
Cite this article as: Benissad, S., Touati, M., Chabaat, M. "Artificial Neural Networks for Inverse Problems in Damage Detection using Computational and 
Experimental Eddy Current", Periodica Polytechnica Civil Engineering, 67(1), pp. 1–9, 2023. https://doi.org/10.3311/PPci.20550

https://doi.org/10.3311/PPci.20550
Creative Commons Attribution b |1

Periodica Polytechnica Civil Engineering, 67(1), pp. 1–9, 2023

Artificial Neural Networks for Inverse Problems in Damage 
Detection using Computational and Experimental Eddy 
Current

Sekoura Benissad1*, Mokhtar Touati1, Mohamed Chabaat1

1 Built Environmental Research Lab., Dept. of Structures and Materials, Civil Engineering Faculty, University of Sciences and 
Technology Houari Boumediene, B.P 32 El Alia Bab Ezzouar, 16111 Algiers, Algeria

* Corresponding author, e-mail: sbenissad@usthb.dz

Received: 01 June 2022, Accepted: 08 September 2022, Published online: 19 September 2022

Abstract

A new method for computing fracture mechanics parameters applicable for measuring tests relying on Eddy currents is proposed. 

This method is based on inversing Eddy current with simultaneous use of Artificial Neural Networks (ANN) for the localization and the 

shape classification of defects. It allows the reconstruction of cracks and damage in the plate profile of an inspected specimen to assess 

its material properties. The procedure consists on inverting all the Eddy current probe impedance measurements which are recorded 

according to the position of the probe, the excitation frequency or both. In the non-destructive evaluation by Eddy currents or in the 

case of an inverse problem which is difficult to solve, results from a lot of variety of concepts such as physics and complex mathematics 

are needed. The corresponding solution has a significant impact on the characterization of cracks in materials. On the other side, 

a simulation by a numerical approach based on the finite element method is employed to detect cracks in materials and eventually, 

study their propagation. It is shown here that this method has emerged as one of the most efficient techniques for prospecting cracks 

and enables the study of an increase in size of cracks and its propagation in aluminum material. Besides, it can easily predict future 

defects in different mechanical parts of a given material and be useful in the treatment of materials than the process of changing parts. 

It has been proven that it gives good results and high performance for different materials.
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1 Introduction
In the aircraft industry as well as in the majority of indus-
tries, the brutal fracture problem has a great importance. 
This scientific phenomenon is a very serious problem for 
a large community of researchers. It leads to the need for 
a better understanding of the behavior of cracked struc-
tures. It is a scientific challenge that represents an import-
ant issue from an analytical point of view, numerically as 
well as experimentally [1]. Non-Destructive Tests (NDT) 
can make the difference between life and death. Jeffrey T. 
Fong and testing materials (ASTM) aim to detect defects 
while preserving the integrity of the product. Thus, the 
toughness is often measured as a point value and charac-
terized by a parameter such as the Stress Intensity Factor 
(SIF) or the Energy Release Rate (G) at the crack initiation. 
The first fracture toughness test standard ASTM E399 was 
developed to determine the point value of plane strain frac-
ture toughness near to the onset of crack initiation KIc [2, 3].

NDT by Eddy current testing can be used for a variety 
of applications such as detection of cracks (discontinuities), 
measurement of metal thickness, detection of metal thin-
ning due to corrosion and erosion, such as stress-corrosion 
cracking, fatigue cracks, or inter-granular attack deter-
mination of coating thickness and also the measurement 
of electrical conductivity and magnetic permeability [4]. 
Eddy current technique (ECT) is an excellent method for 
detecting surface and near surface defects when a probable 
defect location and orientation are well known [5]. ECT 
technique is based on the electromagnetic induction prin-
ciple for detection the magnetic field due to the Eddy cur-
rent induced on the test sample. The presence of the defect 
alters the Eddy currents pattern and causes field's perturba-
tions closely linked to the position and shape of the defect.

An excitation field is carried out by using a coil fed by 
an alternating current, where the changed impedance coil 
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can be calculated. This latest considers that a defect has an 
effect on the induced currents. The modeling of a practical 
configuration of ECT sensor requires extended analytical or 
numerical developments because of its complexity. Then, 
Finite Element Method (FEM) is more general, numerically 
superior. FEM is mainly used for its versatility modeling of 
material properties, simulations of boundary conditions as 
well as modeling arbitrary domain spaces. It also reduces 
substantially the experimental work [6, 7]. It has also been 
proven that in a lot of chosen models, the model which sat-
isfies the boundary conditions and takes in consideration 
applied loads, gives good results.

In order to estimate the material properties of an inspected 
sample of electrical conductivity profile, the problem of 
inverse Eddy currents can be described as a task of recon-
structing the sample [8]. This is done by inversing Eddy 
current probe impedance measurements which are recorded 
as a function of probe position, excitation frequency or 
both. It is widely recognized as a complex theoretical prob-
lem, in a non-destructive evaluation by eddy currents and 
its solution is likely to have a significant impact on the 
characterization of conductive materials [9]. Neurons are 
the highly interconnected processing elements that make 
up Artificial Neural Networks ANN. These latest can per-
form arbitrary mappings between sets of input-output pairs. 
This procedure is realized by adjustment of the weights of 
interconnections after training through the presentation of 
examples. Neural network performance has proven robust-
ness when faced incomplete, fuzzy or novel data [10].

In this research work, a new method of calculating 
fracture mechanics parameters using Eddy current NDTs 
linked to experimental data is presented. An inverse prob-
lem using ANN that simulates the mapping between Eddy 
current signals and crack profiles is the basis of this method. 
On the other side, this method is very useful for locating 
and classifying simultaneously the shape of defects in the 
spontaneous use of ANN.

2 Eddy current governing equations
FEM computational model is based on the strong coupling 
of the magnetic field magneto-dynamic equation expressed 
in terms of magnetic sector potential and the total current 
density equation composed by the source and eddy current 
densities. The effectiveness of the proposed model is inves-
tigated through the comparison of the impedance with the 
classical current fed model where massive or multi conduc-
tor sensors configurations avoid skin and proximity effects 
in 2-D and 3-D [11, 12]. These models are numerically 

solved using FEM to obtain the Eddy currents distributions 
in order to calculate the impedance variation at each sen-
sor position as well as to show the advantage and effective-
ness of the Model (A-J). ECT phenomenon can be treated 
as a quasi-static electromagnetic field problem expressed 
by the governing field equations in terms of electrical sca-
lar and magnetic vector potentials. These equations can be 
solved by 3-D FEM. Application of the Coulomb gauge 
allows simultaneous solution of the coupled magnetic vec-
tor potential and electric scalar potential equation in the 
inductor Ωi and the conducting region Ωc, the non-con-
ducting region representing the air Ωa with a current den-
sity source. These equations can be written as,
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where Js the current density source, υp is the penalty term, 
υ corresponds to the magnetic reluctivity, ∇ is the elec-
trical potential, σ is the electric conductivity and ω is the 
angular frequency. The integral A-V is obtained when 
applying Galerkin's methods and the weighted residuals 
for Eqs. (1) and (2), using vector Ni and scalar αi weighted 
functions. Such a formulation leads to the following inte-
gral form [1, 12].
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3 Senor impedance calculation
The detection of change of the resulting magnetic fields is 
based on two basic methods: the NDT differential mode 
represented by two separate coils linked magnetically and 
supplied by the same current and the NDE absolute mode 
which makes use of only one coil. The impedance variation 
is obtained from comparison with the reference imped-
ance. The impedance variation ∆Z is a complex number. 
The imaginary part is computed with the magnetic energy 
(WM) in the whole meshed domain and the real part is com-
puted with the Joule Losses in the conductive media and 
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the imaginary part is computed with the magnetic energy 
in the whole meshed domain. The coil impedance with an 
excited current I at a frequency F is obtained by the fol-
lowing expression [8].
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where, B and H are the induced magnetic induction, and 
the magnetic field, respectively

4 Application
In this section, we test a magnetic plate without any crack 
characterized by permeability equal to the unit, a high 
conductivity 106 (Sm–1), excited by a sinusoidal current 
of density of current I = 2.67 106(A/m) and a frequency 
of 10 kHz. EC testing problem deals with a Pancake coil 
placed above a flat plate, as shown in Fig. 1, with a rectan-
gular crack. The coil is set along the crack length direction, 
moving in the xy plane, parallel to the x-axis. Besides, pla-
nar visualization in 3-D mesh is presented in Fig. 1 [12].

5 Results interpretation
The result of simulation obtained in the case of a non-mag-
netic plate without defects are illustrated by a set of fig-
ures as follows: Figs. 2, 3 and 4 present the distribution of 
the representation of the potential magnetic Vector Ax, Ay, 

and Az, respectively. They expose a great power of con-
centration of the potential to the level of the conductor and 
cracks and show weaknesses in values from where high 
use of the frequency. Fig. 5 represents the distribution of 
the currents induced on the surface of target. It is noticed 
that their values are high because the conductivity of the 
non- magnetic target is large ( j = σ.2π.f.A) but are relatively 
weak compared to the primary currents. Fig. 6 indicates 

Fig. 2 Representation of the potential Ax

Fig. 3 Representation of the potential Az

Fig. 4 Representation of the potential Ay

Fig. 1 Planner visualization of the 3D mesh around the coil
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the distribution of the magnetic field. That explains the 
strong concentration of the vectors of magnetic induc-
tion on the level of the cracks without the possibility to 
penetrate inside the plate due to the characteristics of the 
material and the effect of the frequency. In Figs. 7 and 8, 
one can notice that when the width decreases, the value of 
impedance Z decreases at the same rate. The width of the 
defect has a great influence on the variation of impedance. 
Besides, the variation depth of the defect has a light influ-
ence on Z. It is also noticed that the difference of imped-
ance Z has dependence with the width of the defect; indeed, 
the width of defect increases Z automatically and conse-
quently; it can be evaluated. On the opposite, Z decreases 
when the width decreases, leading us to conclude that the 
depth of defect does influence the impedance. The varia-
tion depth of the defect has a feathery influence on Z.

6 Experimental test set up
The experimental test is set up as shown in Fig. 9. The diam-
eter of the prototype differential ECT sensors is 100 mm and 
the lift-off in test is 0.5 mm. The specimen used in test is 
an aluminum plate of 3 mm thickness. There are four slots 

having a deep length of 2 mm, 1.5 mm, 1.0 mm and 1.0 mm, 
respectively. A 1.5 mm wide slid is made in the specimen 
to simulate surface cracks. As we know, the higher the 
excitation frequency is, the smaller is the standard pene-
tration depth. ECT sensor excited by high frequency can 
be sensitive to surface cracks. For an aluminum material, 
the room conductivity is taken to be 107 Sm–1 and the mag-
netic permeability µ is 10–6 H/m, excited by a sinusoidal 
current of density of current J = 2.67 106 A/m and a fre-
quency of 10 kHz. In this part, an approach for studying 
the measured impedance of the measured impedance in 
the inductive sensor is proposed, for the non- destructive 
testing by Eddy currents in an absolute mode. The equiva-
lent circuit of eddy current testing is shown in Fig. 9 [13].

Fig. 8 Impedance Z vs different cracks depth

Fig. 7 Impedance ∆Z vs the different cracks width

Fig. 6 Vector of magnetic induction B

Fig. 5 Density of the induced current I

Fig. 9 Equivalent circuit of Eddy current testing
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Circuit 1:

U R i L di
dt

M di
dt0 0 0 0

0 1� � �. . .  (9)

Circuit 2:

R i L di
dt

M di
dt1 1 1

1 0 0. . .� � � , (10)

where f is the excitation frequency of coil; R0, and L0 are 
the resistance and inductance of coil, respectively. Re and 
Le are the resistance and inductance of the induced eddy 
current loop. M is the mutual inductance between the 
two loops.

The circuit solution is given by the equivalent imped-
ance Z in Eq. (11). It is composed of a resistance and an 
inductive reactance. We notice that Eqs. (12) and (13) given 
bellows indicate that the equivalent resistance R increases 
while the equivalent inductance L decreases due to induced 
Eddy currents.

Z R jL� � �  (11)
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and the primary inductance is by;
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When the ECT sensor tests a surface crack, the exis-
tence of defect affects the coupling between excitation coil 
circuit and Eddy current loops. The coupling can be inter-
preted as mutual inductance M that is dependent on the 
crack characters like the position, the size, the depth, the 
extension direction and the shape [9].

Experimental results obtained from the different tests 
are plot in the following Figs. 10, 11, and 12. Numerical 
plots are also drawn in the same figures. As one can notice, 
values of the impedance Z are in good agreements between 
both experimental testing and numerical method. It is 
proven that the numerical model fit well with expected 
results found from experimental test.

7 Artificial neural networks
Although this is an oversimplified model of the biologi-
cal brain, the organization and the information processing 
strategies of an ANN are based on the features of their 
biological counterparts. The neurons combine the input 
impulses in several ways, operating in parallel with other 

neurons to perform a variety of functions. In artificial neu-
ral nets, each simple node performs a weighted sum of the 
inputs and computes a nonlinear function of the results.

Fig. 10 Impedance Z by experimental testing and numerical method

Fig. 11 Impedance Z by experimental testing and numerical method
f = 20 Khz

Fig. 12 Impedance Z by experimental testing and numerical method

Fig. 13 Skeleton form of Artificial Neural Networks
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In the learning process, the actual output of the artifi-
cial neuron network is compared with the desired output. 
Changes are made by modifying the connection weights 
of artificial neural network to produce a closer match to 
a neuron that may make a nonlinear function of its inputs. 
But one neuron is not sufficient in most applications and 
the association of several neurons can be more prefera-
ble. The composition of non-linear functions performed 
by each neuron is permitted by several neurons associ-
ated to the network, which is particularly needed for the 
modeling systems whose behavior is not simple. The feed 
forward neural networks (also called feed forward) are 
represented by a set of connected neurons to each other. 
Neuron information flows from the inlet to the outlet with-
out return rearward. There are several types of feed for-
ward networks, but in practice, those that are most used 
are the type MLP (Multilayer Perceptron) [12].

Let's call input all input parameters, output layers all out- 
put neurons. Intermediate layers having no contact with the 
outside world are called hidden layers. For a given layer, 
neurons have the same activation function. The output of 
the ANN is obtained directly after application of the input 
signal with the propagation times of information very close.

The first formal neuron performs weighted sum inputs 
(x1…. xn) by the weight (w1....wn) connections which are 
added through w0. Then, this value is subjected to an acti-
vation function f whose result is the Y output of the neu-
ron as shown in Fig. 13. 

From the above description, the output of the neuron 
can be written as

y f w X wi

n

i i� ��( )

1

0 . (14)

The behavior of a neuron is fully described by both the 
value of its connections and its function activation. This 
latest is known as a sigmoid function.

f x
ex
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where wij is the weight coefficient, xj is the input signals, 
and yj is the output at the neuron i of the ouput layer.

In this research work, ANN procedure along with FEM 
analysis and experimental testing is used to solve inverse 
problems that are met in the detection of cracks. This 
approach can be able to identify unknown metallic objects 
as well as internal and external cracks. Simultaneous use 
of ANN can be very useful for locating and classifying 
defect shapes. The methodology used in this work con-
sists in feigning signals of a response by the detector 

on the influence of physical variations and geometrical 
parameters of the metallic objects that are buried by FEM 
and Experimental Testing. Obtained results (profiles) are 
used to generate a base (basis) of learning (apprenticeship)
of a model of networks of neurons multi-coats (multilayer) 
or MLP (Multilayer-Perceptron) [12].

8 Model validations
Application of NN to the inversion method of the probe 
coil impedance is tested to identify and evaluated the 
form of cracks. NN input consists in the probe impedance 
while its output provides evaluated cracks with different 
shapes (Fig. 14). An important problem in the NN inver-
sion process is the selection of the network structure and 
the adjustment of internal parameters. The determination 
of the optimal NN structure and the test are realized by 
the improbability method. Data sets are created by data 
thanks to the problem of the electromagnetic interaction 
between the probe and plate by using FEM. Every set 
contains the input-output data belonging to the evalua-
tion range. The training set allows to train the NN, mean-
ing, the adjust of internal parameters. Neural network is 
performed by minimizing the mean square error (MSE) 
which is used as a cost function and measured between 
the output of the network and the desired solution when 
corresponding inputs are presented to the NN. The mean 
square error value is computed by [12].

MSE w
N

S wk
k

N
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�
�1
1

2D E , ) , (16)

where, Ek is the input vector, Dk is the desired output vec-
tor, w corresponds to the constituted column vector of the 
set of the weights and bias of the network, S is a realized 
function by NN, and N is the number of samples in the 
training set [7].

Fig. 14 Impedance Z vs. different crack's shapes
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In this study, results of the various cases of simulation 
have been obtained. From these results, one can conclude 
that: The calculation of the impedance in only one point 
is not enough to confirm the presence or the absence of 
a defect in materials. This confirmation leads us to the cal-
culation of the impedance along the Plate. The detection of 
an external defect requires the energy of the sensor by high 
frequencies. The position of defect (internal, in the mid-
dle, external) has a large effect on the impedance. The use 
of this sensor type in industrial application is frequent 
because of its precision. On the other side, this type of sen-
sor lies in the fact that it is unable to detect a defect.

The accuracy and performance of the derived correla-
tions was evaluated on the basis of the following statisti-
cal error tests which are coefficient of determination R², 
root mean square error (RMSE) and its normalized value 
(nMBE), relative root mean square error (rRMSE), mean 
absolute error (MAE) and its normalized value (nMAE). 
These error indices are defined as [12],
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The ranges of rRMSE define the model performance as:
Excellent if: rRMSE < 10% 
Fair if: 12 % < rRMSE < 30%
Good if: 10 % < rRMSE < 20% 
Poor if rRMSE > 30%
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Here, yi and xi are the estimated and the measured value 
y̅ i is the average of estimated value and N corresponds to 
data number.

9 Inversion procedure 
The length and width are estimated by a type of neural net-
work (MLP) is employed as in Fig. 15 representing the 
steps of inversion. Evaluating the depth or length sepa-
rately does not lead to a complete characterization of the 
geometry of a crack. From where an evaluation of the two 

sizes (depth and length) will be carried out at the same time 
by exploiting the previous architecture, but in this case the 
database must contain two input vectors and two output 
vectors to estimate. Fig. 15 shows a block diagram of a net-
work (MLP) with two inputs and two outputs for the fault 
characterization. The learning algorithm is repeated sev-
eral times so that each iteration biases are reset and there-
fore, the results can be different. On the other hand, Fig. 16 
shows the cost function (MSE), and we remark that it con-
verges to the optimum imposed 5.10–7 after 122 iterations. 
It represents also the linear regression between the desired 
output and the output of the network; we notice that there 
is a very good correlation between the real values of the 
crack and those estimated by the neural network. Finally, 
we obtain the global geometric shape of the defect; with the 
driving of the network (MLP) and the cost function (MSE), 
we notice that it converges to the optimum imposed (the 
mean square error (MSE) reached the optimum of 10–7 .

Results from the FEM for each figure have been inversed 
just for comparisons purposes with the ANN optimization 
and the true profile of the shape crack. These comparisons 
are shown in Figs. 17, 18 and 19 and give good maps repre-
senting the NN in very short time.

10 Conclusions 
A Finite element discretization of 3-D for solving problem 
in Eddy current testing is presented in this paper. The main 
idea is the introduction of categorization for the shape 

Fig. 16 Cost's function (MSE) vs. number of epochs

Fig. 15 Inverse problem ANN
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reconstruction using the NDT by 3D-EC. Results are pre-
sented for a simple Eddy current problem using the finite 
element method as an experimental support. Eddy current 
testing responses which estimate the forms of crack are 
obtained by the inverse model in a very short time. This 
model has given reasonable results. On the other side, it is 

very important to make sure that the application in 3-D 
Eddy current for various cases of simulations can be a good 
substitute and also very helpful in the NDT operators' work. 
Besides, the application consists to simultaneously estimate 
the two parameters of the crack: depth and length.

In this research paper, a neural network for applica-
tion in the field of (NDT-EC) is developed. This is just to 
restore the geometrical shape of a defect type which is con-
sidered as a lack in the material. This can be done through 
the estimation of its dimensions (length and depth). Thus, 
a reverse problem is solved by a MLP neural network whose 
activation function is the function (logsig) that has been 
operating in this part. So as the sensor used in this work 
is of a differential type, then we have chosen two real and 
imaginary parts of each impedance constituting the sign 
of defect, in order to achieve a match between the data of 
the direct problem and those got by the neuron network in 
an acceptable time. Obtained results have shown similari-
ties between those of a direct model with an ANN model, 
which proves that we can reach more important goals such 
as the characterization of defects, something that was not 
accessible through the direct model. It is very important to 
make sure that application of artificial intelligence will be 
a good substitute or help of the NDT operators' work.

Besides, we noticed that the obtained results are iden-
tified by flocculation of impedance of the magnetic cur-
rent value. These values agreed with the previous results. 
They can allow us to determine the mechanical properties 
of the material as well as the fracture parameters such as 
expansion and crack propagation. In this study, this new 
approach can predict easily future damage of mechani-
cal parts. Except that this technology can direct us to the 
treatment of materials instead of changing parts of them. 
It gives accurate results and high performance for parts 
of materials Possible prediction of cracks propagation 
through the determination of fracture parameters such as 
the stress intensity factor SIF and J-integral using Eddy 
current. Similar results are obtained using theoretical 
methods for both parameters SIF and J-integral.

The use of this method in industrial application is frequent 
because of its precision (minimal error) and its low costs.
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Fig. 17 Comparison results from the ANN optimized and FEM profile 
(rectangular crack)

Fig. 18 Comparison results from the ANN optimized and FEM profile 
(triangular crack)

Fig. 19 Comparison results from the ANN optimized and FEM profile 
(triangular crack)
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