [29]. This algorithm examines the distribution of 
plant and animal species in different geographical habitats. 
The monopoly of animals and plants in the possession of 
food resources, water, etc. are their main goals, but due to 
the limitation of these resources, they will be forced to share 
it with each other. In the process, an ecosystem emerges 
from which species feed on other species. Examination of 
the population distribution of habitats indicates the fact that 
animals prefer to migrate to more secluded places and if 
the settlement is less populated, it will be a suitable place 
for migration. On the other hand, areas with better food 
sources will naturally have more population. In this regard, 
the HSI habitat competency factor will affect the choice of 
location. In engineering optimization problems, this coef-
ficient plays the role of the objective function of the prob-
lem. In comparison between habitats, the high of this index 
will indicate the richness of the habitat, in other words, this 
type of habitat has a large population and due to competi-
tion between species, will try to leave it. The opposite is 
true of habitats that are less populated and more likely to 
migrate. Two common interpretations of the verb Migration 
will be considered. The first view of habitat migration or 
Immigration, which determines the migration of the habi-
tat, and its normalized numerical value is expressed by the 
lamp factor λ. The next view of migration from habitat or 
Emigration, which indicates the intensity of migration and 
in which the normalized numerical value is expressed with 
a nou coefficient μ. The location of habitats, such as deci-
sion variables in the response space, is denoted by the SIV 
symbol. In the migration process, this is done from habitats 
that are more populated and have a high migration coeffi-
cient μ to habitats with a high migration coefficient λ. In 
order to be located in different areas of the search space, the 
mutation stage of the variables takes place simultaneously 
with the migration stage. The basic steps of the algorithm 
in standard mode are discussed below.
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4.2.1 Basic steps in biogeography-based optimization
Step 1. Production of a set of primary geographical hab-

itats: In this initial step, we randomly form the npop num-
ber of habitats within the decision space of the variables. 
Then we evaluate and sort the objective function for the 
initial habitats.

Step 2. Calculate the numerical values of the normalization 
factors of immigration λ and emigration μ for each habitat.

Step 3. For each selected habitat such as i, repeat steps 
4 to 6 to the initial population.

Step 4. For each variable such as k in location i, we 
repeat steps 5 to 6 to the number of array variables.

Step 5. With the probability λi for the variable xik and the 
origin of migration xjk with the immigration coefficient μ, 
the location of the new habitat is determined according to 
the Eqs. (23) and (24):

if lambda i x x x xi
new

ik k jk ikrand � � � � � �( ) ( )� , (23)

�k � 0 9. . (24)

In the original version, an alpha value of 0.9 was sug- 
gested.
Step 6. With the possibility of pmutation, on the selected 

variable xir, the mutation changes are performed accord-
ing to the following conditions and with a specific random 
distribution (preferably normal distribution). The habitat 
position is determined after applying the mutation accord-
ing to Eqs. (25) and (26):

if pmutation x x sigma randnik
mut

ik
newrand � � � � � , (25)

sigma VarMax VarMin� � �0 02. ( ) . (26)

In this regard, Sigma comprises a percentage of the deci-
sion space. In the original version, this value is 2%.

Step 7. Migration responses, mutations and previous 
responses are combined and after evaluation and sorting, 
up to npop are selected from the best of them as the next 
stage habitats.

Step 8. Termination conditions are checked and if nec-
essary, the operation is repeated from step 3.

4.2.2 Chaos enhanced biogeography-based 
optimization (CBBO)
In the recent algorithm, to access the new habitat loca-
tion, two migration and mutation strategies are performed, 
which correspond to exploitation and exploration, respec-
tively. During the migration phase from xjk to xik, local sur-
veys are carried out in the neighborhood of the habitats 

and the optimal responses related to that area are deter-
mined. Also, by applying the mutation solution, the algo-
rithm gets out of the trap of local optimization and leads to 
global optimization. As a result, the mutation phase saves 
the algorithm from the risk of premature convergence. 
If the random distributions of these two steps are replaced 
with chaos maps, it will significantly improve the perfor-
mance of the algorithm. The proposed scenarios for this 
replacement are as follows:

Scenario 1. Placement of the chaos map in the migra-
tion stage of variables: In this case, the first CHM1 chaos 
map in Eq. (23) replaces random selection and the result 
will be Eq. (27):

if lambda i x x x xik
new

ik k jk ikCHM1 � � � � � �( ) ( ).�  (27)

Scenario 2. Placement of the chaos map in the stage of 
mutational changes of variables: In this case, the second 
CHM2 chaos map in Eq. (25) replaces random selection 
and the result will be Eq. (28):

if pmutation x x sigma randnik
mut

ik
newCHM2 � � � � � . (28)

Scenario 3. Placing the chaos map in both stages simul-
taneously: In this case, the two chaos maps are replaced 
simultaneously in Eqs. (23) and (25).

4.3 Standard teaching-learning-based optimization 
(TLBO)
This algorithm was proposed by Rao et al. [30] in 2011. 
The source of inspiration for this algorithm is the class-
room learning process and, like many algorithms, it is pop-
ulation-based. In this algorithm, first an initial population 
of students is formed. This selection is random and is done 
within the search space. Then, two basic phases will be 
followed to correct the initial answers. The first phase is 
known as the teacher phase and is suggested to students 
based on the process of transferring knowledge from the 
teacher to the students. In this phase, the average academic 
level of the class is improved by the knowledge transferred 
through the teacher. It should also be noted that in this algo-
rithm, there is practically no teacher and the best student in 
each course is recognized as a teacher. The second phase is 
known as the student phase, in which students learn about 
each other and their interactions with each other.

4.3.1 Basic steps in Standard teaching-learning-based 
optimization

Step 1. Formatting the basic parameters of the algo-
rithm. These parameters include the student population nL, 
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the number of decision variables nV, the maximum number 
of repetitions of NFEs, which is also known as the stop 
criterion. 

Step 2. Form the initial student population and evaluate 
it: Given the limitation of the search space, this population 
is formed randomly. Then, by applying the objective func-
tion, the answers are evaluated and sorted them.  

Step 3. Out of the sorted population, the best of them 
are selected as T teachers. Then, the average position of the 
students is calculated and based on the teacher phase, the 
students' improved academic level is determined based on 
the Eqs. (29) and (30): 

stepsizeT T TF MeanLi i� � � , (29)

newL L stepsizeT
i nL and j nV

� � �

� �

randi,j
1 2 1 2, ,..., , ,..., .

 (30)

In these relationships, the TF is teaching factor that ran-
domly selected as 1 or 2, and indicates the teacher's suc-
cess in increasing the average level of students. Finally, if 
the values of the evaluation are better than the previous 
values, the results replace them. 

Step 4. In the student phase, the interactions of the stu-
dents with each other are examined. In this phase, each 
student exchanges information with another randomly 
selected student (except himself/herself). The possibil-
ity of improving information is possible when the perfor-
mance of the selected student is better, in which case their 
position changes according the Eqs. (31) and (32): 

if PFIT PFIT stepsizeS L Lrp
f PFIT PFIT stepsizeS L

i rp i i

i rp i

� � � �

� � � rrp Li�

�
�
�

��
,  (31)

newL L stepsizeS
i nL and j nV

� � �

� �

randi,j
1 2 1 2, ,..., , ,...,

 (32)

The values obtained are evaluated and if they are better 
than the previous values, they are replaced. The best of the 
populations are introduced at each stage.

Step 5. Termination conditions are checked and if nec-
essary, the operation is repeated from step 2.

4.3.2 Chaos enhanced teaching-learning-based 
optimization (CTLBO)
The process of teaching and learning in the classroom is 
the inspiration for this algorithm Which is mainly exam-
ined in two phases. These phases include the teacher's 
effect on the learning process and the students' interac-
tion with each other, which play a significant role in the 

exploration and exploitation process, respectively. In each 
of these phases, random selections can be replaced by 
series of chaos maps. These maps are suggested to improve 
the exploration, exploitation, or both steps simultaneously. 
Therefore, the proposed scenarios for this replacement are 
as follows: 

Scenario 1. Replacement of the chaos map in the teacher 
effect phase in the learning process: In this case, the first 
chaos function CHM1 is replaced in Eq. (30) and the result 
will be Eq. (33):

newL L stepsizeT� � �CHM1i,j . (33)

Scenario 2. Replacing the chaos map in the students' 
interaction phase with each other: In this case, the second 
of the CHM 2 map function is replaced in Eq. (32) and the 
result will be Eq. (34):

newL L stepsizeS� � �CHM2i,j . (34)

Scenario 3. Placing the chaos function in both steps 
simultaneously: In this case, the two chaos maps are 
replaced simultaneously in Eqs. (30) and (32). 

4.4 Standard particle swarm optimization (PSO)
This algorithm is the most famous and most widely used 
meta-heuristic algorithm after the genetic algorithm. The 
domain is influenced by the algorithm with continuous 
variables and its idea was introduced by Kennedy and 
Eberhart [7]. In this algorithm, a number of particles are 
scattered in the search space, which is evaluated by apply-
ing each particle in the objective function, its criteria and 
value. By combining the previous velocity, the best posi-
tion for each period of populations, and the best position 
for all population periods, the new position of each particle 
can be determined. In this case, to move from the existing 
position to the new position, the velocity vector is formed 
and added to the existing position. The components that 
participate in the velocity vector are: the coefficient of the 
previous velocity, the coefficient of the best local position 
of the course, and the coefficient of the best position of the 
whole best global position of the course. The vector com-
position of these components is shown in Fig. 3. 

4.4.1 Basic steps in particle swarm optimization
Step 1. Random formation of the initial population of 

particles and evaluation of each of them.
Step 2. Determine the best particle for each popula-

tion period and the best particle for the global population 
period.
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Step 3. Update the velocity vector and position vector 
based on the Eqs. (35) and (36).

v t W v t

C Lbest t X t

C

ij ij

ij ij

( ) ( )

( ) ( )

� � �

� � �� � �
� �

1

1

2

rand (t)

rand

1j

22j (t)�� � �Gbest t X tj ij( ) ( )

 (35)

X t X t v tij ij ij( ) ( ) ( )� � � �1 1  (36)

In these relations W, the coefficient of inertia is usu-
ally chosen in the range of 0.4 to 0.9. C1 and C2 are also 
personal and collective learning coefficients, respectively. 
In the original version, the algorithm is proposed for both 
coefficients of zero to two. 

Step 4. Check the termination conditions and repeat the 
operation from step 2 if necessary.

4.4.2 Chaos enhanced particle swarm optimization 
(CPSO)
This algorithm consists of two important positions, includ-
ing the best position of each period and the best position of 
all periods, and to increase the variety in the search space, 
each is accompanied by a random coefficient. By replac-
ing the chaos functions in the random selection of each of 
the periods, we will see a significant improvement in the 
performance of the algorithm. The proposed scenarios for 
this replacement are as follows:

Scenario 1. Insert the chaos function as the coefficient 
of the best position of each period: In this case, the first 
chaos function CHM1 in Eq. (35) replaces the random 
distribution that the result will be Eq. (37).

v t W v t

C Lbest t X t

C

ij ij

ij ij

( ) ( )

( ) ( )

� � �

� � �� � �
� �

1

1

2

CHM (t)

rand

1j

2jj (t)�� � �Gbest t X tj ij( ) ( )

 (37)

Scenario 2. Positioning the chaos function as the coef-
ficient of the best position of all periods: In this case, the 
second chaos function CHM2 in Eq. (35) replaces the ran-
dom distribution and the result will be Eq. (38).

v t W v t

C Lbest t X t

C

ij ij

ij ij

( ) ( )

( ) ( )

� � �

� � �� � �
� �

1

1

2

rand (t)

CHM

1j

2jj (t)�� � �Gbest t X tj ij( ) ( )

 (38)

Scenario 3. Placing both turbulence functions as coef-
ficients of the best position of each period and all periods: 
In this case, both chaos maps simultaneously replace the 
random distribution in Eq. (35). 

5 Numerical examples of optimal truss design
In this research, to compare the efficiency of algorithms 
in standard and chaotic mode, several optimization exam-
ples from the truss group have been selected. The purpose 
of the optimal design of truss structures is to select the 
lowest possible value for the cross-sectional area of the 
members, which at the same time satisfies the limitations 
related to the vibration frequency in different modes to 
avoid the destructive phenomenon of resonance and shake. 
The standard mode of each algorithm is examined along 
with 9 different turbulence modes. In this challenging 
competition, the final optimal mode is selected from forty 
optimization designs with different methods and inspira-
tions. Given the vast statistical space for optimal design, 
we will have intense challenge and competition for the 
desire for absolute optimality. Therefore, the possibility 
of accessing optimal global responses with high accuracy 
has increased. Other important results in this research can 
be access to the best algorithm, the best chaos function 
and the best scenario.

5.1 A 52-bar dome-like truss
The 52-bar dome-like truss as shown in Fig. 4 is a well-
known benchmark problem for optimizing the weight and 
shape of trusses with frequency constraints. This truss 
considers both optimizations of the section size and geo-
metric coordinates of the nodes and the geometric shape 
of the structure is determined during the optimization 
process. The decision variables related to the section size 
are classified into 8 groups according to the symmetry in 
the geometric shape. Geometric coordinates of all sym-
metric free nodes can be changed by 2 m from the ini-
tial position along the coordinate axes. In this case, the 
number of decision variables related to the shape of the 

Fig. 3 Method to determine the new position in the particle for PSO
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structure and the geometric coordinates of the nodes 
is limited to 5 variables, and the sum of the variables, 
including shape and size, will be 13 variables. In all free 
nodes, a non-structural concentrated mass of 50 kg has 
affected all free nodes. The mechanical characteristics of 
the structure are: density of materials 7800 kg/m3, modu-
lus of elasticity 210000 MPa, frequency limitations of the 
structure in the first mode are less than 15.916 Hz and in 
the second mode are greater than 28.648 Hz. For the cross 
section of the members, the lower limit is 1 cm2 and the 
upper limit is 10 cm2. 

In order to ensure the performance of turbulent func-
tions and algorithms, as well as to increase the accuracy 
and sensitivity of calculations, each of the modes has been 
performed independently 20 times and the results related 
to the best response and the average value of responses 
are presented in Statistical Table 1. Also, the coefficient of 
variation of responses, which is a measure of the robust-
ness and robustness of responses, has been calculated and 
used to compare the efficiency of turbulence functions and 
algorithms. For quick access to optimization information, 
a bar chart of each component is shown in Fig. 5.

Fig. 4 Schematic of the 52-bar dome-like truss

Table 1 Statistical results for the 52-bar dome-like truss

Algorithms Best Mean C.V(%) Algorithms Best Mean C.V(%)

CPA 193.923 195.7598  1.8703 BBO 195.8181 208.6882 5.0975 

Gauss-1 → CCPA-21 193.0961 195.4159 1.8663 Gauss-1 → CBBO-21 193.8629 196.0034 1.1143

Gauss-2 → CCPA-22 193.3469 197.2374 2.3584  Gauss-2 → CBBO-22 194.1574 201.1911 3.8191

Gauss-3 → CCPA-23 193.7925 200.5983 2.8589 Gauss-3 → CBBO-23 192.7193 196.6800 2.0702

Liebovitch-1 → CCPA-31 193.2595 197.0165  2.4719 Liebovitch-1 → CBBO-31 192.5337 197.4691 1.7329

Liebovitch-2 → CCPA-32 193.1753 194.9615 1.9749 Liebovitch-2 → CBBO-32 192.7333 197.6173 2.1936

Liebovitch-3 → CCPA-33 193.1893 193.3202  0.070826 Liebovitch-3 → CBBO-33 193.2867 193.6394 0.1599

Piecewise-1 → CCPA-41 193.2122 195.3727 2.0864 Piecewise-1 → CBBO-41 192.0430 196.4254 1.3519

Piecewise-2 → CCPA-42 193.5432 198.5575 3.3370 Piecewise-2 → CBBO-42 192.2379 194.5195 1.6893

Piecewise-3 → CCPA-43 193.3756 199.4612 2.8877 Piecewise-3 → CBBO-43 192.9604 193.6064 0.27667

TLBO 194.7714 199.4808  1.7479 PSO 193.9358 201.3898 3.4257 

Gauss-1 → CTLBO-21 192.9113 196.5568 2.4440 Gauss-1 → CPSO-21 192.2222 194.9346 2.0445

Gauss-2 → CTLBO-22 192.921 193.0511  0.04594 Gauss-2 → CPSO-22 192.0872 195.1317 1.9772

Gauss-3 → CTLBO-23 192.9099 193.0708 0.048783 Gauss-3 → CPSO-23 193.2182 195.3024 1.8885

Liebovitch-1 → CTLBO-31 192.9511 194.8092 2.0155 Liebovitch-1 → CPSO-31 193.1628 195.0924 1.8887

Liebovitch-2 → CTLBO-32 192.5833 193.0411 0.1338 Liebovitch-2 → CPSO-32 193.1340 198.3994 2.2896

Liebovitch-3 → CTLBO-33 193.0481 194.8546 2.0017 Liebovitch-3 → CPSO-33 192.0444 197.7078 2.5092

Piecewise-1 → CTLBO-41 193.0055 198.3462 2.4248 Piecewise-1 → CPSO-41 193.2837 193.4978 0.089781

Piecewise-2 → CTLBO-42 192.8472 196.9014 2.3152 Piecewise-2 → CPSO-42 193.3386 198.4962 2.3546

Piecewise-3 → CTLBO-43 192.9188 193.1454 0.068056 Piecewise-3 → CPSO-43 192.5061 197.7143 2.2578
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Examining the optimization results for different combina-
tions of algorithms with turbulence functions and comparing 
it with the standard mode, shows a significant and significant 
improvement in reducing the weight of the 52-bar dome-like 
truss. The results for each of the algorithms are:

In the cyclic parthenogenesis algorithm, the Gaussian 
chaos map with Scenario 1 with a weight of 193.0961 kg 
has the optimal response. In the biogeography-based opti-
mization, the piecewise chaos map with Scenario 1 with 

a weight of 192.0430 kg has the optimal response. In the 
teaching-learning-based optimization, the Liebovitch chaos 
map with Scenario 2 with a weight of 192.5833 kg has the 
optimal answer, and finally, in the particle swarm optimi-
zation, the Liebovitch chaos map with Scenario 3 weighs 
192.0444 kg has the optimal answer. Also, in Table 2, the 
results of this research are compared with a number of pre-
vious research [37–41]. 

Fig. 5 Optimization results in standard mode and selection of chaos map for the 52-bar dome-like truss

Table 2 Optimal design comparison for the 52-bar dome-like truss

Decision 
Variable

Lingyun 
et al. [37]

Gomes 
[38]

Liu et al. 
[39]

Kaveh et 
al. [40]

Kaveh et 
al. [41]

CCPA-21 
Present Work

CBBO-41 
Present Work

CTLBO-32 
Present Work

CPSO-33 
Present Work

ZA (m) 5.8851 5.5344 4.3201 6.5299 5.9362 5.9182 4.5375 6.0600 5.7898

XB (m) 1.7623 2.0885 1.3153 2.2898 2.2416 2.2612 1.8920 2.3427 2.0450

ZB (m) 4.4091 3.9283 4.1740 4.0066 3.7309 3.7000 4.2890 3.7563 3.7510

XF (m) 3.4406 4.0255 2.9169 4.1712 3.9630 3.9427 3.8453 4.0319 3.8833

ZF (m) 3.1874 2.4575 3.2676 2.5000 2.5000 2.5000 2.7713 2.5002 2.5039

A1 (cm2) 1.0000 0.3696 1.0000 1.0000 1.0001 1.0000 1.0002 1.0003 1.0032

A2 (cm2) 2.1417 4.1912 1.3300 1.1099 1.1654 1.1162 1.0028 1.0275 1.2823

A3 (cm2) 1.4858 1.5123 1.5800 1.1806 1.2323 1.2153 1.4596 1.1561 1.2531

A4 (cm2) 1.4018 1.5620 1.0000 1.2305 1.4323 1.4581 1.3772 1.4522 1.5536

A5 (cm2) 1.9110 1.9154 1.7100 1.5532 1.3901 1.3884 1.3009 1.4181 1.3918

A6 (cm2) 1.0109 1.1315 1.5400 1.0051 1.0001 1.0000 1.0000 1.0000 1.0087

A7 (cm2) 1.4693 1.8233 2.6500 1.4133 1.6024 1.6456 1.3272 1.5555 1.4733

A8 (cm2) 2.1411 1.0904 2.8700 1.5415 1.4131 1.3351 1.5643 1.3914 1.4285

Best
Weight(kg) 236.046 228.381 298.0 197.462 194.85 193.0961 192.0430 192.5833 192.0444

Mean
Weight(kg) N/A N/A N/A 199.72 196.85 195.4159 196.4254 193.0411 197.7078

Coefficient 
Variation (CV) N/A N/A N/A 1.6323 1.2090 1.8663 1.3519 0.1338 2.5092

NFE N/A N/A N/A 6000 N/A 25000 40850 30350 24040

ω1 (HZ) 12.81 12.751 15.22 11.421 11.4339 11.4909 15.8567 11.7997 10.5713

ω2 (HZ) 28.65 28.649 28.649 29.28 28.6480 28.6391 28.6523 28.6888 28.6785
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5.2 A 120-bar spatial dome
The 120-bar spatial dome as shown in Fig. 6 is a well- 
known benchmark problem with weight-limit optimization. 
This truss only considers optimizing the size of the sec-
tions and the geometric shape of the structure is constant 
during the optimization process. The decision variables 
related to the size of the members' sections and accord-
ing to the symmetry in the geometric shape of the dome 
along the X and Y axes, are classified into 7 groups. Non-
structural concentrated mass in all free nodes affects the 
structure. Their values are 3 kg in node 1, 500 kg in nodes 2 
to 13 and 100 kg in other nodes. The mechanical character-
istics of the structure are: material density 7971.81 kg/m3, 
modulus of elasticity 210,000 MPa, frequency limits of the 
structure in the first and second modes are greater than 9 
and 11 Hz, respectively. For the cross section of the mem-
bers, the range of the lower limit is 1 cm2 and the upper 
limit is 129.3 cm2. In order to ensure the performance of 
chaos map and algorithms, as well as to increase the accu-
racy and sensitivity of calculations, each of the modes has 
been performed independently 20 times and the results 
related to the best response and the average value of 
responses are presented in Statistical Table 3. Also, the 

coefficient of change of responses, which is a measure 
of the robustness and robustness of responses, has been 
calculated and used to compare the efficiency of turbu-
lence functions and algorithms. For quick access to opti-
mization information, the bar chart of each component is 
shown in Fig. 7.

Examining the optimization results for different combi-
nations of algorithms with turbulence functions and com-
paring it with the standard mode, shows a significant and 
significant improvement in reducing the weight of the 120-
bar spatial dome. The results for each of the algorithms are: 

In the cyclic parthenogenesis algorithm, the Liebovitch 
chaos map with Scenario 3 with a weight of 8709.3186 kg 
has the optimal response. In the biogeography-based opti-
mization, the Gaussian chaos map with Scenario 3 with 
a weight of 1064.8710 kg has the optimal response. In the 
teaching-learning-based optimization, the Liebovitch chaos 
map with Scenario 3 with a weight of 5095.8708 kg has the 
optimal answer, and finally, in the particle swarm optimi-
zation, the Liebovitch chaos map with Scenario 1 weighs 
8709.1357 kg of the optimal response. Also, in Table 4, the 
results of this research are compared with a number of pre-
vious research [41–43]. 

Fig. 6 Schematic of the 120-bar spatial dome
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5.3 A 200-bar planar truss structure
The 200-bar planar truss structure as shown in Fig. 8 is 
a well-known benchmark problem for weight optimization 
with frequency limits. This truss only considers optimiz-
ing the size of the sections and the geometric shape of the 
structure is constant during the optimization process. The 
decision variables related to the sections size of the mem-
bers are classified into 29 groups. Non-structural concen-
trated mass in nodes 1 to 5 and in the amount of 100 kg 

affect the structure. The mechanical characteristics of the 
structure are: material density 7860 kg/m3, modulus of 
elasticity 210,000 MPa, frequency limits of the structure 
in the first, second and third modes are greater than 5, 10 
and 15 Hz, respectively. For the cross section of the mem-
bers, the lower limit range is 0.1 cm2 and the upper limit 
is 25 cm2. In order to ensure the performance of turbulent 
functions and algorithms, as well as to increase the accuracy 
and sensitivity of calculations, each of the modes has been 

Table 3 Statistical results for the 120-bar spatial dome

Algorithms Best Mean C.V(%) Algorithms Best Mean C.V(%)

CPA 8714.4176 8727.3576  0.12780 BBO 8724.4232 8758.7686 0.33832 

Gauss-1 → CCPA-21 8711.1341 8714.6874 0.047296  Gauss-1 → CBBO-21 8713.8710 8767.8780 0.74910

Gauss-2 → CCPA-22 8710.8383 8720.2623 0.070094 Gauss-2 → CBBO-22 8715.0951 8739.4275 0.42259

Gauss-3 → CCPA-23 8710.0810 8715.9243 0.068405 Gauss-3 → CBBO-23 8710.1064 8732.1659 0.36668

Liebovitch-1 → CCPA-31 8709.9563 8715.4375  0.040882 Liebovitch-1 → CBBO-31 8718.2432 8732.2834 0.15313

Liebovitch-2 → CCPA-32 8709.9641 8712.0198 0.020616 Liebovitch-2 → CBBO-32 8718.4498 8736.9097 0.18282

Liebovitch-3 → CCPA-33 8709.3186 8711.4911 0.015666 Liebovitch-3 → CBBO-33 8712.0282 8740.0212 0.30298

Piecewise-1 → CCPA-41 8709.6518 8717.7547 0.091054 Piecewise-1 → CBBO-41 8712.4152 8727.5799 0.15603

Piecewise-2 → CCPA-42 8712.8968 8718.9102 0.068468 Piecewise-2 → CBBO-42 8718.4704 8735.2244 0.16733

Piecewise-3 → CCPA-43 8711.5232 8715.7299 0.042128 Piecewise-3 → CBBO-43 8712.9988 8719.4447 0.071687

TLBO 8713.1479 8716.1568  0.026596 PSO 8713.1316 8721.2938 0.10558 

Gauss-1 → CTLBO-21 8708.6610 8709.5695 0.010765 Gauss-1 → CPSO-21 8709.1708 8715.6655 0.052448

Gauss-2 → CTLBO-22 8708.6101 8709.6159 0.009924 Gauss-2 → CPSO-22 8710.1033 8714.1660 0.031257

Gauss-3 → CTLBO-23 8708.8308 8709.8127 0.015615 Gauss-3 → CPSO-23 8709.7487 8716.7589 0.071588

Liebovitch-1 → CTLBO-31 8708.6722 8708.9507 0.0019348 Liebovitch-1 → CPSO-31 8709.1357 8713.9009 0.046184

Liebovitch-2 → CTLBO-32 8708.7561 8709.6450 0.013158 Liebovitch-2 → CPSO-32 8710.8816 8713.7953 0.03573

Liebovitch-3 → CTLBO-33 8708.5095 8709.3689 0.009658 Liebovitch-3 → CPSO-33 8714.3378 8721.3876 0.086145

Piecewise-1 → CTLBO-41 8708.8503 8709.2576 0.0054369 Piecewise-1 → CPSO-41 8712.9719 8717.5149 0.042645

Piecewise-2 → CTLBO-42 8708.6157 8709.2453 0.0056748 Piecewise-2 → CPSO-42 8709.6996 8719.5143 0.10432

Piecewise-3 → CTLBO-43 8709.1047 8709.8531 0.0077434 Piecewise-3 → CPSO-43 8709.8949 8718.6591 0.096190

Fig. 7 Optimization results in standard mode and selection of the chaos map for the 120-bar spatial dome
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Table 4 Optimal design comparison for the 120-bar spatial dome

Decision 
Variable

Kaveh and 
Zolghadr 

[8]

Kaveh and 
Ilchi Ghazaan 

[22]

Kaveh and 
Ilchi Ghazaan 

[41]

Tejani et al. 
[42]

Khatibinia and 
Naseralavi 

[43]

CCPA-33 
Present 
Work

CBBO-23 
Present 
Work

CTLBO-33 
Present 
Work

CPSO-31 
Present 
Work

A1 19.607 19.6836 19.8905 19.5203 20.263 19.6393 19.4744 19.5140 19.6213

A2 41.290 40.9581 40.4045 40.8482 39.294 40.2495 40.0237 40.3250 39.9903

A3 11.136 11.3325 11.2057 10.3225 9.989 10.6283 10.7416 10.6250 10.7143

A4 21.025 21.5387 21.3768 20.9277 20.563 21.1317 21.1947 21.0889 21.2248

A5 10.060 9.8867 9.8669 9.6554 9.603 9.64102 10.1090 9.8693 9.7974

A6 12.758 12.7116 12.7200 12.1127 11.738 11.7325 11.7152 11.7806 11.6808

A7 15.414 14.9330 15.2236 15.0313 15.877 14.9045 14.7183 14.8565 14.7918

Best Weight 
(kg) 8890.48 8888.74 8889.96 8713.3030 8724.97 8709.3186 8710.1064 8708.5095 8709.1357

Mean
Weight (kg) N/A 8896.04 8900.39 8735.3452 8745.58 8711.4911 8732.1659 8709.3689 8713.9009

Coefficient
Variation (CV) N/A 0.07475 0.0716 0.2049 0.0135 0.015666 0.36668 0.009658 0.046184

NFE N/A 30000 17000 4000 242700 30000 53000 30350 32040

ω1 (HZ) 9.0001 9.000 9.000 9.0009 9.002 9.000 9.000 9.000 9.000

ω2 (HZ) 11.0007 11.000 11.000 11.0005 11.003 11.000 11.000 11.000 11.000

Fig. 8 Schematic of a 200-bar planar truss structure
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performed independently 20 times and the results related 
to the best response and the average value of responses 
are presented in Statistical Table 5. Also, the coefficient of 
change of responses, which is a measure of the robustness 
and robustness of responses, has been calculated and used 
to compare the efficiency of turbulence functions and algo-
rithms. For quick access to optimization information, a bar 
chart of each component is shown in Fig. 9. 

Examining the optimization results for different combina-
tions of algorithms with turbulence functions and comparing 
it with the standard mode, shows a significant and signifi-
cant improvement in reducing the weight of the 200-bar pla-
nar truss structure. The results for each of the algorithms are:

In the cyclic parthenogenesis algorithm, the Liebovitch 
chaos map with Scenario 2 with a weight of 2157.2685 kg 
has the optimal response. In the biogeography-based optimi- 

Table 5 Statistical results for the 200- bar planar truss structure

Algorithms Best Mean C.V(%) Algorithms Best Mean C.V(%)

CPA 2163.2600 2170.2616 0.25081 BBO 2183.9321 2192.0868 0.46106

Gauss-1 → CCPA-21 2157.7905 2160.8575 0.23417 Gauss-1 → CBBO-21 2163.5970 2165.6248 0.093395

Gauss-2 → CCPA-22 2158.2989 2160.1782 0.085413 Gauss-2 → CBBO-22 2164.1197 2173.6170 0.29618

Gauss-3 → CCPA-23 2157.6699 2159.2446 0.10542 Gauss-3 → CBBO-23 2162.2921 2172.4986 0.36184

Liebovitch-1 → CCPA-31 2158.0615 2159.7250 0.084546 Liebovitch-1 → CBBO-31 2161.6518 2169.2719 0.22424

Liebovitch-2 → CCPA-32 2157.2685 2159.2455 0.14705 Liebovitch-2 → CBBO-32 2161.5657 2168.7783 0.20266

Liebovitch-3 → CCPA-33 2157.6223 2158.8040 0.049231 Liebovitch-3 → CBBO-33 2165.2998 2169.9402 0.26866

Piecewise-1 → CCPA-41 2157.4065 2158.7347 0.052349 Piecewise-1 → CBBO-41 2163.3718 2167.1790 0.12069

Piecewise-2 → CCPA-42 2158.5338 2164.5214 0.37636 Piecewise-2 → CBBO-42 2165.0191 2170.9598 0.41980

Piecewise-3 → CCPA-43 2158.6010 2162.9471 0.30742 Piecewise-3 → CBBO-43 2165.6825 2175.7005 0.31631

TLBO 2160.9171 2164.2801 0.15306  PSO 2170.8269 2173.7456 0.14449 

Gauss-1 → CTLBO-21 2157.9566 2159.2716 0.058363 Gauss-1 → CPSO-21 2158.0777 2158.9851 0.055937

Gauss-2 → CTLBO-22 2157.8314 2161.0117 0.16852 Gauss-2 → CPSO-22 2157.1382 2160.6052 0.12816

Gauss-3 → CTLBO-23  2157.9931 2161.0868 0.16428 Gauss-3 → CPSO-23 2157.0474 2158.2200 0.045259

Liebovitch-1 → CTLBO-31  2157.7175 2158.5939 0.063469 Liebovitch-1 → CPSO-31 2161.8257 2170.1612 0.32028

Liebovitch-2 → CTLBO-32  2157.8220 2158.6214 0.045414 Liebovitch-2 → CPSO-32 2168.9833 2183.6840 0.54788

Liebovitch-3 → CTLBO-33  2157.2139 2158.6594 0.050986 Liebovitch-3 → CPSO-33 2190.1487 2227.3864 2.0575

Piecewise-1 → CTLBO-41  2156.8604 2158.1933 0.089636 Piecewise-1 → CPSO-41 2157.1898 2157.8561 0.025187

Piecewise-2 → CTLBO-42  2157.0346 2157.2344 0.0091923 Piecewise-2 → CPSO-42 2156.8582 2157.6555 0.032237

Piecewise-3 → CTLBO-43  2157.1807 2157.7327 0.021611 Piecewise-3 → CPSO-43 2160.8278 2240.5533 4.8003

Fig. 9 Optimization results in standard and the chaos map for the 200- bar planar truss structure
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zation, the Liebovitch chaos map with Scenario 2 with 
a weight of 215/5657 kg has the optimal answer. In the 
optimization algorithm based on teaching-learning-based 
optimization, the Piecewise chaos map with Scenario 1 
with a weight of 2156/8604 kg has the optimal answer, and 
finally, in the particle swarm optimization, the Piecewise 
chaos map with Scenario 2 weighs 2156/8582 kg has an 
optimal response. Also, in Table 6 the results of this study 
are compared with a number of previous studies [41, 44, 45].

6 Discussions 
In this paper, four meta- heuristic algorithms are investi-
gated and made chaotic to increase the possibility of per-
forming global optimization. Commonly in most of the 
meta-heuristic algorithms, an imbalance between the explo-
ration and exploitation stages causes the algorithm to stop 
at local optimizations and premature convergence occurs 
for them. In a number of algorithms, the mutation stage 
scheme is attempted to be deployed in scattered areas of 
the search space and then the neighborhoods are examined. 
In most algorithms, the mutation cases of the algorithm 
alone are not effective and sufficient, and the chaos maps 
provide suitable conditions to accelerate the escape from 
the local optimal trap and by creating turbulence and disor-
der in the search space, the possibility of jumping to most 
scattered positions in the search space. It can be shown that 
the most important feature of chaos maps is to balance the 
exploration and exploitation stages. Research shows that 
chaos maps have good potential to provide this balance. 
By replacing these maps in the exploration, exploitation, 
or both, different scenarios for optimization are obtained. 
In this research, by applying chaos map in several groups 
of meta-heuristic algorithms, a significant improvement 
in the weight and shape optimization of trusses has been 
achieved. Also, in order to form a statistical population and 
determine the best weight, mean weight and coefficient of 
variation, each structural model has been implemented with 
20 independent replications. To extract the final results, the 
processes related to the previous tables are combined and 
then normalized. The Eq. (39) is intended to combine and 
summarize the information of all the examples.

Val
S

Val
Valcom

MV
MV

ii

S

� �
�
�1 1
1

( )
,min

 (39)

Based on Eq. (39), the success rate of each of the 10 
modes (standard mode with 9 turbulence modes) is deter-
mined separately for each algorithm. To determine them, 
the results of all examples are summarized and presented. 

In this relation, for each selected algorithm, ValMv, Valcom
Mv 

and Vali,min, respectively, the optimal values of the statistical 
tables for each example in each of the standard and chaotic 
modes, the minimum value among the 10 modes for the 
same example and the final result of the combination. The 
whole result is for the same state of the algorithm. Also, 
i and S are the number of optimized structural examples and 
the total number of examples, respectively. This relation-
ship is formed for all three characteristics including optimal 
weight, optimal average and optimal coefficient of varia-
tion (CV). The criterion for choosing the best efficiency is 
related to the modes that have the lowest value. And in this 
regard, the results have not been normalized yet.
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MV com
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j com
MV

j
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�

1

1
100

1 ,

 (40)

Two things still need to be reviewed to make it easier 
to determine the optimal states. The first is to normalize 
the results and the second is to change the highest percent-
ages to express the best performance. For this aim we can 
consider inverse functions. Both cases are considered in 
Eq. (40). In this regard, for each selected algorithm ValMV

com, 
ValMV

j,com, nopt and ValMV
norm, respectively, the optimal values 

obtained for each of the 10 modes in the previous relation, 
the same values for summation, the total number of modes 
including standard and chaotic (This number is 10 here) and 
the optimal values are in percentage and normalized.

By applying Eqs. (39) and (40) to the total results of the 
optimizations performed, the final normalized results with 
the participation of all the examples are presented in Table 7.

Based on the final results, the optimal design for deter-
mining the best weight in the cyclical parthenogene-
sis algorithm belongs to the Liebovitch chaos map with 
the third scenario. the biogeography-based optimization 
belongs to the Piecewise chaos map with the first scenario. 
The teaching-learning-based optimization belongs to the 
Piecewise chaos map with the second scenario and the 
particle swarm optimization belong to the Gaussian chaos 
map with the second scenario. For swift access to opti-
mal weight information, the pie charts of each of the chaos 
meta-heuristic algorithms are shown in Fig. 10. 

Optimal design for determining the best mean in the 
cyclical parthenogenesis algorithm belonging to Liebovitch 
chaos map with third scenario, biogeography-based opti-
mization belonging to piecewise chaos map with third sce-
nario, the teaching-learning-based optimization belonging 
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Table 6 Optimal design comparison for the 200-bar planar truss structure

N
um

be
r

gr
ou

p Element
group

Kaveh and 
Kooshbaghi 

[41]

Kaveh and 
Ilchi Ghazaan 
[44] ALC-PSO

Kaveh and 
Zolghadr [45]
CSS-BBBC

Kaveh and 
Zolghadr 

[45]

CCPA-32
Present
Work

CBBO -32
Present
Work

CTLBO -41
Present
Work

CPSO -42
Present
Work

1 1,2,3,4 0.3262 0.2750 0.2934 0.2439 0.2910 0.3270 0.2904 0.3021

2 5,8,11,14,17 0.4060 0.4264 0.5561 0.1438 0.4760 0.4687 0.4621 0.4543

3 19,20,21,22,23,24 0.1062 0.1000 0.2952 0.3769 0.1000 0.1000 0.1004 0.1000

4 18,25,56,63,94,101,132,1
39,170,177 0.1082 0.1000 0.1970 0.1494 0.1000 0.1000 0.1003 0.1000

5 26,29,32,35,38 0.4917 0.7000 0.8340 0.4835 0.5148 0.5241 0.5146 0.5040

6 6,7,9,10,12,13,15,16,27, 
28,30,31,33,34,36,37 0.8509 0.7948 0.6455 0.8103 0.8167 0.8717 0.8161 0.8218

7 39,40,41,42 0.1024 0.1003 0.1770 0.4364 0.1000 0.1044 0.1031 0.1003

8 43,46,49,52,55 1.4816 1.5402 1.4796 1.4554 1.4498 1.4867 1.4349 1.4248

9 57,58,59,60,61,62 0.1318 0.1000 0.4497 1.0103 0.1000 0.1000 0.1003 0.1002

10 64,67,70,73,76 1.6093 1.7544 1.4556 2.1382 1.5807 1.5346 1.6315 1.5866

11 44,45,47,48,50,51,53,54,
65,66,68,69,71,72,74,75 1.1354 1.1213 1.2238 0.8583 1.1776 1.1560 1.1589 1.1471

12 77,78,79,80 0.1196 0.1000 0.2739 1.2718 0.1000 0.1519 0.1204 0.1257

13 81,84,87,90,93 3.0434 2.8381 1.9174 3.0807 3.0007 3.1039 2.9453 3.0128

14 95,96,97,98,99,100 0.3132 0.1000 0.1170 0.2677 0.1007 0.1137 0.1001 0.1024

15 102,105,108,111,114 3.2862 3.3936 3.5535 4.2403 3.3035 3.0955 3.2397 3.2897

16
82,83,85,86,88,89,91,92,

103,104,106,107,109, 
110,112,113

1.5869 1.5849 1.3360 2.0098 1.5436 1.5843 1.5722 1.5804

17 115,116,117,118 0.2249 0.1000 0.6289 1.5956 0.2192 0.2098 0.2853 0.2150

18 119,122,125,128,131 5.0850 5.2642 4.8335 6.2338 5.1218 5.4634 5.0876 5.1509

19 133,134,135,136,137,138 0.1709 0.1000 0.6062 2.5793 0.1000 0.1000 0.1000 0.1000

20 140,143,146,149,152 5.2071 5.7884 5.4393 3.0520 5.6298 5.3221 5.4268 5.6133

21
120,121,123,124,126,127
,129,130,141,142,144,145

,147,148,150,151
2.2289 2.0218 1.8435 1.8121 2.1283 1.9342 2.0995 2.0780

22 153,154,155,156 0.2708 0.4600 0.8955 1.2986 0.5979 0.6489 0.7075 0.6979

23 157,160,163,166,169 8.0270 7.8414 8.1759 5.8810 7.6220 7.8271 7.6815 7.7415

24 171,172,173,174,175,176 0.2105 0.2983 0.3209 0.2324 0.1000 0.2432 0.1414 0.1223

25 178,181,184,187,190 7.8354 8.1844 10.9800 7.7536 8.0244 8.1843 7.8547 8.0971

26
158,159,161,162,164,165,
167,168,179,180,182,183, 

185,186,188,189
2.9012 2.7756 2.9489 2.6871 2.7715 2.8095 2.8167 2.8186

27 191,192,193,194 9.5438 10.1639 10.5243 12.5094 w10.6055 10.8694 10.6712 10.5128

28 195,197,198,200 21.4380 21.4137 20.4271 29.5704 21.0961 20.7910 21.1478 21.0633

29 196,199 11.3070 10.9083 19.0983 8.2910 10.9458 11.3466 10.7367 10.7336

Best Weight(kg) 2167.4954 2162.99 2298.61 2259.86 2157.268 2161.5657 2156.8604 2156.858

Mean Weight(kg) 2180.3886 2562.07 N/A N/A 2159.245 2168.7783 2158.1933 2157.655

Coefficient 
Variation(CV) 0.3734 12.8236 N/A N/A 0.14705 0.20266 0.089636 0.032237

NFE N-function evaluation 23000 20000 N/A 10000 20000 35750 50550 36040

ω1 (HZ) 5.000 5.000 5.010 5.010 5.000 5.0002 5.000 5.000

ω2 (HZ) 12.3550 12.1360 12.911 12.911 12.0408 12.4891 12.1329 12.2060

ω3 (HZ) 15.0212 15.210 15.416 15.416 15.000 15.1455 15.0446 15.0124
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Table 7 Final normalized value considering all the examples

Category Best Weight Mean Weight Coefficient Variation

Algorithms CPA BBO TLBO PSO CPA BBO TLBO PSO CPA BBO TLBO PSO

Standard 2.3808 1.3384 2.2873 2.5268 5.1763 1.6296 2.7704 2.9649 10.0650 3.2017 5.5043 5.1980

Gauss-21 12.9325 4.0391 11.8745 20.3324 13.1234 7.2373 5.2926 16.4288 10.1608 7.5290 5.1686 9.3392

Gauss -22 9.3225 3.6766 11.3371 24.4205 7.6491 3.7187 15.1475 10.7190 8.8685 4.0723 11.1113 8.3026

Gauss-23  11.2813 9.6775 7.5943 9.7421 4.4503 7.2093 19.8534 14.5355 6.3742 6.2452 11.5849 9.0385

Libovitch-31  13.3113 8.9426 13.1524 7.2388 7.4568 5.9088 9.7636 11.2511 9.1112 9.3391 6.5925 6.8157

Libovitch-32  11.1417 7.0936 10.0278 6.4603 10.9432 6.3234 12.5822 4.4224 6.1308 6.7106 17.3245 4.9127

Libovitch-33 14.0045 4.6596 7.4063 3.8716 29.6306 19.1262 8.7122 2.9498 25.2973 21.6032 6.6617 2.1503

Piecewise -41 7.1307 42.7756 8.6149 5.4296 11.2780 10.0685 3.8687 29.2985 11.0660 11.1620 5.5092 45.7274

Piecewise -42 9.5605 10.8567 19.2828 9.1606 5.3310 16.8516 5.8511 4.7483 5.2871 8.7748 7.0213 7.4011

Piecewise -43 8.9342 6.9403 8.4226 10.8173 4.9613 21.9266 16.1582 2.6818 7.6391 21.3622 23.5215 1.1145

to piecewise chaos map with third scenario and the parti-
cle swarm optimization belongs to the Gaussian chaos map 
with the first scenario. For quick access to the best average 
information, the pie charts of each of the chaos meta-heu-
ristic algorithms are shown in Fig. 11. 

Optimal design for determining the best coefficient 
of variation for the cyclical parthenogenesis algorithm 
belonging to the Liebovitch chaos map with the third sce-
nario, the biogeography-based optimization belonging 
to the Liebovitch chaos map with the third scenario, the 
teaching-learning-based optimization belonging to the 
Piecewise chaos map with the third scenario, the particle 
swarm optimization belongs to the Piecewise chaos map 
with the first scenario. For quick access to the optimal 
coefficient of variation information, the pie chart of each 
of the chaos meta-heuristic algorithms is shown in Fig. 12. 

Finally, it should be mentioned that the method of this 
study can also be applied to other metaheuristics optimi-
zation problems, in [46–49].

7 Conclusions
Some of the considerable results in this research are as 
follows:

• In most cases, the embedded chaotic map in meta-heu-
ristic algorithms has created a significant improve-
ment compared to the standard mode. The main rea-
son can be the effect of chaos maps in escaping local 
optimization and preventing premature convergence.

• Chaos functions for optimization problems based on 
frequency constraints and shape variables have been 
significantly improved. Comparison of the results 
of the chaos functions with the standard value con-
firms this.

• In Scenarios 1 and 2, the chaos maps have replaced 
the exploration and exploitation steps, respectively. 
Based on these operations, it can be concluded:

• The cyclical parthenogenesis algorithm uses the chaos 
map for both exploration and exploitation stages. The 
biogeography-based optimization uses the chaos map 

Fig. 10 The final results of the optimal design to determine the best weight
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Fig. 11 The final results of the optimal design to determine the best mean

Fig. 12 The final results of the optimal design to determine the best coefficient of variation

in the exploration phase. Teaching-learning-based opti- 
mization and particle swarm optimization have both 
used chaotic maps for the exploitation stage.

• Using the chaos maps, determining the regulatory 
parameters of algorithms and sensitivity analysis, is 
significantly removed. In fact, selecting the starting 
sentence in chaos maps replaces complex settings. 
It should be noted that in most cases it is more diffi-
cult to find the appropriate tuning parameters of each 
algorithm than self-optimization. Therefore, by using 
chaos functions, complex engineering problems such 
as shape optimization can be solved without having 
to find parameters. 

• To evaluate the stability, reliability and robust of the 
responses, the coefficient of variation, which is the dimen- 
sionless state of standard deviation, has been used. 

• To select the initiator sentence in the series of chaos 
maps, before the main iterations, perform several ini-
tial iterations and select the appropriate starter sen-
tence to improve the results by leaps and bounds. 

• Among the chaos functions investigated, the Piece-
wise map with Scenarios 1 and 2 has provided the 
best results for the optimal weight.
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