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Abstract

Continuously operating reference stations (CORS) provide augmentation services for the highly accurate, cm-level GNSS positioning 

needs of land surveyors, agriculture, and even autonomous vehicles. These stations have accurate coordinates, thus they can be used 

to estimate the signal delay caused by the neutral atmosphere including the atmospheric water vapor. The estimated zenith wet delay 

(ZWD) is in a close correlation with the integrated water vapor in the atmospheric column. 

Since a ground station tracks several satellites at every epoch, one could also estimate the slant tropospheric delays, which can 

provide information on the spatial distribution of the atmospheric water vapor, too. This paper introduces a near real-time multi-GNSS 

processing approach to estimate slant wet tropospheric delays and a coupled tomographic reconstruction technique to estimate the 

3D wet refractivity model that can be assimilated in numerical weather models. The estimated zenith tropospheric delays (ZTDs) and 

tropospheric gradients are used to restore the slant wet delays (SWD) affecting the observed satellite-receiver range. The SWDs are used 

as input for a tomographic reconstruction algorithm providing the wet refractivities in a pre-defined voxel model. The derived refractivity 

profiles have been validated with radiosonde observations. The results show that our GNSS tomography approach could reconstruct the 

refractivities with the uncertainty of 10 ppm below 3 km of altitude and of 0.3 ppm at the altitude of 10 km in terms of standard deviation. 
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1 Introduction
Atmospheric water vapor (AWV) is extremely important 
for the Earth's climate. It is a substantial contributor to the 
natural greenhouse effect and, as a result, provides positive 
climate feedback in the context of global warming [1–3]. 
Also, AWV is a critical component of the water cycle and 
plays a crucial role in energy transport. Evaporated water 
at lower latitude is transported to higher latitude where it 
condensates and releases a big amount of heat [4].

The remote sensing of water vapor using the Global 
Positioning System (GPS) observations was firstly sug-
gested by Bevis et al. [5]. In their paper they explain the 
theoretical background of the application of tropospheric 
delays to estimate the integrated water vapor and they 
introduce the principles of GNSS atmospheric tomography.

The AWV has a complex spatial distribution in the 
atmosphere. Due to their limited spatio-temporal resolu-
tion, traditional atmospheric measurement sensing tech-
niques like radiosonde (RS) and microwave radiometer 

(MWR) observations include inaccuracies related to the 
ongoing spatial and temporal changes in the atmospheric 
water vapor density [6]. Yao et al. [7] explains that the ulti-
mate solution for an accurate retrieval of AWV with high 
temporal resolution is the use of GNSS because of its all-
weather availability, high accuracy, low cost and long-term 
stability [7–9]. Traditionally GNSS is capable to retrieve 
the atmospheric delay caused by the water vapor in the 
atmospheric column above the receiver, that is closely cor-
related with the integrated water vapor (IWV). However, 
the aggregated atmospheric water vapor in the vertical col-
umn does not represent the vertical distribution of AWV. 
To circumvent these drawbacks, the tomographic recon-
struction techniques can be used when the refractivities are 
estimated using the troposphere induced signal delays in 
the satellite directions [10–12]. These studies suggest also 
that the reconstructed 3D distribution of water vapor has 
significantly improved the precipitation forecast.

https://doi.org/10.3311/PPci.20559
https://doi.org/10.3311/PPci.20559
mailto:turak.bence%40emk.bme.hu?subject=


156|Turák et al.
Period. Polytech. Civ. Eng., 68(1), pp. 155–168, 2024

In this paper, we introduce a near real-time automatic 
GNSS observation processing facility for meteorological 
purposes. It processes GNSS observations on an hourly 
basis and calculates the tropospheric delays and gradients. 
Furthermore, we also introduce a tomographic recon-
struction algorithm that estimates not only the lateral but 
also the vertical changes of the atmospheric water vapor. 
The tomographic reconstruction results the 3D model of 
the refractivity induced by the atmospheric water vapor 
that could be directly assimilated in some numerical 
weather models [13].

The paper is organized as follows. First, we briefly intro-
duce the theory of the tropospheric effects on the GNSS sig-
nal propagation. Then the developed near-real-time GNSS 
processing system is discussed in detail providing signal 
delays in the zenith direction as well as the tropospheric gra-
dients in the north-south and east-west directions account-
ing for the atmospheric asymmetry in case of weather 
fronts. Afterwards the tomographic approach is introduced, 
and a case study is presented using one month of GNSS 
observations in the Central-Eastern European domain. 

2 Tropospheric effects on GNSS positioning
The Global Navigation Satellite Systems (GNSS) provide 
positioning services using range observations between the 
receiver and the satellite and calculate the 3D coordinates 
of the receivers by trilateration. Since the range observa-
tion is derived from the travel time of the microwave sig-
nals transmitted by the satellite, they tend to be affected by 
several systematic errors [14]. The observation equation of 
the phase ranges is: 
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where
Φk

j is the observed phase range (a partial distance mea-
sured by the phase lag between the incoming and the 
reference signal),

ρk
j is the geometrical distance between the satellite and 

the receiver calculated by the known satellite coordi-
nates and the unknown receiver coordinates,

δtk the receiver clock error,
δtj the satellite clock error,
Nk

j the phase ambiguity,
STDk

j the slant tropospheric delay in the satellite direction,
Ik

 effect of the ionosphere,
vk

j random observation error,
λ signal wavelength,
c velocity of light in vacuum.

Although the phase range observations are affected by 
several errors, most of them can be eliminated with the 
appropriate processing technique. In relative position-
ing techniques the double differences of the phase range 
observations are used to estimate the coordinates, which 
eliminates both the satellite and the receiver clock error. 
In case of dual-frequency observations one can exploit the 
frequency dependency of the ionospheric effect and form 
a so-called ionosphere-free linear combination of the dual 
frequency observations. Thus, only the tropospheric delays 
and the phase ambiguities remain as unknowns apart from 
the stations coordinated in Eq. (1). Integer phase ambigu-
ities can be resolved by several techniques [15–17].

The tropospheric delay heavily depends on the actual 
atmospheric conditions. Although several empirical mod-
els exist to estimate the tropospheric delays [18–21], sci-
entific level GNSS processing software tend to estimate 
at least a part of the tropospheric delays together with the 
coordinates. 

The tropospheric delay can be split into the hydrostatic 
and the wet parts. The former one is mostly caused by the 
atmospheric masses of the dry air. The height of the atmo-
sphere is approximately 50 km and it contains 99% of air 
mass. Since it is less variable in time and space, it is eas-
ier to estimate. The wet part of the delay is caused by the 
atmospheric water vapor, which is located in the tropo-
sphere, the lowest layer of the atmosphere having a thick-
ness of ca. 10 km. 

The water vapor content in the stratosphere is close 
to zero. The wet delay is more variable in both time and 
space [22, 23] due to the highly variable water vapor dis-
tribution. Therefore, precise GNSS positioning techniques 
account for the hydrostatic part of the delay as a correc-
tion, while the wet component is estimated using the GNSS 
observations.

The tropospheric delay has the magnitude of ca. 2.3 
meters in the vertical direction, out of this ca. 90% is 
caused by the hydrostatic part and 10% is induced by the 
wet part of the tropospheric masses. In GNSS data pro-
cessing, these vertical delays are mapped to the satellite 
directions using an appropriate mapping function:

STD SHD SWD ZHD m ZWD me eh w� � � � � �( ) ( ) , (2)

where STD is slant tropospheric delay, SHD is the slant 
hydrostatic delay, SWD refers to the slant wet delay and 
mh(e), mw(e) are the hydrostatic- and wet mapping functions.

Several types of mapping functions can be used to calcu-
late the tropospheric delays in the satellite directions [24]. 
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These mapping functions were derived from either the 
standard atmosphere models, radiosonde profiles or even 
historical numerical weather model analysis. All of them 
have the limitation to assume that the actual atmospheric 
conditions can be described by some empirical functions.

Recently, the Department of Geodesy and Geoinforma-
tion of the Technical University of Vienna developed an 
approach to regularly estimate the zenith hydrostatic delays 
and the mapping function coefficients using the results of 
numerical weather forecasts. In the VMF1 FC (Vienna 
Mapping Function 1 – Forecast), the formula given by Niell 
is used and a part of the coefficients are calculated by ray- 
tracing the numerical weather forecast models [16, 25, 26].

Thus, the slant delays can be calculated by the follow-
ing mapping function:
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where e is the elevation angle of the satellite at the station, a 
parameters are estimated using the ECMWF (The European 
Centre for Medium-Range Weather Forecasts) by the TU 
Vienna in a global grid for both the hydrostatic and the wet 
components. The parameters b and c are given, for the wet 
component they are: bw = 0.00146 and cw = 0.04391.

Although the VMF1 mapping function coefficients are 
estimated using numerical weather models, the resolu-
tion of the global grid is sparse, and the anisotropy of the 
troposphere is neglected. The tropospheric delay model-
ling given in Eq. (3) must be extended to account for this 
anisotropy caused by mainly weather fronts. It assumes 
that the lateral changes of the tropospheric delay can be 
described by a tilted plane [16]. By defining the gradients 
of this plane in two orthogonal directions one can calcu-
late the slant wet delay using the following formula:
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where:
x tilting parameter in direction North-South
y  tilting parameter in direction East-West 
α azimuth angle from the station to the satellite
e elevation angle from the station to the satellite

Since the hydrostatic part of the tropospheric delay 
provides the majority of the effect and is easily estimated 
as a function of the total air pressure, we use the VMF1 
hydrostatic delays as 'a priori' values in the calculations 
and estimate the wet component of the delay. In view of 
the fact that many countries have developed their own 
ground-based augmentation systems for GNSS by estab-
lishing networks of continuously operating reference sta-
tions, one can even eliminate the coordinate unknowns 
in Eq. (1) and estimate the wet tropospheric delays after 
a successful ambiguity resolution of the phase range 
observations. In the next section such a GNSS data pro-
cessing facility is introduced.

3 Near real-time GNSS processing system
In the previous section we have discussed the theoreti-
cal background of the estimation of tropospheric delays 
using GNSS observations taken by a network of GNSS 
receivers. To estimate the tropospheric parameters in near 
real-time – with the latency of 1–1.5 hours – one needs 
to use accurate satellite orbits available in near real time. 
Although the International GNSS Service provides ultra-
rapid orbit solutions [27] for this purpose, these products 
contain GPS orbits only. Fortunately, the Center for Orbit 
Determination in Europe provides ultra-rapid orbit solu-
tions available for GPS, GLONASS and Galileo [28].

The Bernese V5.2 GNSS processing software is used 
to automatically pre-process the GNSS observations in 
hourly batches and to combine the normal equations of 
the hourly least squares adjustment in the most recent 12 
hours to a 12-hour solution. The latter one is used for the 
estimation of the tropospheric parameters. Since the least 
squares adjustment technique is sensitive to gross error, 
special attention must be paid to the careful pre-process-
ing of the phase observations. Moreover, it is important to 
provide good 'a priori' values for the estimated parame-
ters [16] (Fig. 1).

To eliminate the ionospheric effects, the ionosphere free 
linear combinations of the double-differenced phase ranges 
are used in this study. Thus, the observation equations 
contain only the phase ambiguities, the zenith wet delays 
and the tropospheric gradient parameters as unknowns. 
After the successful resolution of the phase ambiguities, 
the zenith wet delays are estimated. The VMF1 forecast 
mapping functions are used to map the estimated zenith 
wet delay to the satellite direction [29].
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Our tropospheric delay estimation relies on several 
national, and international GNSS networks that contains 
87 GNSS stations altogether (Fig. 2):

• IGS,
• EUREF Permanent Network (EPN),
• CORRIGO (a Hungarian GBAS provider),
• BME (stations maintained by the Budapest University 

of Technology and Economics), and
• ZAKPOS (a GBAS system provider in the Ukraine).

To mitigate the seasonal variation of station positions caused 
by unmodelled effects, the station coordinates are estimated 
and fixed on a weekly basis. First, two 12-hour normal equa-
tions of every day are combined (UTC 0-11.59 and UTC 
12.00-23.59), and a daily coordinate solution is estimated in 
a separate Bernese process. Second, the daily normal equa-
tions of the seven days are combined to obtain the weekly 
coordinate solution after the end of the GPS week.

The workflow of the hourly GNSS data processing is 
depicted in Fig. 1 This provides the hourly estimates of 
ZWDs and respective tropospheric gradients for each sta-
tion. Tropospheric delay parameters are estimated with 
hourly temporal resolution and the last but one estimated 
value is considered as the parameter valid for the respec-
tive hour. As an example, we show the ZWDs and the gra-
dients obtained on March 15, 2022, between UTC 16-17:00 
in Figs. 3 and 4, respectively.
ZWDs can be assimilated in numerical weather mod-
els and are widely used to estimate the integrated water 
vapor [30], thus this is a valuable observation for the mete-
orological community.

Tomographic reconstruction is widely used in geo-
physics [31, 32] and in the engineering practice [33, 34]. 
Since the slant wet delays can be calculated as a function 
of the estimated ZWDs and tropospheric gradients, one 
can apply the tomographic approach for the estimation of 
the spatial distribution of wet refractivity that can be con-
verted to water vapor densities, when the temperature pro-
files are known, too.

In the next part of the paper, we introduce the tomo-
graphic reconstruction methodology applied for the esti-
mation of the 3D wet refractivity models. First the calcu-
lation of the slant wet delays is discussed, then, we briefly 

Fig. 1 Tropospheric delay estimation facility

Fig. 2 GNSS stations

Fig. 3 Map of ZWD values

Fig. 4 Tropospheric gradients (dimensionless) 
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introduce the principles of atmospheric tomography using 
GNSS, finally the algorithmic realization of the tomo-
graphic reconstruction is detailed.

3.1 Restoring slant wet delays
The tropospheric delays in the receiver-satellite direction 
can be calculated with the integral of the refractivity along 
the signal propagation path and they can be used to recon-
struct the 3D model of atmospheric refractivity by tomo-
graphic approaches. Since, the Bernese GNSS software 
does not provide the slant wet delays (SWD) as an output, 
[16], we have to firstly restore the SWDs using the ZWDs, 
the mapping function coefficients and the tropospheric gra-
dient parameters. To keep the consistency with the GNSS 
processing, we use the same VMF1 mapping function coef-
ficients in the restore step that are used for the estimation 
of ZWDs in the near real-time processing system (Eq. (3)). 

The flow-chart of the tomographic reconstruction algo-
rithm is depicted in Fig. 5. To calculate the SWDs between 
the receiver and the satellite, the satellite elevation angles 
and azimuths are calculated at the ground stations for the 
respective epoch using the GNSS station coordinates and 
the ultra-rapid satellite orbits. Afterwards, the SWDs are 
calculated using Eq. (4) based on the estimated ZWDs 
and tropospheric gradient parameters. The SWDs are 
calculated for each station and for all the visible GPS, 
GLONASS and Galileo satellites. These SWDs are used 
in the next step for the tomographic reconstruction of the 
atmospheric refractivity field.

3.2 Tomographic reconstruction
We have seen in the previous section that the SWDs along 
the signal path can be restored from the estimated ZWDs 
and tropospheric gradient parameters. These SWDs can 
be used to reconstruct the 3D refractivity field in the atmo-
sphere using the tomographic technique.

Tropospheric delays in the satellite direction are defined 
as the integral of the refractivity along the signal path:

STD n ds Nds� � �� � � �1 106 , (5)

where n is the refractive index and N is the refractivity. 
Below the frequency of 30 GHz, the refractivity (N) can 
be divided into two parts: the hydrostatic refractivity (NH) 
and the wet refractivity (Nw) [35]:

N N NT H W� � . (6)

Due to Eq. (6) we can separately integrate the hydro-
static and wet refractivity to obtain the SHD and SWD 
as seen in Eq. (2). Since the hydrostatic refractivity is 
mostly caused by the dry air and our aim is to estimate 
the 3D distribution of the water vapor, we can focus on 
the wet refractivity only. Following Eq. (5) the SWD can 
be expressed as a line integral of the wet refractivity (nw) 
along the signal path:

SWD n ds N dsw w� � �� � � �1 106 . (7)

Eq. (7) can be applied for the tomographic reconstruc-
tion of the wet refractivities based on the available slant 
wet delays knowing the signal path between the receiver 
and the satellite. For the numerical solution, a voxel grid 
defined the study area. Since the receiver and satellite 
coordinates are known, the path lengths within each voxel 
can be easily calculated using a flat earth model (Fig. 6) 
and neglecting the curvature of the ray path. Horváth 
et al. [36] has proven that the flat earth approximation 
leads to an error of less than 3% even for low elevation 
angle satellites. Afterwards, a system of equations can 
be set up based on Eq. (7) using all the slant wet delays 
calculated at a single epoch of the near real-time GNSS 
observations: 

Fig. 5 Tomographic reconstruction algorithm Fig. 6 Schematic grid for the tomographic reconstruction
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where
Nw

i wet refractivity in the voxel i
lk,i length of the kth ray in voxel i in meter unit
SWDk Slant Wet Delay in the kth ray's direction in meter unit

Or in matrix form:

Ax b= , (9)

where
A is the design matrix containing the path lengths in the 
voxels:
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b is the observation vector containing the estimated SWD 
values:
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and x is the vector of the unknown wet refractivity 
parameters:
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Although the number of rays usually exceeds the num-
ber of unknowns, the problem can lead to a singular 
normal equation, since there might be some voxels that 
have no intersections with the receiver-satellite vectors. 
To avoid this singularity one can, filter out these voxels 
and solve the problem using the least squares adjustment 
technique [37].

In this paper we used a different approach and applied 
the multiplicative algebraic reconstruction technique 
(MART) instead. This technique is not sensitive to voxels 

without any intersections since it uses an a priori 3D 
refractivity model and updates only those voxels that have 
an intersection with any signal path.

In the next section, we briefly introduce the MART 
technique and its application for GNSS tomography. 

3.3 Multiplicative Algebraic Reconstruction Technique
The algebraic reconstruction techniques (ART) are itera-
tive numerical techniques capable solving computational 
tomography problems [38]. The principle of the ART 
techniques is that the integral quantities (in our case the 
SWDs) are calculated using a priori values of the 3D field 
(the refractivities) and the error in this approximation is 
applied as a correction to the a priori field values. 

The classical ART is not optimal for the reconstruc-
tion of the refractivity values since it can provide negative 
refractivity values. Therefore, we have chosen the mul-
tiplicative algebraic reconstruction technique (MART). 
According to the MART the values of the unknown param-
eters are calculated according to the following formula:

x x b
A x
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where
i refers to the number of the observation,
j the number of the unknown parameter,
Ai lengths of the ith ray through the voxels,
bi SWD in the direction of the direction of ith ray, 
x Slant Wet Delay in kth ray's direction,
k is the number of the iterations.
θ is defined as:

�
�

�
A
A A

i
j

i i,
, (14)

where λ is the relaxation parameter. The convergence of 
the reconstruction gets faster as λ gets higher. Its default 
value is 1. The higher λ can provide a solution in fewer 
iteration steps; on the other hand, the too large λ can cause 
very big changes which is an overcorrection in the solu-
tion. So, the reconstruction will not converge but oscil-
late around and never provide an appropriate solution.

The iterative algorithm stops when the maximal change 
in the unknown parameters is less than a predefined 
threshold:

max
j

k
j

k
j

k
j

x x
x
�

��1 � , (15)
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where ε is the threshold.

3.4 Outlier detection and filtering
Since the MART algorithm unlike the least squares 
adjustment technique does not provide any information 
on the accuracy of the unknown parameters, one must 
ensure that no observations affected by blunders are used 
for the reconstruction. We used two types of outlier filters 
for the gross error detection. The first approach calculates 
the linear regression between the original and the recon-
structed SWDs and marks those SWDs that do not fit to 
the regression line. Misfitting shows that the tomographic 
reconstruction could not resolve these observations, thus 
they are marked as outliers in the next iteration step.

The drawback of the previous approach is that it neglects 
the correlation between the uncertainty of the estimated 
SWDs and the satellite elevation angle. Therefore, another 
filtering technique was also studied that models the resid-
ual error limit as a function of the satellite elevation angle. 

These models are introduced in the following subsec-
tions in detail.

3.4.1 Regression based outlier filter
The following equation can be used to compute the SWDs 
using the reconstructed wet refractivity field in order to 
find outliers in the observations:

SWD Ax= . (16)

Theoretically in an ideal case the calculated SWD vec-
tor should be the same as the input vector used for the 
calculation. Thus, comparing the two vectors one should 
obtain a linear regression relationship which has the gra-
dient of 1 and the offset of 0.

As the measurements are affected by random error, 
these assumptions are not valid. To find the outlier values, 
we fitted a linear regression line to the points with a least-
squares estimation and created a 3 σ band around the fitted 
line, where σ is the standard deviation of the SWDs' resid-
uals. Those points that are outside this interval are identi-
fied as outliers and are removed. We applied this filtering 
technique on the reconstructed field in a stepwise manner. 
After the MART technique converged, the outlier detec-
tion has been initiated and the outliers were eliminated. 
Then, the entire process was restarted, and based on the 
latest reconstructed field, the outlier detection has been 
repeated. The whole process has been repeated until none 
of the observations could be identified as outliers.

3.4.2 Outlier filter using pre-defined threshold
The second method that was used for the outlier filter-
ing is based on an elevation angle dependent pre-defined 
threshold:

Threshold( )
( )

e t
sin e

= , (17)

where
t minimum threshold at the zenith
e elevation angle.

After the tomographic reconstruction was initiated, the 
SWD values were calculated, just like in Subsection 3.4.1, 
used the Eq. (16). In an ideal case the reconstructed SWD 
agrees with the original one. Due to observation error, we 
observe a residual between the original and the recon-
structed SWD. When this residual exceeds the thresh-
old specified by Eq. (17), then the observation is marked 
as an outlier and it is eliminated from the next iteration. 
The iterations were repeated until no outlier was detected 
among the SWDs.

The key of the application of this approach is to find 
an appropriate minimum threshold value at the zenith. 
Although one could use the uncertainty stemming from 
the ZWD estimation during the GNSS data processing, 
it is well known that the GNSS software tend to under-
estimate the uncertainties of the calculated ZWD values. 
Therefore, we have followed a different approach. We used 
an independent dataset to assess the real accuracy of the 
estimated ZWD values. According to [39] the uncertainty 
of the precipitable water vapor (PW) estimated by GNSS 
is ~ ±1 mm with respect to results obtained from radio-
sonde observations. Since the scale factor between PW 
and ZWD is ca. 6.5, thus the real uncertainty of the esti-
mated ZWDs ca. ±6.5 mm. Thus, an appropriate thresh-
old of ca. 2 cm for the zenith direction can be calculated 
using the 3 σ rule. 

In the next section, we will introduce a case study in 
which we applied the discussed approach to estimate the 
3D refractivity fields using the results of the near real-
time GNSS processing facility.

4 Case study
We have already shown that the near real-time GNSS pro-
cessing system provides ZWDs and tropospheric gradient 
estimates on an hourly basis for 87 GNSS stations located 
in Central Europe. To validate our tomographic approach, 
we used the tropospheric delay estimates in the period 
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between October 1 and October 31, 2022.
The area of interest is located in Central Europe, cov-

ering Hungary, Slovakia and the Eastern part of Ukraine 
and Romania (Fig. 7).

The predefined voxel boundaries in the latitude, longi-
tude and vertical directions are:
φ = 45.5°, 46.2°, 46.9°, 47.6°, 48.3°, 49.0°, 49.7°;
λ = 15.5°, 17.0°, 18.5°, 20.0°, 21.5°, 23.0°, 24.5°, 26.0°;
h = 0 km, 1 km, 2 km, 3 km, 5.5 km, 8 km, 12 km.

After restoring the SWDs from the ZWDs and the gra-
dients according to Eq. (4) these values were preprocessed 
and only those rays were kept, which has the elevation 
angle larger than 10° and leave the voxel grid on the top 
and not on the sides. 

Since the MART algorithm requires a priori wet refrac-
tivity values for the voxels, we have decided to use the 
latest radiosonde profile measured at the station 12843 
(Budapest) and defined this vertical profile for the whole 
region as initial values. This enabled us to reinitialize the 
model in every 12 hours when a new radiosonde observa-
tion is made.

Afterwards, the tomographic reconstruction has been 
done using the approach described in Section 3. We devel-
oped a Python program for the whole computation pro-
cess [40]. We made the tomographic reconstructions for 
every hour of the study period with updating the a priori 
refractivity model in every 12 hours using the latest radio-
sonde profile. 

The results of the validation campaign are discussed in 
the next chapter.

5 Results
The 3D refractivity fields were calculated for each hour 
in the study period. As an example, we present the 
reconstructed refractivities for each level obtained on 
October 19, 2022, at 11UTC in Fig. 8 and Fig. 9 using the 

regression based and the predefined threshold-based out-
lier filtering approaches, respectively. The results show 
that the reconstructed refractivity values follow the gen-
eral trend along the vertical profile in terms of magni-
tudes. Moreover, one can observe that there are several 
voxels, which provide a uniform result close to the edges 
of the study area. This is caused by the lack of intersect-
ing rays in this part of the area due to the small number of 
GNSS stations and the fact that the rays leaving the grid on 
the sides are neglected in the calculations.

As mentioned before, both outlier testing methods were 
used for the whole study period to be able to compare their 
performance. The first step of the outlier detection for the 
given date using the regression-based outlier detection 
method is shown in Fig. 10.

Fig. 7 Voxel grid used for the tomographic reconstruction. Numbers 
indicate the radiosonde launch sites in the area

Fig. 9 Estimated wet refractivity field on October 19, 2022, at UTC 11 
(threshold outlier filter)

Fig. 8 Estimated wet refractivity field on October 19, 2022, at UTC 11 
(regression outlier filter)
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One can clearly see that there are some SWDs that are 
outside the 3 s band, meaning that they do not fit to the 
reconstructed field well. These are marked as outliers and 
are eliminated in the next iteration step.

The result of the linear regression analysis shows that 
the reconstructed SWD values fit well to the original SWD 
values after the outliers are detected and removed.

The number of the steps of this iterative outlier detec-
tion can be different in every epoch of tomographic recon-
struction. In the given epoch, 34 iterations were needed to 
eliminate all the outliers (Fig. 11). 

However, it was already demonstrated that the regres-
sion based outlier detection assumes that all of the SWDs 
have the same accuracy. As a consequence, this method 
eliminates a substantial amount of rays at the low eleva-
tion angles located mainly around the upper part of the 

regression lines. 
Table 1 shows the statistics of the outlier detection 

(regression method) for all the epochs in the study period. 
The mean value of the number of rays before the filter-
ing is 923, while after the filtering it is 690. The average 
rate of the marked and eliminated outlier values is 26% in 
the study period. This agrees with our assumption that the 
regression-based outlier detection technique eliminates 
a substantial amount of rays from the model and lowers 
its redundancy.

The calculations were repeated using the pre-
defined threshold-based outlier detection method (see 
Subsection 3.4.2). The residuals of the same reconstruction 
can be seen in Fig. 12. The outliers marked are denoted 
with red color on the figure.

It is obvious that significantly less outliers are marked 
and removed using predefined threshold model leading to 
a larger redundancy in the model. Moreover, in the second 
case lower number of repetitions is needed (in this epoch 
1 iteration) for the elimination of all the outlier values than 
in the first (regression based) case. Since, in the second 
case, the threshold is an unchanging function in every sin-
gle iteration step, our expectation was only one iteration is 
enough to eliminate all the outliers. Nonetheless, in some 
cases, more iteration steps are needed since the recon-
struction diverges as the outliers are eliminated.

Fig. 11 Regression outlier filter chart on October 19, 2022, at UTC 11 
(last filtering step)

Fig. 10 Regression outlier filter chart on October 19, 2022, at UTC 11 
(first filtering step)

Table 1 Number of rays before- and after filtering (regression method)

Number of satellites Before filtering After filtering Rate [%]

Minimum 529 279 43

Maximum 1193 1073 97

Mean 922 690 74

Fig. 12 Threshold outlier filter chart on October 19, 2022, at UTC 
11(first filtering step)
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The residual error of the SWDs after the last step of 
the tomographic reconstruction can be seen in Fig. 13. 
The figure shows that all of the remaining SWDs fulfill 
the quality criteria.

Table 2 shows the statistics of the outlier detection 
(threshold method) for all the epochs in the study period. 
The mean number of rays before the filtering is 922 and 
after the filtering is 905. The average rate of the detected 
and eliminated outlier values is 2%.

The results showed that there is a substantial differ-
ence between the rate of the eliminated rays in case of 
the regression based and the predefined threshold base 
approaches. We assumed that this phenomenon had an 
impact on the accuracy of the restored refractivity model, 
too. To study this impact, the reconstructed wet refractiv-
ity values were validated using RS observations. There are 
five RS stations in our study area (Fig. 7). The wet refrac-
tivity profiles were calculated from those RS observations 
for and compared to the profiles obtained from the recon-
structed wet refractivity field using both outlier filtering 
methods (Fig. 14 and Fig. 15). Since RS observations are 
also used for the formulation of the a priori refractivity 
field, we used different RS observations for the formula-
tion of the a priori field and the validation tests. The a pri-
ori model was defined always by the radiosonde profile 
taken 12 hours before the validation epoch. Fig. 14 shows 
the refractivity profiles recorded at Szeged (WMOID 

12982) using radiosondes and GNSS tomography using 
the regression outlier method meanwhile Fig. 15 shows the 
same refractivity profiles from the radiosondes and GNSS 
tomography using the predefined threshold outlier method 
as an example. We can observe that the tomographic 
reconstruction provided a more realistic refractivity pro-
file than the a priori one. However, an underestimation of 
wet refractivities can be also observed in the lower lay-
ers, while an overestimation is present in the upper layers. 
This can probably be explained by the low vertical resolu-
tion of tomography model. Further studies are needed to 
formulate an optimal voxel model fitted to the spatial dis-
tribution of the GNSS stations.

To get an overall picture of the accuracies obtained, we 
also made these comparisons for all the available RS pro-
files in the study period. The residual values for Budapest 
(WMOID 12843) are depicted as a function of altitudes 
in Fig. 16 and Fig. 17 as an example. The results are as 

Fig. 13 Threshold outlier filter chart on October 19, 2022, at UTC 
11(last filtering step)

Table 2 Number of rays before- and after filtering (threshold method)

Number of satellites Before filtering After filtering Rate [%]

Minimum 529 501 84

Maximum 1193 1191 100

Mean 922 905 98

Fig. 14 Wet Refractivity profile at station 12982 (Szeged) 2022-10-19 
UTC 11 (regression outlier filtering method)

Fig. 15 Wet Refractivity profile at station 12982 (Szeged) 2022-10-19 
UTC 11 (threshold outlier filtering method)
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expected, the lower the altitude, the larger the residual 
error of the reconstructed refractivity profiles becomes.

The statistics of the computed residuals at each voxel 
level given in Table 3, while the mean and the standard 
deviation values are depicted in Fig. 18 and Fig. 19.

The results show that the bias values are not significant 
for any of the radiosonde stations. One can also observe 
that the uncertainty of the estimated refractivity values 
significantly increases closer to the ground. This is also 
expected since the majority of the atmospheric water vapor 
is located close to the ground and due to the inversion of 
atmospheric layers in certain weather conditions makes it 
difficult to reconstruct the refractivities accurately close to 
the ground with such a sparse GNSS network. The uncer-
tainty of the wet refractivity values reaches the level of ca. 
10 ppm in the voxels in the lower layers. This result agrees 
well with the results of Trzcina and Rohm [41], who found 
that the uncertainties change between 5–10 ppm seasonally 

up to the level of 2.5 km in terms of standard deviation.
Comparing the statistics of the two filtering methods 

one can see that there are only minor differences between 
the uncertainties of the reconstructed refractivities in 
terms of standard deviation. In some stations and lev-
els, the regression-based outlier filtering method seem 
to provide better results, while in others the predefined 
threshold based one. Generally, both methods enable 
the reconstruction of the refractivity field with the same 
accuracy level. However, the predefined threshold-based 
method filters out significantly lower number of rays com-
pared to the regression-based approach. Thus, the risk 
of forming unpopulated voxels is higher in case of the 

Fig. 16 Residuals at station 12843 (Budapest) in the examined 
timeframe (2022 October 1-31) (regression outlier filtering method)

Fig. 17 Residuals at station 12843 (Budapest) in the examined 
timeframe (2022 October 1-31) (threshold outlier filtering method)

Table 3 Statistical parameters of residuals at every station for each level 
in both outlier filter cases

St
at

io
n

Elev. 
[m]

Min Max Mean Std

Regr. Thre. Regr. Thre. Regr. Thre. Regr. Thre.

11
74

7

500 -14.4 -14.0 20.1 20.1 2.5 2.5 8.4 8.4

1500 -12.9 -12.9 25.4 25.4 3.4 3.4 10.1 10.0

2500 -18.0 -17.7 19.5 19.5 0.2 0.3 9.0 8.9

4250 -6.9 -6.9 6.1 6.1 -1.2 -1.2 3.3 3.3

6750 -3.6 -3.6 2.4 2.1 -0.3 -0.3 1.4 1.3

10000 -0.7 -0.7 0.4 0.4 -0.1 -0.1 0.2 0.2

11
95

2

500 -18.0 -18.2 11.6 11.7 -3.6 -3.9 6.3 6.6

1500 -15.2 -15.1 28.3 18.4 5.5 4.6 7.9 7.1

2500 -13.1 -13.4 21.7 21.7 1.3 0.8 8.1 8.1

4250 -11.0 -10.7 11.8 11.8 0.9 0.9 4.0 3.9

6750 -7.3 -4.6 4.4 4.2 -0.6 0.0 2.5 1.7

10000 -1.8 -1.4 0.4 0.4 -0.3 -0.2 0.5 0.4
12

84
3

500 -32.8 -34.3 37.4 34.4 0.4 1.4 12.8 12.0

1500 -17.6 -17.5 29.9 29.4 3.8 3.6 10.2 10.0

2500 -18.2 -18.7 28.9 30.1 1.3 1.2 10.5 10.9

4250 -9.3 -10.0 11.7 10.6 1.2 1.1 4.7 4.7

6750 -6.6 -7.9 5.4 5.4 -0.2 -0.4 2.2 2.5

10000 -1.5 -2.5 0.5 0.5 -0.2 -0.4 0.5 0.7

12
98

2

500 -16.6 -16.1 21.4 21.3 0.9 0.6 7.8 7.9

1500 -20.7 -20.9 19.8 19.8 -0.9 -1.1 8.1 8.2

2500 -21.0 -20.7 29.8 28.9 0.3 0.1 10.6 10.5

4250 -11.2 -11.0 11.0 12.4 1.4 1.4 4.9 4.8

6750 -3.2 -3.3 4.1 4.0 0.4 0.4 1.7 1.6

10000 -1.3 -1.5 0.7 0.7 -0.2 -0.2 0.4 0.5

14
24

0

500 -14.6 -14.6 27.5 27.5 7.7 7.7 8.6 8.6

1500 -11.5 -11.5 29.9 29.9 3.4 3.4 11.6 11.6

2500 -17.7 -17.7 25.6 25.6 -0.2 -0.2 10.1 10.1

4250 -6.3 -6.3 10.7 10.8 0.8 0.8 4.1 4.1

6750 -3.9 -3.9 3.7 3.6 -0.4 -0.4 1.6 1.6

10000 -2.1 -2.1 0.8 0.8 -0.3 -0.3 0.6 0.6
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regression-based model. Therefore, we propose the appli-
cation of the predefined threshold approach to filter the 
outlying slant wet delays in the dataset.

6 Conclusions
A near real-time automatic GNSS data processing system 
was developed, for the estimation of tropospheric delay 
parameters for the Carpathian basin with an extension 
toward Ukraine. The estimated slant wet tropospheric 
delays were used for the tomographic reconstruction of the 
3D model of wet refractivities in the aforementioned area 
using the slant wet delays stemming from the near real-
time GNSS data processing. 

To minimize the effect of possible outliers in the calcu-
lations, two filtering methods was developed and imple- 
mented in the process workflow. One of them uses a regres-
sion-based approach to evaluate how well the tomograph-
ically reconstructed refractivity field can restore the 

original slant wet delays. The other one is based on a pre-
defined threshold that takes into consideration the fact that 
the accuracy of GNSS observations depend on the ele-
vation angle of the tracked satellite. Both methods were 
applied for a case study in Hungary and the results were 
validated using radiosonde observations.

The results show that the refractivity profiles could be 
successfully reconstructed with our approach. The com-
parison with radiosonde observations did not show any 
significant bias. The uncertainty of the refractivity values 
reached the level of 10 ppm for the lower 3 km layer of 
the atmosphere, while it decreased to 0.3 ppm at the alti-
tude of 10 km during the study period. These results agree 
well with the ones of Trzcina and Rohm [41]. Although 
the radiosonde comparisons showed very similar results 
in case of both filtering methods, the regression-based 
method eliminated a substantial part of the rays in the 
model (26%), while the pre-defined threshold-based 
method kept 98% of the original rays in the model. Since 
GNSS tomography models are sensitive to the number of 
rays in the model, we propose to use the filtering method 
based on the pre-defined threshold to minimize the num-
ber of unpopulated voxels in the model.

The algorithms are implemented in a Python software 
and can be implemented in near real-time applications. 
This is demonstrated on the GNSS Meteorology web-
site of the Department of Geodesy and Surveying of the 
Budapest University of Technology and Economics [42].
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Fig. 18 Mean value (bar) and standard deviation (line) of residuals for 
each atmospheric layers in the examined timeframe (2022 October 1-31)

Fig. 19 Mean value (bar) and standard deviation (line) of residuals for 
each atmospheric layers in the examined timeframe (2022 October 1-31)
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