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Abstract

This	paper	develops	an	efficient	evolutionary	hybrid	optimization	technique	based	on	the	adaptive	salp	swarm	algorithm	(ASSA)	and	

pattern search (PS) for the reliability evaluation of earth slopes considering spatial variability of soils under the framework of the limit 

equilibrium	method.	In	the	ASSA,	to	improve	the	salp	swarm	approach's	exploration	ability	while	also	avoiding	premature	convergence,	

two	new	equations	for	the	leaders'	and	followers'	position	updating	procedure	are	introduced.	The	proposed	hybrid	algorithm	(ASSPS)	

benefits	from	the	effective	global	search	ability	of	the	adaptive	salp	swarm	algorithm	as	well	as	the	powerful	local	search	capability	of	

the	pattern	search	method.	The	suggested	ASSPS	algorithm's	efficiency	is	confirmed	using	mathematical	test	functions,	and	its	findings	

are	compared	with	the	standard	salp	swarm	algorithm	as	well	as	some	efficient	optimization	techniques.	Then,	the	ASSPS	is	applied	

for calculation of the lowest safety factor and reliability index of earth slopes. The safety factor is formulated using the Morgenstern 

and	Price	approach	and	the	advanced	first-order	second-moment	(AFOSM)	method	is	implemented	for	the	reliability	calculation	model.	

The	ASSPS's	efficacy	for	the	evaluation	of	the	minimum	reliability	index	of	slopes	is	investigated	by	considering	two	literature-based	

case	studies.	The	numerical	experiments	demonstrate	that	the	new	algorithm	could	generate	better	optimal	solutions	and	significantly	

outperform other methods in the literature.
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1 Introduction
During the lifetime of a structure, uncertainties in geo-
metric and material characteristics, as well as external 
forces, are recognized. As a result, recent decades have 
seen a rising recognition that, for meaningful study of 
engineering structures, uncertainty must be included, and 
structural reliability theory provides a useful approach 
for doing so [1]. Reliability-based design optimization of 
frame structures [2, 3], reliability-based design optimi-
zation of composite structures [4], reliability-based geo-
metrically nonlinear topology optimization of L-shape 
beam and U-shaped plate [5], pile foundation design under 
reliable conditions [6], reliability-based design optimi-
zation of offshore wind turbine [7], and reliability-based 
design optimization of bridges [8] are some examples of 
considering uncertainties in the optimum design of civil 

engineering problems. The demand is greater in geotech-
nical engineering because natural materials used to build 
dams, slopes, and retaining walls have more and higher 
uncertainties than other structures. 

Slope failure is a common cause of fatalities and prop-
erty damage. As a result, geotechnical engineers must 
determine the minimal slope safety factor and find the 
critical slip surface [9, 10]. The stability is often expressed 
in terms of factor of safety (FoS) in a standard determin-
istic slope stability testing and variables are represented 
by single values in this approach. However, because to 
the uncertainty in the input parameters (i.e., soil proper-
ties), assessing the slope safety with a single FoS value 
is difficult. Several studies have revealed that two nearly 
equivalent slopes with nearly similar FoS calculated from 
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a deterministic approach might have noticeably differ-
ing failure probability due to uncertainty in geotechnical 
parameters and failure causes [11, 12]. This issue high-
lights the necessity for an even more objectively orga-
nized and quantitative method to deal with the com-
putations' uncertainties. The probabilistic technique is 
a logical option for this sort of research since it allows for 
the direct insertion of uncertainties into the analysis. In 
this approach, instead of the traditional FoS, the safety 
of a slope is assessed by the probability of failure or the 
reliability index. As Duncan [13] presented, the reliabil-
ity analysis is a good alternative to traditional stability 
assessments since the resulting reliability index provides 
more information than the deterministic FoS. 

The Mean-Value First-Order Second-Moment (MFOSM) 
technique is a popular method for estimating the reliabil-
ity index of earth slope [14]. In this approach, the perfor-
mance function is extended for the mean values of the 
input variables, the first order terms are just retained, 
and the partial derivative of the performance function is 
required. Hasofer and Lind [15] provided an independent 
description of the reliability index to avoid the reliability 
index's dependency on the performance function. In this 
method, the reliability index was defined as the minimum 
distance from the origin of the standard normal space to 
the boundary limit state. The reliability assessment of an 
earth slope using the Hasofer-Lind reliability index (βHL) 
can be formulated as an optimization problem and the 
solution of this problem is the lowest reliability index or 
highest probability of failure.

This optimization challenge may be solved using either 
traditional deterministic or newer metaheuristic optimi-
zation techniques. The factor of safety function is usu-
ally multimodal and complex due to variable soil quali-
ties, ground conditions, and external forces. When the 
search space comprises numerous local minima and the 
computational complexity environment is high, traditional 
deterministic techniques fail to provide a feasible solution. 
Metaheuristic algorithms, on the other hand, have simple 
notions and structures, derivation-free methods, and are 
successful for both continuous and discrete functions. 
Accordingly, several research efforts have been attempted 
to implement various metaheuristic strategies for slope 
stability estimation based on these benefits. 

Although metaheuristic approaches can produce accept-
able results, no method is superior than another at solv-
ing all optimization issues. As a result, various research 
projects have indeed been carried out to improve the 

performance and efficiency of the initial metaheuristic 
algorithms and apply them to complex engineering chal-
lenges. Kaveh et al. [16] used a non-dominated sorting 
evolutionary algorithm to solve a multi-objective opti-
mized design of structural steel structures while taking 
into account the initial cost and seismic damage costs. 
For determining the critical failure mode in slope stabil-
ity evaluation, Li and Wu [17] suggested an enhanced slap 
swarm optimization. For automatic selection of ortho-
photo mosaic seamline network, Wang et al. [18] sug-
gested a modified ant colony algorithm. Eslami et al. [19] 
introduced enhanced versions of particle swarm optimiza-
tion for power system stabilization. For pile group founda-
tion design, Chan et al. [20] employed a hybrid algorithm 
to develop an automatic optimal design technique for pile 
group foundations. Khajehzadeh et al. [21, 22] proposed 
modified versions of gravity search algorithm for reducing 
embedded emissions of CO2 and total cost of foundation 
and retaining wall.

Proposing novel optimization strategies to solve real-
world issues, as evidenced by the literature analysis, is 
highly desirable. The Salp Swarm Algorithm (SSA) is 
a recently created bioinspired meta-heuristic optimization 
strategy simulates salp fish swarming in deep waters [23]. 
Compared to other metaheuristic algorithms, some advan-
tages of SSA are as follows [24]: mixing with other algo-
rithms is strangely satisfying; SSA has good convergence 
acceleration; is suitable for many kinds of optimization 
problems; has higher feasibility and efficiency in produc-
ing global optima; less likelihood of getting stuck in local 
optima; less reliance on initial solutions; reasonable execu-
tion time; and a few parameter tuning. However, similar to 
other metaheuristic approaches, the SSA can be expanded 
or hybridized with another algorithm to produce better 
solutions for future problems [17, 25]. This paper presents 
an adaptive salp swarm optimization algorithm by intro-
ducing new position updating equations for leaders and 
followers' salp (ASSA). This change significantly improves 
the algorithm's performance and convergence speed. 

A balance of exploitation and exploration must be main-
tained throughout the search operation to achieve optimum 
performance utilizing any optimization technique. Because 
ASSA is a global search strategy, it searches a large area 
and may not provide the best result if used alone. Search 
engine techniques, such as Pattern Search (PS), take advan-
tage of the local but can perform a comprehensive search. 
There is scope for hybridizing these methods due to their 
separate capabilities. 
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In light of the foregoing, a combination adaptive salp 
swarm and pattern search technique known as ASSPS was 
created and is being used in the current work to find the 
minimum reliability index of an earth slope. The objec-
tive function is modelled using the Hasofer-Lind reliabil-
ity index (βHL) and a new approach of the Morgenstern-
Price method to find the most critical probabilistic failure 
surface of slope. The performance of the proposed ASSPS 
approach is assessed by comparing its findings in the two 
literature-based benchmark problems to those of other 
alternative techniques. The proposed method for com-
puting the lowest FoS and reliability index delivers more 
effective performance than existing methods, as proven by 
the quantitative evaluation.

The remainder of this paper is organized as follows. 
In Section 2, the formulation of the safety factor of an earth 
slope is presented. A probabilistic slope stability evaluation 
procedure has been developed in Section 3. The proposed 
hybrid optimization algorithm is presented in Section 4. 
Section 5 conducts a comparative analysis of ASSPS on 
a large test environment. In Section 6, a numerical inves-
tigation of probabilistic slope stability analysis using the 
ASSPS algorithm is conducted. Finally, the conclusions 
of the study and suggestions for further research are pre-
sented in Section 7.

2 Safety factor formulation
Geotechnical engineering includes seismic performance of 
earth slopes, especially in seismic zones [26]. To assess the 
stability of an earth slope, many traditional approaches are 
used, such as finite elements, strength reduction, and the 
limit equilibrium [27], is the most widely used analytical 
method for geotechnical problems, and it evaluates the factor 

of safety (FOS) using Mohr's coulomb criteria. Several pro-
cedures of analysis based on the limit equilibrium technique 
are available, which Duncan [28] has thoroughly reviewed 
and summarized. The simple or basic methods, like the 
ordinary method of slices and the Bishop method, are rel-
evant to a particular shape of slip surface, whereas the rig-
orous methodologies, such as Spencer an Morgenstern 
and Price method, are applicable to any shape of failure 
surface. Determining the exact behavior of the soil slope 
becomes more complex when earthquake loads are applied. 
As a result, an effective pseudo-static approach can be 
used to assess the reliability of the earth's steep hills under 
earthquake stresses. The Morgenstern and Price method of 
slices, as well as the pseudo-static approach, were adjusted 
for seismological slope stability analysis in this study.

Morgenstern and Price [29] established a holistic and 
rigorous method for general form failure surfaces that 
fulfils both the force as well as the moment equilibrium. 
In order to accept the seismic load inside the pseudo-static 
assessment, an inertial force (Fh) is applied at the center of 
each slice in the horizontal direction, which can be com-
puted by:

F W a g W kh h h� �� � � �/ , (1)

in which kh stands for horizontal acceleration coefficient, 
ah stands for lateral ground motions and g stands for grav-
ity acceleration. The Morgenstern and Price (MaP) model 
are used to analyze the safety factor under seismic load 
in this study. The M–P method divides slippery mass into 
a number of vertical segments, just like other limit equi-
librium techniques. Take into account the forces acting on 
a standard slice of a slope, as shown in Fig. 1, with the over-
all shape of the slope.

Fig. 1 Forces acting on a typical slice, W: wight of the slice, S: shear strength, N: effective normal force, U: resultant water force, E: normal inter-
slice force, T: shear inter-slice force, h: average height of the slicem b: width of the slice, ha: height of the slice center, Fh: horizontal seismic force, 

α:inclination of slice base, Q: external surcharge
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The scaling factor λ and FOS are two unknown factors 
in the MaP method, which are deduced from moment and 
vertical force equilibriums [29]. Because of the complex-
ity of the obtained equations, evaluating the FOS and λ is 
often complicated. In order to solve the aforementioned 
challenges, Zhu et al. [30] developed a concise version of 
the MaP approach. In this concise method, the inclination 
of a resultant inter-slice force varies symmetrically over 
the slide mass, and the relationship between the shear (T) 
and normal (E) inter-slice forces is offered as:

T f x E� ( ). .� , (2)

where f(x) denotes the assumed inter-slice force function 
and λ denotes the scaling factor.

The following is a detailed description of the FOS eval-
uation procedure:

Step 1. Create a trial slip surface and divide it into n 
vertical segments 

Step 2. Determine Ri and Ti using the equations below:

R W F Q U

c b
i i i h i i i i i

i i i i

� � � �� � ��� ��
� �� � �

cos sin cos

tan sec ,

� � � �

�
 (3)

T W F Q sini i i h i i i i� � � �� �sin cos� � � � . (4)

Step 3. Select the function for inter-slice forces. A unit 
inter-slice function ( f(x) = 1) is assumed here.

Step 4. Choose FOS and λ initial values according to 
the following criteria:

FOS f
f

i i i

i i i
� �

�
�

��
sin cos

cos sin
tan

� � �
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. (5)

The FOS and λ should be set to 1 and 0, respectively, 
as their initial values [30].

Step 5. Evaluate Φi and Ψi–1 based on Eqs. (6) and (7).

�i i i i i i i if f FOS� �� � �� � �� ��sin cos tan cos sin� � � � � �  
(6)

�i
i i i i

i i i

f
f FOS�
�

�
�
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� �� ��
�
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�

�
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1

1

sin cos tan

cos sin
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//�i�1  (7)

Step 6. Calculate FOS based on Eq. (8).
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 (8)

Step 7. Compute Φi and Ψi–1 and calculate FOS again by 
repeating steps 5 and 6.

Step 8. Define Ei and λ based on the Eqs. (9) and (10).

E E FOS T Ri i i i i i i� ��� � � �� � �1 1 1  (9)

�
� �

�
� �� � � ��� ��

� �� ���

�

� �

b E E F h Q h
b f E f E

i i i i h i i i

i i i i i

1

1 1

2tan sin

���
 (10)

Step 9. Reevaluate FOS by the computed λ and the itera-
tive process is completed when the distinction between the 
computed FOS and λ becomes lower than 0.005 and 0.01, 
respectively.

3 Probabilistic slope stability approach
Generally, the deterministic method's safety factor is not 
a consistent measure of safety since numerous uncertain-
ties are not taken into account. As a result, the probabilistic 
approach has been proposed as an alternate tool for deter-
mining earth slope safety in which different soil parameter 
uncertainties may be sensibly incorporated. In probabilis-
tic analysis, to assess the safety of a slope, the reliabil-
ity index (β) or the probability of failure (Pf ) are used. 
The failure-safety status of a slope may be described in 
a probabilistic analysis by the performance function G(X), 
and X = [X1, X2, X3, …, Xn] represents the vector of random 
variables of an earth slope. 

The performance function G(X) or limit state func-
tion divides the vector space X into two distinct areas: the 
safety zone, denoted by G(X) > 0, and the failure region, 
denoted by G(X) < 0, with the limit state surface denoted 
by G(X) = 0. In general, the slope's factor of safety (FoS) 
determines the performance function, which is defined as:

G FoS( ) ( )X X� �1 . (11)

Using the system's limit state function, the probability 
of failure of the slope (Pf ) may be calculated by the follow-
ing integral equation:

P P G f dXf X
G

� �� ��� �� � � �
��X X

X
0

0( )

, (12)

where fX(X) denotes the vector of random variables' joint 
probability density function, and the integral is performed 
over the failure domain.

The reliability index (β) was created to assess a sys-
tem’s comparative reliability when the actual probability 
distribution function is unknown. Hasofer and Lind [15] 
introduced an invariant way to calculating the reliability 
index known as the advanced first order second moment 
approach (AFOSM).
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In this method, using the mean value (μi) and standard 
deviation (σi) the random variables (xi) are converted into 
a normalized and uncorrelated set of reduced variables z 
based on the following equation:

z x
i

i i

i
�

� �
�

, (13) 

where zi denotes a normalized variable with a mean of 
zero and a standard deviation of one. Based on the trans-
formation of Eq. (13), the mean value point in the original 
space (X-space) is mapped into the origin of the normal 
space (Z-space) as presented in Fig. 2 [31]. The failure sur-
face G(X) = 0 in X-space is mapped into the correspond-
ing failure surface G(Z) = 0 in Z-space. The Hasofer and 
Lind (HL) reliability index (βHL ) is defined as the shortest 
distance in the normalized coordinate system from the ori-
gin of the normalized fundamental variables to the limit 
state function G(X). 

The matrix formulation of the Hasofer-Lind reliability 
index (βHL ) is presented as follows [32]: 

�
�

�
�

�HL X F
i i

i

T
i i

i

x x
�

��

�
�

�

�
� � � ��

�
�

�

�
�

�

�
min R 1 , (14) 

where F represents the failure domain and R represents the 
correlation matrix. R is a square matrix that contains the 
correlations among a set of n random variables and defined 
by R = [ρij] (i,j = 1,2,…,n). Although the correlation coeffi-
cient among two random variables has a range –1 < ρij < 1, 
the correlation matrix cannot be assigned any value within 
this range. It should be noted that the correlation matrix 
must be positive definite. It must be emphasized that the 
correlation matrix has to be positive definite [33]. 

The search for the lowest reliability index (βmin) may be 
expressed as an optimization problem based on the follow-
ing equation:

Minimize

Subject to

�HL
G Z� � � 0,

 (15)

where G(Z) is the normalized coordinate system limit state 
function. the reliability index and most probable failure 
surface are the results of the aforesaid optimization task. 

4 Adaptive salp swarm – pattern search
4.1 Salp swarm algorithm 
A salp is a type of marine organism in the Salpidae family. 
It has a cylindrical structure with apertures at the ends, 
similar to jellyfish, which move and eat by pumping water 
through internal feeding filters in their gelatinous bodies. 
The salp swarm algorithm (SSA), a population-based opti-
mization technique, was developed by Mirjalili et al. [23]. 
The salp chain can be used to calculate the SSA's behav-
ior while hunting for optimal feeding sources (i.e., the tar-
get of this swarm is a food position in the search space 
called FP). To mathematically model salp chains, the sam-
ple into two groups: leaders and followers. The salp at the 
head of the chain is known as the leader, while the others 
are known as followers. The swarm is led by the leader 
of these salps, and the followers follow in his footsteps. 
The chain begins with a leader, who is followed by the fol-
lowers to guide their movements.

Similar to other swarm-based algorithms, Salps' loca-
tion is specified in a n–dimensional search space, where n 
is the number of variables in a given problem. As a result, 
the positions of all salps are recorded in a two-dimen-
sional matrix known as X, as shown in Eq. (16).

Fig. 2 The geometrical definition of βHL
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 (16)

The fitness of each salp is then determined in order to 
determine which salp has the best fitness. It's also assumed 
that the swarm's target is a food position called FP in the 
search space.

The following equation can be used by the leader salp 
to change positions:

x
FP r ub lb r lb r

FP r ub lb r lb r
i

i i i i

i i i i

1
1 2 3

1 2 3

0

0

�
� �� � �� � �

� �� � �� � �

��
�
�

��
, (17)

where xi
1 denotes the first salp's position in the ith dimen-

sion and FPi denotes the food position in the ith dimen-
sion. The lower and upper bounds of the ith dimension are 
represented by lbi and ubi, respectively, and the coefficient 
r1 is calculated by Eq. (18). The random numbers r2 and r3 

are between 0 and 1.

r e
t

t
1

4

2

2

�
�
�

�
�

�

�
�

max
 (18)

The maximum number of iterations is tmax is the current 
iteration is t. It's worth noting that the r1 coefficient is crit-
ical in SSA because it balances exploration and exploita-
tion throughout the search. The following equations are 
used to change the position of the followers.

x x xi
j

i
j

i
j� �� ��1

2

1 , (19)

where j ≥ 2. In case some salps move outside of the search 
space, Eq. (20) shows how to bring salps back into the 
search space if they leave it.

x

lb if x lb

ub if x ub

x otherwise
i
j

i i
j

i

i i
j

i

i
j

�

�

�

�

�
��

�
�
�

� �

� �  (20)

The pseudocode of SSA is shown in Algorithm 1.

4.2 Adaptive salp swarm algorithm
In spite of the SSA's aptitude to generate effective outcomes 
in contrast to other famous algorithms, it is prone towards 
becoming stuck in a local optimum, making it unsuitable 
for very complex problems with multiple local optima.

As observed in Eq. (17), the leading salp modifies its 
position in SSA in accordance with the availability of 
food. At each generation, the SSA approach adjusts the 
leader salp's location around a single point, and addi-
tional salps follow the leader. Because it doesn't know the 
food position (FP), the procedure will fail if it is unable 
to recover. In other words, when an approach converges, 
it stops being able to find new objects and goes dormant. 
This technique causes the SSA algorithm to become 
unreachable at locally optimal points. Given these facts, 
an adaptive SSA (ASSA) is suggested to fix the aforemen-
tioned issue while also enhancing the algorithm's flexibil-
ity and search ability.

In the proposed ASSA, the performance and exploring 
capabilities are enhanced by considering half of the pop-
ulation as leader and the other salps as followers. The fol-
lowing equation is then used to update the position of the 
leader salps:

x
x r FP x r

x r FP x r
i
j i

j
i i

j

i
j

i i
j

�
� �� � �

� �� � �

�

�
�

�
�

1 3

1 3

0 5

0 5

.

.

. (21)                                       

The leaders adjust their positions in response to the 
state of the food source as well as their previous position, 
as shown in Eq. (21).

This procedure encourages exploration while also allow-
ing the SSA algorithm to conduct a more powerful global 
search across the entire search space. To improve the pro-
posed ASSA's search efficiency, the followers will update 
their positions according to the following equation:

x rand x xi
j

i
j

i
j� �� ��2 1 . (22)

Algorithm 1 Salp swarm algorithm

Initialize the salp population xi (i = 1, 2, ..., n) considering lbi and ubi 
while t ≤ tmax

Calculate the fitness of each search agent (salp) 
Put the best search agent as FP (Food position)
Update r1 by Eq. (18) 

for each salp (xi) 
if i==1

Update the position of the leading salp by Eq. (17)  
else 

Update the position of the follower salp by Eq. (19) 
end 

end 
Amend the salps based on the upper and lower bounds of variables

Calculate the fitness of each search agent FP
Update the food position
t = t + 1 
end 
return the food position FP and its best fitness



Zeng et al.
Period. Polytech. Civ. Eng., 66(4), pp. 1309–1322, 2022|1315

In addition, in the suggested ASSA, at each iterative 
process, the worst salp with the highest objective func-
tion value will be replaced with a completely random salp. 
The flowchart of the proposed ASSA algorithm is shown 
in Fig. 3.

4.3 Pattern search (PS)
PS is a gradient-free approach for fine-tuning local search 
that can be easily implemented. The PS method produces a 
group of locations that may or may not be near to the ideal 
point [34]. A mesh (a combination of elements) is formed 
around an existing element in the first round. In the next 
round, if a new element in the mesh has a smaller fitness, 
it becomes the current element.

The PS commences the investigation with a user-de-
fined initial location P0. The mesh level is taken as 1 in 
the first round, and the pattern elements are generated as 
[0 1] + P0, [1 0] + P0, [–1 0] +P0 and [0 –1] + P0, and novel 
mesh elements are added as depicted in Fig. 4. The fit-
ness function is then computed for each created sample 
element until a value less than P0 is discovered. The poll 

is successful if there is such an element ( f(P1) < f(P0)), 
and the PS method assumes this element as basis point. 
The method doubles the existing mesh size by 2 (called 
the expanding factor) after a successful poll and moves 
on to the second round with the following new elements: 
2 × [0 1] + P1, 2 × [1 0] + P1, 2 × [–1 0] + P1 and 2 × [0 –1] + P1. 
Then, P2 is established if a value less than P1 is discovered, 
the mesh size is expanded by two, and iterations proceed. 

The current element is not modified and the mesh size is 
decreased by a contraction factor if the poll is unsuccessful 
at any round. These steps were continued until the lowest 
value was reached or the termination criteria were fulfilled.

4.4 Adaptive salp swarm - pattern search
A hybrid approach is one that solves the same issue by 
combining two or more methods. Hybridization aims to 
integrate the benefits of each method to improve the result's 
accuracy [35]. 

In the current research, the adaptive salp swarm - pat-
tern search (ASSPS) approach, which combines adap-
tive salp swarm algorithm and pattern search methods is 
developed. The adaptive salp swarm algorithm (ASSA) 
presented in Section 4.2 is a global optimization tech-
nique that investigates the solution space effectively and, 
is likely to provide an optimum or near-optimal solution. 
As a result, it may be used in conjunction with local opti-
mization approaches such as pattern search. Pattern search 
is useful for exploiting a small area, but it is rarely useful 
for exploring a larger area. The suggested hybrid approach 
may take the ASS's powerful global searching capabili-
ties as well as the PS algorithm’s strong local searching 
capabilities. The global optimum performance of adaptive 
salp swarm algorithm (ASSA) is excellent, and it's easy to 
get out of local minima. The ASSA can increase the pre-
cision of the results by raising the number of iterations. 

Fig. 3 Flowchart of ASSA Fig. 4 Pattern Search mesh elements
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When the number of generations is great enough, how-
ever, ASSA is unable to enhance the results' accuracy. 
As a result, ASSA's local search capability remains poor. 
Pattern search is a local optimization methodology, and 
the beginning point has a significant impact on the algo-
rithm's output, with different initial points resulting in sig-
nificant differences in the outcomes. However, if a great 
starting point is chosen, pattern search will be a simple 
and effective strategy. In this study, we successfully com-
bine the benefits of ASSA as a global optimization and 
pattern search as a local optimization to identify the best 
answer. Because the PS is dependent to the first solu-
tion, the suggested hybrid method starts with the ASSA. 
The ASSA is used to keep searching for a certain number 
of iterations. The PS is then enabled to do a local search 
utilizing ASSA's best solution as an initial point. Fig. 5 
shows the process flow of the suggested hybrid algorithm.

5 Model verification
A set of numerical reference test functions has been used 
in this section to compare and confirm the achievement 
and effectiveness of the proposed adaptive salp swarm 

- pattern search (ASSPS). In the empirical evidence litera-
ture, these functions are commonly used to determine the 
performance of optimizers [36]. 

The mathematical model and characteristics of these 
test functions are shown in Tables 1 and 2. This standard 
set is divided into two categories: unimodal functions with 
a single global best for testing algorithm convergence pace 
and enslavement ability, and multi - modal functions with 
multiple local minimums and a global ideal for testing an 
algorithm's local optima avoidance and exploratory capac-
ity. MATLAB R2020b was used to create the suggested 
algorithms. All of these functions, should be minimized. 
Furthermore, all functions have a dimension of 30. 

The proposed ASSPS is compared to the original SSA 
as well as some well-known optimization methods such 
as Particle Swarm Optimization (PSO), Firefly Algorithm 
(FA), Multi-Verse Optimizer (MVO), Tunicate Swarm 
Algorithm (TSA), and Sand Cat Optimization (SCO). For 
all methodologies, the size of solutions (N) and the maxi-
mum number of iterations number (tmax) are set to 30 and 
1000, respectively, in order to make a fair comparison 
between them.

Fig. 5 Hybrid adaptive salp swarm pattern search algorithm
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Because the results of a single run of metaheuristic 
methods are stochastic, they may be incorrect. As a result, 
statistical analysis should be performed in order to pro-
vide a fair comparison and evaluate the algorithms' effi-
cacy. To address this issue, 30 times runs for the men-
tioned methods are performed, with the results presented 
in Tables 3 and 4.

Tables 3 and 4 show that, for all functions, ASSPS might 
provide better solutions in terms of mean value of the 
objective functions than conventional SSA as well as other 
optimization techniques. 

The results also show that the mean and standard deviation 
of the ASSPS algorithm are significantly lower than those of 
the other strategies, indicating that the algorithm is stable. 
ASSPS outperforms both the standard method and alter-
native optimization approaches, according to the findings.

Table 1 Unimodal benchmark functions
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Table 3 Results comparison of unimodal test functions

F Index ASSPS SSA SCO PSO FA MVO TSA

F1 Mean 0.00 E+00 3.29E-07 2.42 E–97 4.98E–09 7.11E–03 2.81E–01 8.31E–56

Std. 0.00 E+00 5.92E–07 7.22 E–97 1.40E–08 3.21E–03 1.11E–01 1.02E–58

F2 Mean 0.00 E+00 1.9111 1.16 E–52 7.29E–04 4.34E–01 3.96E–01 8.36E–35

Std. 0.00 E+00 1.6142 2.55 E–52 1.84E–03 1.84E–01 1.41E–01 9.86E–35

F3 Mean 0.00 E+00 1.50E+03 7.84 E–81 1.40E+01 1.66E+03 4.31E+01 1.51E–14

Std. 0.00 E+00 707.05 3.49 E–80 7.13E+00 6.72E+02 8.97E+00 6.55E–14

F4 Mean 0.00 E+00 2.44E–05 4.57 E–46 6.00E–01 1.11E–01 8.80E–01 1.95E–05

Std. 0.00 E+00 1.89E–05 9.98 E–46 1.72E–01 4.75E–02 2.50E–01 4.49E–04

F5 Mean 8.22E–08 136.56 2.80 E+01 4.93E+01 7.97E+01 1.18E+02 28.4E+00

Std. 5.78E–09 154.00 8.73 E–01 3.89E+01 7.39E+01 1.43E+02 0.842

F6 Mean 0.00 E+00 5.72E–07 2.15 E+00 6.92E–02 6.94E–03 2.02E–02 3.67E+00

Std. 0.00 E+00 2.44E–07 4.47 E–01 2.87E–02 3.61E–03 7.43E–03 0.3353

F7 Mean 2.39E–05 8.82E–05 1.51 E–04 8.94E–02 6.62E–02 5.24E–02 0.0018

Std. 3.65E–05 6.94E–05 1.33 E–04 0.0206 4.23E–02 1.37E–02 4.62E–04

6 Model application
The feasibility and reliability of the suggested approach 
(ASSPS) as an effective optimization method were vali-
dated in the preceding section by evaluating a variety of 
benchmark issues. In this part, the adaptability and effi-
cacy of the suggested approach for exploring the least FoS 
and reliability index will be explored by considering two 
instances of slope stability challenges from the previous 
research. The first one is a slope in uniform soil, whereas 
the second is a multilayered slope. The FoS is determined 
using the Morgenstern and Price, while the reliability index 
is derived using AFOSM. The ASSPS was implemented 
for slope stability assessment using a program written in 
MATLAB R2017a, which can find the lowest FoS and reli-
ability index and their related critical slip surfaces. 

6.1 Slope in a uniform soil
The first instance is a slope in a homogenous soil with 
an elevation of 10 m and a slope gradient of 18.4°, which 
Chowdhury and Xu [37] presented and investigated for the 
first time. Fig. 6 depicts the cross section and topology of 
the slope.

Table 4 Results comparison of multimodal test functions

F Index CSCPS SSA SCO PSO FA MVO TSA

F8 Mean –1.25E+04 –7.46E+03 –1.01 E+04 –6.01E+03 –5.85E+03 –6.92E+03 –7.89E+03

Std. 0.00 E+00 634.67 1.70 E+03 1.30E+03 1.61E+03 9.19E+02 599.26

F9 Mean 0.00 E+00 55.45E+00 0.00 E+00 4.72E+01 1.51E+01 1.01E+02 151.45

Std. 0.00 E+00 18.27E+00 0.00E+00 1.03E+01 1.25E+01 1.89E+01 35.87

F10 Mean 8.88E–16 2.84E+00 8.77E–16 3.86E–02 4.58E–02 1.15E+00 2.409

Std. 0.00 E+00 6.58 E–01 0.00 E+00 2.11E–01 1.20E–02 7.87E–01 1.392

F11 Mean 0.00 E+00 2.29 E–01 0.00 E+00 5.50E–03 4.23E–03 5.74E–01 0.0077

Std. 0.00 E+00 1.29 E–01 0.00 E+00 7.39E–03 1.29E–03 1.12E–01 0.0057

F12 Mean 2.57E–32 6.82E+00 1.25E–01 1.05E–02 3.13E–04 1.27E+00 6.373

Std. 3.88E–48 2.72E+00 5.41E–02 2.06E–02 1.76E–04 1.02E+00 3.458

F13 Mean 2.35E–32 21.31E+00 1.99E+00 4.03E–01 2.08E–03 6.60E–02 2,897

Std. 3.95E–48 16.99E+00 2.51E–01 5.39E–01 9.62E–04 4.33E–02 0.643

Fig. 6 Slope in a uniform soil
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In this experiment, four parameters include effective 
cohesion (c'), effective friction angle (φ'), unit weight of soil 
(γ) and pore water pressure ratio (ru) are random variables. 
Table 5 displays the random variables' mean and standard 
deviation (i.e., first and second statistical moments). All of 
the random variables in this experiment are supposed to be 
uncorrelated and normally distributed.

Chowdhury and Xu [37] solved the problem and eval-
uated the minimum factor of safety based on simplified 
Bishop's method [38] and the Hasofer and Lind reliabil-
ity index. In this case, the minimum factor of safety and 
its associated critical deterministic slip surface is com-
puted based on the mean values of the soil properties. 
Khajehzadeh et al. [31] proposed modified version of 
gravitational search algorithm (MGSA) for searching the 
minimum FoS and lowest reliability index. This problem 
is solved using the proposed algorithm and the evaluated 
minimum safety factors and minimum reliability indexes 
are shown in Table 6. In Table 6, FSmin and βmin are the 
minimum factor of safety and the minimum HL reliability 
index associated with the critical deterministic and proba-
bilistic slip surfaces, respectively. From the results of this 
table, it can be observed that the minimum factor of safety 
obtained by ASSPS is 1.4432, which is almost 4.7 percent 
lower than the value achieved by SSA (1.5142) and approx-
imately 10 percent lower than that reported by Chowdhury 
and Xu [37]. In addition, the minimum reliability index 
calculated by the presented ASSPS method is 9.7 percent 
and 15.6 percent lower than those obtained by SSA and 
Chowdhury and Xu [37], respectively.

Fig. 7 depicts and compares the final probabilistic and 
deterministic slip surfaces identified by both methods (SSA 
and ASSPS). As shown in this figure, the final probabilistic 

and deterministic slip surfaces are rather near to each 
other, as would be anticipated in a homogenous slope [39]. 
While, the failure surfaces estimated by SSA differ some-
what from those produced by ASSPS.

6.2 Slope in multilayered soil
This experiment is taken from the study of Hassan and 
Wolff [40], which is a multilayer clay slope confined by 
a hard layer below the ground surface, as illustrated in 
Fig. 8. The soil strength characteristics associated to slope 
stability, such as effective cohesion c' and effective friction 
angle φ' are considered as random variables. In this case, 
the random variables are supposed to have a lognormal 
distribution and to be uncorrelated. Table 7 summarizes 
the statistical properties (i.e., mean and standard deviation) 
of the considered variables. The slope's unit weight (γ) is 
considered to be 18 kN/m3.

This case has already been investigated by Hassan 
and Wolff [40], Bhattacharya et al. [39] and Khajehzadeh 
et al. [31]. To calculate the lowest FoS and reliability index, 
Hassan and Wolff [40] suggested a novel search tech-
nique. They used the Spencer technique to calculate the 
FoS and the MFOSM approach to calculate the reliabil-
ity index, assuming a lognormal distribution for the FoS. 
Bhattacharya et al. [39] used the direct search approach 

Table 5 Statistical properties of soil parameters for homogeneous slope

Random 
variable Mean Standard 

deviation
Coefficient of 

variation

c' (kN/m2) 12 2.0 16.67%

φ' (°) 15 2.5 16.3%

γ (kN/m3) 20 1.2 6%

ru 0.2 0.02 10%

Table 6 Results comparison for the homogeneous slope

Reference Minimum FoS 
FSmin

Minimum Reliability 
Index βmin

Chowdhury and Xu [37] 1.6044 2.946

MGSA [31] 1.4526 2.5133

SSA (Present study) 1.5142 2.7646

ASSPS (Present study) 1.4432 2.4965

Fig. 7 Critical slip surfaces explored by SSA and ASSPS for the first 
experiment

Fig. 8 Cross section of a multi-layered slope
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in conjunction with the Spencer method and MFOSM to 
solve this issue. Khajehzadeh et al. [31] suggested a mod-
ified gravitational search algorithm (MGSA) combined 
with Morgenstern and Price and AFOSM for the solu-
tion. Table 8 describes the present study's findings, as well 
as a comparison to those published by earlier studies. 
The findings demonstrate that the suggested ASSPS's min-
imal FoS is 1.6376, which is almost 2 percent lower than 
the other approaches studied. Furthermore, the lowest reli-
ability index obtained by ASSPS is 2.7532, the least among 
the other alternatives. 

Fig. 9 displays the crucial deterministic and probabi-
listic failure surfaces produced from SSA and ASSPS, 
respectively. When the top layer of a multilayered slope 
is weaker than the bottom layer, the critical surfaces are 
placed significantly apart, as seen in this figure. The slip 
surfaces found by the given approach are in fair agree-
ment with those published by Hassan and Wolff [40], 
Bhattacharya et al. [39] and Khajehzadeh et al. [31].

7 Conclusions
For the reliability assessment of soil slopes, this research 
develops a hybrid optimization technique based on the 
adaptive salp swarm as well as pattern search (ASSPS). 
The suggested methodology uses the powerful explor-
atory ability of the adaptive salp swarm algorithm as well 
as efficient local search capacity of the pattern search tech-
nique. The new method's performance is evaluated using 
a variety of unimodal and multimodal benchmark func-
tions. According to the obtained results, the ASSPS out-
performs basic SSA and other methodologies in aspects of 
finding the global solution for most test functions. In order 

to investigate the effectiveness of the proposed method for 
practical engineering problems, the ASSPS is used to find 
the earth slope's minimum reliability index and its asso-
ciated critical probabilistic failure surface. Two series of 
experiments were used to investigate the effectiveness of 
the new ASSPS algorithm for reliability analysis of soil 
slopes. The obtained results indicate that the minimum 
factors of safety obtained by ASSPS are almost 4.7 and 2 
percent lower than the values achieved by SSA for sin-
gle-layer and multi-layer earth slopes, respectively, and 
approximately 10 percent lower than the results previously 
published. Furthermore, for single-layer and multi-layer 
slopes, the minimum reliability indexes calculated by the 
presented ASSPS method are 9.7 and 2% lower, respec-
tively, than those obtained by SSA. The findings show 
that the newly suggested methodology can improve prior 
methods' results, indicating that ASSPS is quite efficient 
for trying to solve such a difficult engineering problem.

Table 7 Statistical properties of soil parameters for homogeneous and stratified slope

Layer of soil Random variable Mean Standard deviation Coefficient of variation Distribution

Layer 1 c1' (kN/m2) 38.31 7.662 20% Lognormal

φ1' (°) 0 - - -

Layer 2 c2' (kN/m2) 23.94 4.788 20% Lognormal

φ2' (°) 12 1.2 10% Lognormal

Table 8 Results comparison for the multi-layered slope

Method FSmin βmin

Hassan and Wolff [40] – MVFOSM, Spencer method, non-circular slip surface 1.663 2.869

Bhattacharya et al. [39] – MVFOSM, Spencer method, non-circular slip surface by direct search 1.665 2.861

Khajehzadeh et al. [31]– AFOSM, Morgenstern and Price method, non-circular slip surface by MGSA 1.6453 2.767

Present study– AFOSM, Morgenstern and Price method, non-circular slip surface by SSA 1.6616 2.8134

Present study– AFOSM, Morgenstern and Price method, non-circular slip surface by ASSPS 1.6376 2.7532

Fig. 9 Critical failure surfaces of a multi-layered slope
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