
1262|https://doi.org/10.3311/PPci.20595
Creative Commons Attribution b

Periodica Polytechnica Civil Engineering, 66(4), pp. 1262–1277, 2022

Cite this article as: Guendouz, I., Khebizi, M., Guenfoud, H., Guenfoud, M. "Analysis of FGM Cantilever Beams under Bending-torsional Behavior Using a 
Refined 1D Beam Theory", Periodica Polytechnica Civil Engineering, 66(4), pp. 1262–1277, 2022. https://doi.org/10.3311/PPci.20595

Analysis of FGM Cantilever Beams under Bending-torsional 
Behavior Using a Refined 1D Beam Theory

Ilies Guendouz1*, Mourad Khebizi2, Hamza Guenfoud3, Mohamed Guenfoud1

1	Civil Engineering and Hydraulic Laboratory, University of 8 Mai 1945, P.B. 401, Guelma, 24000, Algeria
2	Department of Civil Engineering, Mentouri University of Constantine, P.B. 325, Route de Aïn-El-Bey, Constantine, 25000, Algeria 
3	Department of Civil Engineering, University of Abbes Laghrour Khenchela, P.B. 1252, Route de Batna Khenchela, Khenchela, 

40000, Algeria
*	Corresponding author, e-mail: guendouz.ilies@univ-guelma.dz

Received: 04 June 2022, Accepted: 28 August 2022, Published online: 07 September 2022

Abstract

The static bending-torsion problem of functionally graded cantilever beams is studied using a refined 1D/3D beam theory (Refined 

beam theory RBT and Refined beam theory with distortion modes RBT*) built on the 3D Saint-Venant (SV) solution. In these theories, 

the displacement models include Poisson's effects, out-of-plane deformations and distortions. For a given section, the sectional 

displacement modes are derived from the computation of the particular 3D Saint-Venant’s solution. These modes, which reflect 

the mechanical behavior of the cross-section, lead to a beam theory that actually corresponds to the cross-section type in terms 

of shape and material. In addition, the models take into account edge effects to predict a 3D solution in a larger internal region to 

better describe the overall behavior of FGM beams. The models examined are implemented on the CSB (Cross-Section and Beam 

Analysis) tool. It is based on the RBT/SV (Refined Beam Theory based on the 3D SV’s solution) theory of FGM beams. The mechanical 

and physical characteristics of the FGM beams vary continuously, according to a power-law distribution, through the thickness of the 

beams. The numerical and 3D results obtained with homogeneous and FGM beams are systematically compared with other models 

in the literature and those provided by the full Saint-Venant beam theory (SVBT) calculations.
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1 Introduction
Functionally graded materials (FGMs) are among the most 
widely used and widespread inhomogeneous complex 
materials during the past few decades, due to their great 
advantages of microstructures, spatially structure, and 
properties through the irregular distribution of the rein-
forcement phase  [1]. As a new composite material, func-
tionally graded materials have a tremendous ability to 
reduce stress concentration and alleviate thermal stress, 
these unique features make it a preferred material for use 
in various new structures. There are many uses of func-
tionally graded materials in many fields, e.g., the automo-
tive and aircraft sectors, in the field of civil and mechanical 
engineering, as well as in various elements of machines [2]. 
The mechanical properties of functionally graded materials 
differ through a continuous gradient of two or more com-
ponents (often between metal and ceramic) in one direction 
(through length or thickness) or two directions (length and 

thickness). Various and efficient structural finite elements 
(beams, plates, and shells) require suitable homogeniza-
tion procedures in order to reach the maximum rigidity of 
the shear, bending, transverse, and torsional shear proper-
ties [3, 4]. It should be noted that a huge number of papers 
dealing with modeling and simulation of the static and 
dynamic problems of functionally graded material beams 
can be found in many pieces of literature's works.

The overall list of studies devoted to the analysis of 
functionally graded materials (FGMs) structures sub-
jected to various loadings is given in a paper's review 
by Birman and Byrd  [5]. Based on the Euler–Bernoulli-
Vlasov theory, the nonlinear flexion behavior of func-
tionally graded beams (I  section, and channel-section) is 
studied by Lanc  et  al.  [6]. Chakraborty  et  al.  [7] devel-
oped a  new beam element based on the first-order shear 
deformation theory, this element aims to study the thermal 
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elastic behavior of functionally graded beam structures. 
Wu  et  al.  [8] studied functionally graded and heteroge-
neous beams using the semi-inverse method in order to 
find solutions to the dynamic equation. Rahmani et al. [9] 
presented different beam theories to study bending, free 
vibration and buckling of functionally graded beam mate-
rials. where the finite element method is used to solve the 
problems numerically. Ying et al. [10] used the two-dimen-
sional elasticity theory to study the vibration and bending 
behavior of the FGM beam. Barretta et al.  [11] presented 
a torsion analysis for functionally graded beams (FGMs) 
with heterogeneous cross-sections based on Saint-Venant 
beam theory. Giunta et  al.  [12] used the classical (Euler 
Bernoulli and Timoshenko) and advanced theories to 
study the functionally graded beams with changing mate-
rial properties in one or two directions. Kadoli et al. [13] 
focused on the theory of high-order shear deformation for 
the application of the displacement field in order to study 
the static analysis of functionally graded beams under 
ambient temperature. Kang and Li  [14] used large and 
small deformation theories to study a functionally graded 
cantilever beam subjected to a force on the free end accord-
ing to the non-linearity power-law. Li et al. [15] presented 
a new beam model to study the nonlinear bending behav-
ior of a functionally graded two-dimensional beam based 
on the Euler–Bernoulli beam theory. Kien and Gan  [16] 
used the finite element method to study the large deflec-
tions of tapered functionally graded beams. They also used 
a first-order shear beam element to interpolate the trans-
verse displacement and rotation. Sankar [17] provided an 
elasticity solution for functionally graded materials beams 
under static transverse loads based on the assumption that 
material characteristics fluctuate exponentially along the 
thickness direction. Based on the first-order shear defor-
mation theory, Benatta et al.  [18] presented a static anal-
ysis of FG short beams including the problem of warping 
and shear deformation effects. Nguyen et al.  [19] investi-
gated the dynamic behavior of non-uniform functionally 
graded materials Timoshenko beams subjected to a mov-
ing load with varying speeds. Sindkhedkar et al. [20] based 
on Vlasov's theory and first-order shear deformation theory 
studied the flexural behavior of functionally graded thin 
beams. Li  et  al.  [21] discovered analytical relationships 
between the bending solutions of FGM Timoshenko beams 
and those of homogenous Euler- Bernoulli beams. Nguyen 
et  al.  [22] investigated the FGM beams (mono-symmet-
ric I and channel section) using Vlasov's thin-walled beam 
theory and Euler-Bernoulli beam theory. The minimal 

potential energy concept was used to generate govern-
ing equations. Furthermore, they looked at three differ-
ent types of material distribution and compared the out-
comes for each. Yang  [23] used a finite element model 
based on quasi-3D theory in order to study the static behav-
ior of an FG sandwich beam. Under a uniformly distrib-
uted load, several symmetric and non-symmetric sand-
wich beams with FGMs were considered. concluded that 
the influence of normal strain was significant and should 
be taken into account in the static behavior of sandwich 
beams. Şimşek  [24] studied the vibration characteristics 
of bi-directional Timoshenko functionally graded beams 
(BDFGMs) under different boundary conditions. Nguyen 
et  al.  [25] investigated the effect of bending behavior of 
functionally graded materials beams (FGMs) by developing 
a beam element based on quasi-3D beam theory. Boutahar 
et al. [26] presented an analysis of the curved vibrational 
behavior of functionally graded thick beams based on the 
Refined Beam Theory (RBT). Madenci  [27] used varia-
tional methods to analyze the thick-thin FGM beams using 
the shear deformation theory. Also, the mixed-finite ele-
ment method (FEM) is employed to obtain a beam element. 
Garg et al. [28] presented the refined layer-wise theory to 
treat the bending of functionally graded materials beam 
using exponential and sigmoidal laws. Demirbas et al. [29] 
used refined beam models according to the Carrera uni-
fied formulation in order to estimate the stress of func-
tionally graded beams. Zghal and Dammak  [30] devel-
oped a high-order shear formulation according to a double 
field of displacements and stresses to analyze the vibra-
tional behavior of functionally graded materials beams. 
Ziou et al. [31] developed a high-order shear deformation 
theory that simulates Timoshenko’s beam theory to study 
FGM beam under static loading. Nguyen et  al.  [32] used 
a beam element to analyze the flexural-torsional stability of 
thin-walled open sections with FGM beams based on dif-
ferent types of distributions. Guendouz et al. [33] studied 
bending-torsional behavior of FGM cantilever beam using 
a refined beam theory (RBT). Khebizi et al. [34] presented 
the mechanical behavior of FGM beam using the 3D Saint-
Venant's beam theory. this theory includes the 3D displace-
ment modes of the cross-section which reflect Poisson's 
effects and out-of-plane warping.

The use of FGM beams is a real trend in many engineer-
ing applications. It is not easy to design this type of compos-
ite material (FGM), as the difficulty lies in predicting and 
understanding their mechanical behavior, especially when 
FGM beams are embedded (open, closed, thin-walled). 
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This requires the development of a realistic general beam 
theory that takes into account 3D effects while using a 1D 
model with cross-sectional deformation modes (distortional 
modes), in terms of displacement and stress (especially).

In the present paper, we examine the bending-torsional 
and torsional behavior of beams made of functional gra-
dient materials (FGMs) using different beam theories 
(advanced and classical). The material properties of the 
FGM beam vary continuously across its thickness accord-
ing to a power-law distribution. Two FGM beams (I-section 
and square-section) were adopted in this study, fixed on 
one side and free on the other side. These beams are sub-
jected to bending-torsion and torsion actions, respectively, 
applying identical loads on the free end. These kinetic 
models include the own 3D displacement modes of the 
cross-section which reflect in, and out-of-plane warping 
extracted from the 3D SV's solution.

2 Functionally graded materials (FGMs)
The properties of functionally graded materials (FGMs) 
beams vary continuously through the thickness according 
to the volume fraction of the constituent materials (metal 
and ceramic). The power-law (P-FGM) most commonly 
describes differences in the properties of materials [34–37].

Based on the power-law distribution function, Young's 
modulus E(y) [34, 38], can be expressed as:

E y E E E y h
hb t b

P

� � � � �� �� ��
�
�

�
�
�

2
2

.	 (1)

Et and Eb are Young's modulus on the top and bottom 
FGM beam surface, y is the vertical axis of inertia of the 
section, P and h are the exponent of the power-law and 
beam's thickness, respectively. 

For the exponential distribution (E–FGM), the young's 
modulus is given by Khebizi et al. [34].
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Several studies have shown that the Poisson's ratio 
has a significantly weaker effect on the deformation than 
Young's modulus [34, 35, 39].

Figs. 1 and 2 illustrate the variation of Young's modu-
lus through the thickness of the FGM beam obtained by 
P-FGM and E-FGM, respectively. We can see from Figs. 1 
and 2 that the graded material varies from the bottom 
(ceramic) to the top (metal) continuously through the thick-
ness, followed by the change in material properties for dif-
ferent power-law indices.

 

3 Formulation of the problem
3.1 The refined beam theory (RBT) built on  
Saint-Venant's solution
RBT is a higher-order beam theory mainly based on the 3D 
SV's solution to account for most of the edge effects, where 
only the 6 SV's cross-section deformation modes are taken 
into account and which concern to the 6 internal efforts 
[Tx, Ty, N, Mx, My, Mt].

3.1.1 The reference problem
We start with the cantilever beam shown in Fig. 3 with 
a  constant (unspecified) section S, z-axis, and length  L. 
The beam, clamped in z = 0, is subjected to a body load-
ing f and a surface force H at z = L. A point M is speci-
fied by M = ZZ + GM, where G is the center of inertia of 
the cross-section and GM belongs to S. Finally, [x, y] are 
indicated by the axes of inertia of the section. (vectors and 
tensors are noted in bold-italic characters)

Fig. 1 Variation of Young's modulus through the thickness according to 
power-law (P–FGM)

Fig. 2 Variation of Young's modulus through the thickness according to 
exponential distribution (E–FGM) 
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3.1.2 RBT displacement model 
The displacement field of a coordinate point (x, y, z) belong-
ing to the beam is given as follows:

� �x y z z z
k

p

k, ,� � � � � � � � � �
�
�u X

rigid montion of the section� ��� ���

1

zz x yk

enrichment

� � � �M ,

� ���� ����

ω .	 (3)

The analytical model Eq. (3), expressing the total dis-
placement of a point belonging to the beam, is a combina-
tion of a rigid solid motion (the first part of Eq. (3) depends 
only on the longitudinal z-coordinate of the point) and 
a pure deformation (the second part of Eq. (3) depends on 
the 3 coordinates x, y and z of the considered point, x and y 
are the transverse coordinates of the point and z the longi-
tudinal coordinate). The deformation modes of the section 
are obtained numerically (by finite elements) following 
a modal analysis (free vibration) of the section. 

The first 6 modes are the main modes that must be used, 
while the upper modes are used according on the higher- 
order theory used. According to the length of the beam, 
a classical discretization by finite elements with two nodes 
is considered.

The first term represents the rigid motion of the sec-
tion. Where (u, ω) are the cross-sectional displacement 
(translation and rotation), X the in-section vector position. 
The second term is used to deform the section depending 
on the modes Mk(x, y) (the displacement field of the cross- 
section), ηk additional Kinematic parameters (KP) associ-
ated to the set of P sectional modes Mk considered to be 
defined, where each parameter ηk (z) determines the ampli-
tude of the mode Mk(x, y).

The kinematic parameters {ux, uy, uz, ωx, ωy, ωz,…, ηk} 
related to the general model constitute (6 + P) degrees of 
freedom of the section's motion: the 3 translations (ux, uy, uz) 
are used to control the translations of the section, the 3 

rotations (ωx, ωy, ωz) are used to control the rotations of 
the section and P{ηk} associated to the sectional modes Mk 
is used to control the deformation modes of the section.

The difficulty in formulating a higher displacement model 
is lies selecting the Mk modes, in terms of numbers (not too 
large) and in terms of selection (most relevant to describing 
section deformation) (Naccache and El Fatmi [40]).

The one-dimensional equilibrium equations of the beam
The equations governing the equilibrium of the beam 
according to RBT are:

Equilibrium equations (1D):
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where (.)' denotes the derivative with respect to z.
The behavior law (1D):
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where As
k and Ak are internal efforts associated with Mk 

(Elfatmi [41]) and defined by: 
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where [σxx, σyy, σxy, σxz, σyz, σzz] are the components of the 
stress tensor. 

For the problem of the cantilever in Fig. 3, the boundary 
conditions (1D) are as follows:

x k

x L A Q kk k
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0 0 0 0u

R M F C

, , ,

, , ,

et

et

�ω
	 (7)

where R and M are the classical internal forces (1D): R 
resulting from internal actions and M moment of internal 
actions.

Fig. 3 Three-dimensional beam and one-dimensional modelling
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where the six components are the 6 classical internal efforts 
[Tx, Ty, N, Mx, My, Mt]: the shear forces, the axial force, the 
bending moments and the torsional moment, respectively.

The external 3D actions f and H are modelled, respec-
tively, by the (1D) point [P, F] and linear [p, μ] actions 
defined by:
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where p and μ represent linear density of force and lin-
ear density of moment, respectively. P is the force and F is 
the moment. 

Where (p, μ, P, C) indicates the classical 1D external 
forces related to translation and rotation, and (κk, Qk) are 
new (or additional) generalized external forces related to 
the cross-section deformation modes Mk.

Structural behavior: by using matrix notation, the ten-
sor of deformations can be written :
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where  and represents the generalized 1D strain vec-
tor. If T is the corresponding generalized cross-sectional 
stress vector. The 1D elastic constitutive relation can be 

written T = Γ where Γ defines the 1D structural rigidity 
operator. Also (.)'x and (.)'y denote the partial derivatives 
with respect to x and y.
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The Γ operator can be derived from the identification

S
I
t

J I
t

JdS� � � � ��� ��� � � � � �� ��� �K  Γ

where (εI, I) and (εJ, J) are any virtual strains. By intro-
ducing the expression for the deformations Eq. (10). The 1D 
behavior operator results are given by:

RBT
S

t x y x y x y dS� � � � � � �� B K B, , ,Γ ,	 (13)

where K is the matrix (6 × 6) related to the elastic tensor.

The correspondent 3D solution
Consider [ue(z), ωe(z), {ηε(z)}] the 1D equilibrium solution 
of a beam problem using the RBT model (RBT/SV). Con-
forming to the displacement model, the 1D solution permits 
a return to the 3D solution using the 3D displacement field:

U U u

u X M

e e e e

e e
k
e k

x y z

z z z x y

, , , ,{ }

, ,

� � � � �
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�

ω
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which leads to the 3D stress tensor field.
e ex y z x y x y z, , , : , ,� � � � � � �� �K Uεσ ,	 (15)

where ε(U) = 1/2(∇tU + ∇U) denotes the strain tensor asso-
ciated with U. And ∇, (.)t denote the gradient and the trans-
pose operators, respectively.

The 3D stress field may also be given with respect to 
the internal forces:

�RBT SV/ , ,e ex y x y z� � �� � � � � ��K B 1TΓ .

3.2 The refined beam theory using the distortion modes 
(RBT*)
In this work, an enhanced displacement model RBT* 
(El Fatmi [41], Naccache and El Fatmi [42]), also built on 
SV's solution. this model includes edge effects, where all 
available deformation modes are taken into account. In the 
RBT* model, the displacement model is given by:
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where the enrichment part now contains the following 
sectional modes:

•	 Ms
i
v are the 6 3D-SV's modes related to the 6 

cross-section stresses (Tx, Ty, N, Mx, My, Mt) without 
(artificially) splitting them into in-plane modes and 
out-of-plane modes. 

•	 Dv
j are additional modes (distortion modes), to be 

used if a thin/thick-walled cross-section is concerned 
or a high-contrast composite section. These modes 
are the first m shapes of 3D modes associated with 
the free vibration of the cross-section; they princi-
pally reflect the distortions of the cross-section.

Comment: All modes {Ms
i
v, Dv

j} are section specific 
modes; they reflect the physical nature of the cross-section 
(shape and material). It follows that the beam theory gen-
erated by the model is adapted to the nature of the section.

3.3 Cross-section analysis
3.3.1 Homogeneous isotropic case
The stiffness operator Γ (matrix 6 × 6) is used to solve and 
define a one-dimensional (1D) problem, which depends 
only on the nature of the cross-section (shape, material) 
(Khebizi et al. [34]). Where The flexibility operator is 
indicated by Λ = Γ–1.

Structural flexibility is defined as follows:
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xc and yc are the coordinates of the shear centre C, J is the 
torsional inertia, G is the shear modulus, Sx and Sy are the 
reduced sectional connected to the shear forces Tx and Ty. 

Ix is the inertia moment with relation to x, and Iy the inertia 
moment with relation to y. E is Young's modulus. The con-
stants [S, Ix, Iy, J, Sx, Sy, xc, yc] are only determined by the 
nature of the cross-section (shape and material). They can 
be specified once and for all for a particular section.
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where the axial stress (σz
e
z) depends only on [Ne, Mx

e, My
e] 

and the shears stress (σy
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z) depends only on [Tx
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The stress fields σi associated with [Ne, Mx
e, My

e] can be 
derived and which reduce to the axial stress by:
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These fields (σi) are only based on the cross-section 
properties [A, Ix, Iy].

It should be mentioned that the SV's solution leads to 
the same analytical description of the axial stress in the 
case of an isotropic homogeneous beam.

The Shear stresses which are a linear combination of 
[Tx

e, Ty
e, Mt

e]  are written as follows:



1268|Guendouz et al.
Period. Polytech. Civ. Eng., 66(4), pp. 1262–1277, 2022

� xz
e

x
x

x
e

x
y

y
e

x
t

t
e

x y z f x y T z f x y T z

f x y M z

, , , ,

,

� � � � � � � � � � � � � �

� � � � � ��,
	 (21)

� yz
e

y
x

x
e

y
y

y
e

y
t

t
e

x y z f x y T z f x y T z

f x y M z

, , , ,

,

� � � � � � � � � � � � � �

� � � � � ��,
	 (22)

where the functions ( fi
j(x, y) : fx

x(x, y), fx
y(x, y), fx

t(x, y), 
fy

x(x, y), fy
y(x, y) and fy

t(x, y) depend on the cross-section 
nature (shape and material) and which, they can only be 
determined numerically (with the exception of the circu-
lar section for which these functions can be determined 
analytically).

Three-dimensional (3D) displacement field
For the case of the homogeneous and isotropic section. 
SV's solution for the 3D displacement field has been illus-
trated as follows:

•	 Normal effort and bending moments [N, Mx, My], 
only contribute to Poisson's ratio effects [U3(x, y), 
U4(x, y), U5(x, y)]. are thus planes (the component 
along z is zero).

•	 Shear forces and torsional moments [Tx, Ty, Mt
 ], only 

contribute to warping [U1(x, y), U2(x, y), U 6(x, y)]. 
They are therefore out-of-plane (their components, 
in relation to x and y, are zero).

3.3.2 Composite section
One-dimensional (1D) behavior law
There are many couplings between tension and bend-
ing-torsion in the composite section, due to the material 
being anisotropic. Besides, the stiffness operator Γ in 
a matrix (6 × 6) indicates the possibility that it is full. Also, 
every non-zero term out of the diagonal reflects a  type 
of coupling. For the homogeneous case, the asymmetric 
cross-section results in coupling bending-torsional.

According to a composite section, the various stiffness 
constants are expressed as follows:
G Sy x
  the shear force stiffness /x
G Sy y
  the shear force stiffness /y
E Sy  the axial stiffness
E Iy x
  the bending stiffness /x
E Iy y
  the bending stiffness /y
G Jy  the torsional stiffness.
The cross-sectional constants involved in the constitu-

tive relations are the six classical composite cross-sectional 
constants [G Sy x

 ,G Sy y
 ,E Sy ,E Iy x

 ,E Iy y
 ,G Jy ]. The cross- 

sectional constants are designated by these terms by 

analogy with the isotropic and homogeneous case; each 
term is to be considered as a symbol and is not separable 
(more details by El Fatmi and Ghazouani [43]).

Three-dimensional (3D) stress field
For each composite section, the components (σxx, σyy, σxy) 
of the stress field are not zero (Eq. (23)). In the homoge-
neous case, it is zero (Eq. (18)).

The variation in Poisson's ratio between materials is 
sufficient to produce stresses in the cross-section plane.
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Three-dimensional displacement field
In the homogeneous isotropic case, [N, Mx, My] lead only to 
Poisson's ratio effects, while [Tx, Ty, Mt] lead only to warp-
ing. in the composite case, any of the 6 internal forces 
(Tx, Ty, N, Mx, My, Mt) can be responsible for both Poisson's 
effects and out-of-plane warping [34].

3.4 Advantages of this model compared to other models
The Saint Venant or Timoshenko/Bernoulli beam theories 
are classical beam theories. It should be remembered that 
the Timoshenko/Bernoulli beam theories are based on 
simplifying assumptions. i.e., the starting point is a dis-
placement model which supposes that the section is unde-
formable (they do not take into account beam cross-sec-
tion deformation), and the 3D computation time is too 
heavy (a large number of finite elements). Saint Venant's 
beam theory follows from the 3D SV's solution, where the 
section is free to deform. It also owes its justification to 
the fact that the resolution according to the SV beam the-
ory leads to the 3D SV's solution which represents, far 
from the edges, the exact 3D solution of the equilibrium of 
the beam (more details about beam models [44]). 

RBT/SV is a higher-order beam theory built (mostly) 
on SV's solution; which allows it: to better satisfy the sup-
port conditions, better model the external actions, and 
find far from the edges the 3D SV's solution because the 
displacement model contains the shape of the displace-
ment of the SV's solution; and to better account for edge 
effects, because the boundary conditions can be better sat-
isfied (in terms of force and displacement). Finally, RBT 
can be seen as a very extended generalization of Vlasov's 
theory; this only concerns torsional warping for the spe-
cial case of homogeneous and isotropic open thin sections, 
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whereas RBT/SV addresses any section (shape and mate-
rial) and considers all types of section deformation (warp-
ing, Poisson's effects, distortions).

4 Numerical results and discussion
4.1 Numerical implementation
In this work, the theory of RBT/SV was introduced by 
a tool called CSB (Cross-section and Beam Analysis) 
(Naccache and El Fatmi [40]).

CSB is a numerical tool dedicated to the computation 
of beams with any cross-sectional shape, made of freely 
arranged isotropic or anisotropic materials. It is used to 
solve in the standard framework of linear elasticity and the 
equilibrium of a beam subjected to any loading and sup-
port conditions. CSB is proposed as a set of two comple-
mentary numerical tools CSection and CBeam:

•	 CSection calculates the mechanical characteristics 
of the cross-section (Ms

i
v) and a set of m distortion 

modes (DV
j) by 2D finite element method (2D-FEM).

•	 CBeam uses these mechanical characteristics of the 
cross-section to calculate the beam by 1D finite ele-
ment method (1D-FEM).

4.2 Bending analysis
In this section, in order to validate the current theory, we 
study a simply-supported FGM beam (L = 1.6 m, h = 0.1 m, 
b = 0.1 m) subjected to a uniformly distributed load q (see 
Fig.  4). Through the study this beam, the most import-
ant results obtained based on the 3D displacement fields 
are presented. The beam is composed of aluminum (AL: 
Em = 70 GPa, v = 0.3); and Zirconia (Zero2: Ec = 200 GPa, 
v  =  0.3). The mechanical properties of the FGM beam 
change through the thickness. The top surface of the beam 
(y = + ℎ/2) is pure Aluminum, whereas the bottom surface 
of the beam (y = − ℎ/2) is pure Zirconia.

Figs. 5 and 6 show the non-dimensional transverse dis-
placements (w/wstatic) along the length of the FGM beam. 
The static deflection of a completely aluminium beam 
under uniformly distributed load is calculated as follows:

w q L
E Im

static �
� �
� �

5

384

4

.	 (24)

The non-dimensional deflections (Fig. 5), obtained by 
a refined beam theory (RBT), are compared with those pro-
vided by Şimşek [45] (Fig. 6) using the higher-order shear 
deformation theory (HOSDT). It can be seen that the pres-
ent results are in excellent agreement with HOSDT. It can 
also be seen that the deflection of full metal is greater than 
that of full ceramic, this can be explained by the fact that 
Young's modulus of ceramic is higher than that of metal. 
The non-dimensional deflection of the FGM beam (P ≠ 0) 
is between those of the metal and ceramic beams. For the 
FGM beam, the non-dimensional transverse deflection 
decreases as the power-law exponent P increases. This is 
due to the fact that an increase in the power-law exponent 
leads to a decrease in the bending stiffness of the beam.

Fig. 4 Simply supported FGM beam
Fig. 6 Non-dimensional deflections distributions by Şimşek [45]

Fig. 5 Non-dimensional deflections distributions by RBT
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The axial stresses σzz are computed at the mid-span 
of the beam. The axial stress field obtained by 3D-RBT, 
is shown in Figs. 7 and 8. The shape of the 3D stress dis-
tribution is plane in the homogeneous case and passes 
through the middle axis of the cross-section while in the 
FGM beam it is not plane and does not pass through the 
middle axis of the cross-section.

Fig. 9 shows the distribution of non-dimensional axial 
stress through the thickness in mid-span of the FGM beam 
for different values of P. The results obtained with RBT 
show good agreement with those obtained with HOSDT 
by Şimşek [45] Fig. 10.

The axial stress is normalized by:

�
�

zz
zz b h
q L

�
� �
�

.	 (25)

In Fig. 9 we can see that the axial stress distribution is 
only linear for full metal, but for other cases (P ≠ 0) the 
axial stress distribution is not linear, and also the tensile 
stress values are greater than the compressive stresses in 
the case of FGM beam. on the other hand, we can note for 
the full metal, the value of axial stress is zero (σzz) at the 
mid-plane (ℎ/y = 0), while for the other cases (P ≠ 0) the 
axial stresses are not zero. This is due to the variation of the 
Young's modulus across the thickness of the FGM beam.

4.3 Bending-torsional analysis
In order to illustrate the performance of RBT/SV and the 
numerical tools CSection and CBeam, the most import-
ant 1D/3D results are given based of 3D displacement 
fields, in the inner region and near the edge of the beams. 
In order to compare the results of the different theories, 

-1.260e6 Pa ≤ σzz ≤ 2.581e6 Pa
Fig. 8 (b)Axial stress distributions obtained by RBT (P = 5)

-1.924e6 Pa ≤ σzz ≤ 1.924e6 Pa
Fig. 7 (a)Axial stress distributions obtained by RBT (P = 0)

Fig. 10 Non-dimensional deflection obtained by Şimşek [45]

Fig. 9 Non-dimensional deflection obtained by RBT
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we studied the cantilever FGM beams shown in Fig. 11. 
The first beam (I-section) is subjected to bending-torsional 
with three loads, for the second beam (square-section) it is 
subjected to torsional behavior resulting from two loads, 
all these loads are identical (1KN Per-Force) and applied 
at the free end of the beams (see Fig. 11). These beams 
are composed of aluminum (AL: Em = 70 GPa, v = 0.3); 
and Zirconia (Zro2: Ec = 200 GPa, v = 0.3). The mechani-
cal properties of FGM beams change through their thick-
ness according to power-law and exponential distribution 
as shown in Figs. 1 and 2. The top surface of the beams 
(y = + ℎ/2) is pure aluminum, whereas the bottom surface 
of the beams (y = − ℎ/2) is pure zirconia.

4.3.1 Cross-section analysis
By using the CSection tool, 2D-FEM analyses of FGM 
beam cross-sections are performed. This tool provides for 
each section: the six cross-section modes (Ms

i
v) and a set of 

m distortion modes (Dv
j) related to the natural vibration of 

the section.
Fig. 12 presents the six (6) transverse modes [Tx, Ty, N, 

Mx, My, Mt] associated with the classical transverse stresses 
of each section. the deformation modes in red color indi-
cate the Poisson's effects related to the axial force (N) and 
the bending moments (Mx, My), while the deformations in 
blue color indicate the out-of-plane warpings related to the 
shear forces (Tx, Ty) and the torsional moment (Mt). In addi-
tion, certain additional sectional distortions are considered 
for I-Section and square-section: 10 in-plane (pink color) 
and 5 out-of-plane (blue color) shown in Fig. 13.

4.3.2 1D/3D results
FGM cantilever beam (I-section)
The analysis performed focuses on the effect of embedding 
on 3D stresses and the general behavior of the FGM beam. 
Table 1 shows the maximum transverse deflection of the 
cantilever beam (I-section) for different values of Power 
Law exponent, using the different theories. The deflection 

of the metal beam (P = 0) is found to be higher than the 
deflection of the ceramic beam (P → ∞). This is illustrated 
by the fact that the Young's modulus of ceramic is greater 
than that of metal. For the FGM beam, the deflection is 
located between the deflections of metal and ceramic 
beams. Consequently, when the power-law exponent P is 
increased, the transverse deflection decreases in the case 

Fig. 11 FGM beams and sections description

Fig. 12 Cross-sections deformations: Poisson's effects (N, Mx, My) and 
out-of-plane warpings (Tx, Ty, Mt) for the FGM sections (for P = 1)

Fig. 13 Cross-section deformations: distortions modes Dv
j of the FGM 

sections (for P = 1)
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of the FGM beam. This is explained by an increase in the 
exponent of the power-law resulting in an increase in the 
bending rigidity of the FGM beam. It can also be seen that 
the value of the transverse deflection of the SVBT is com-
paratively higher than the other theories.

The maximum torsional rotation for an FGM cantile-
ver beam depending on the different theories is given in 
Table 2. We notice an approximate similarity of the RBT, 
RBT* values, and a small difference to the SVBT theory. 
According to the deflection and torsional rotation for the 
FGM cantilever beam, we conclude that the RBT, RBT* 
behavior is stiffer than expected by SVBT.

Systematically, the comparison between the theories 
was carried out out by considering the main stress compo-
nents for the FGM beam, the axial stress σzz, and the shear 

stress modulus � � �� �xz yz
2 2  in the different regions of the 

beam. Fig. 14. shows the axial stress fields at the embed-
ding and in the mid-span of the beam, both for the homo-
geneous and FGM beam models. The results obtiened by 
SVBT are quite different from RBT and RBT* at embed-
ding, while they converge at the mid-span of the beam. 
In addition, it can be seen that the axial stress distribu-
tion for the homogeneous case is linear. it shows that the 
axial stresses of the SVBT due to bending only, while for 
the FGM beam, the axial stress is nonlinear. similarly, the 
axial stresses of RBT and RBT* are very different from 
those obtained by the SVBT. Moreover, the difference 
results from the effect of the bending-torsion stress (clearly 
the torsion is important) resulting from the enrichment of 
the displacement field of RBT models. For the FGM beam 

Table 1 The maximum transverse deflection of an FGM cantilever beam 
(I-section) for various values of the power law exponent (mm)

Power-low Exponent RBT RBT* SVBT

Full metal 1.2074 1.2081 1.2207

P = 0.5 0.7713 0.7714 0.7799

P = 1 0.7255 0.7259 0.7336

P = 2 0.6705 0.6709 0.6780

P = 3 0.6384 0.6390 0.6435

P = 4 0.6120 0.6124 0.6188

P = 5 0.5934 0.5937 0.6000

Full ceramic 0.4226 0.4228 0.4273

Table 2 Maximum torsional rotation of FGM cantilever beam 
(I-section) for various values of the power law exponent (rad 10-3)

Power-low Exponent RBT RBT* SVBT

Full metal 8.1096 8.1372 9.2776

P = 0.5 4.7417 4.7589 5.3371

P = 1 4.2986 4.3159 4.8557

P = 2 3.9397 3.9547 4.4434

P = 3 3.7698 3.7855 4.2534

P = 4 3.6698 3.7855 4.1445

P = 5 3.6008 3.6832 4.0708

Full ceramic 2.8383 2.8480 3.24471

Fig. 14 Axial stresses distributions at embedding (Z = 0) and at mid-span (Z = L/2). Comparison of RBT, RBT* and SVBT
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P ≠ 0, the axial stress distribution is nonlinear and does 
not pass along the neutral axis (the line passing the Z-axis 
of the center of gravity). This is caused by the variation of 
Young's modulus in the thickness of the FGM beam.

Fig. 15. shows the variations of the axial stress (σzz) along 
the span for 2 points, A and B, that belong to the top flange 
of the FGM beam. The results as shown in Fig. 15 have 
been obtained using the present assumption, i.e., a non-de-
formable cross-section at the embedding for the SVBT 
and deformable for RBT and RBT*. It can be seen a large 
difference between the stress results of the three theories 
at the embedding level, and a convergence between the 
results is seen far from the embedding (The internal effect 
propagates over a distance of about d ≈ L/2). If the sec-
tion is taken as undeformable for both RBT and RBT*, 
the same results as for SVBT are found. we can see that 
RBT and RBT* take into account edge effects in order to 
predict a 3D solution in a larger internal region to better 
describe the overall behaviour of the beam. In SVBT, the 
3D solution is an integral part and it describes the correct 
solution in the internal region of the beam.

Fig. 16 displays the comparison between the shear stress 
distributions at the embedding (Z = 0) and (Z = L). One can 
see that the shear stress fields are definitely different in 
terms of shape and materials for the three theories in the 
embedding area (Z = 0). The results of the shear stresses 

given by the SVBT are based on the shear force (Ty) and 
the torsional moment (Mt). The deformations avoided in the 
case of RBT and RBT* at the embedding level (Z = 0), led 
to totally different shear stresses than those given by SVBT. 
Far from the embedding (Z ≠ 0), the shear stress results are 
similar for SVBT and RBT but different for RBT* (Some 
differences can be observed in the locations designated by 
the circles in Fig. 16). This is due to the enrichment of the 
displacement field through higher modes (additional defor-
mation modes "distortion modes") Eq. (16).

Fig. 15 Axial stress variations along the FGM beam for two points 
(A and B) belonging to the upper flange. Comparison of RBT, 

RBT* and SVBT

Fig. 16 Shear stresses distributions at embedding (Z = 0) and free end (Z = L). Comparison of RBT, RBT* and SVBT
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FGM cantilever beam (with square-section)
Table 3 Shows the maximum rotation for the FGM canti-
lever beam according to various values of the power-law 
exponent. The results obtained show a good description 
of the mechanical behavior of the FGM beam in terms of 
rotation for all theories. It can be noted that the rotation 
of the full ceramic beam is lower than the full metal in 
both theories, while the FGM beam rotation is between the 
ceramic and metal beams.

The effect of restricted warping is known to be signifi-
cant for a square-section subjected to torsion. In this sec-
tion, a comparison of the results between SVBT and RBT 
are systematically made for the shear effects of the FGM 
beam. Fig. 17 illustrates a comparison between the shear 

stress field at the embedding and at the mid-span of homo-
geneous and FGM beams. We can observe the clear differ-
ence of the shear stress fields provided by the SVBT and 
RBT results at the embedding (Z = 0) in terms of shape and 
values, due to the enrichment of the displacement fields of 
the RBT (taking into account the edge effects), while the 
stress results presented by SVBT and RBT are consistent 
far from the embedding (mid-span of the beam).

Figs. 18 and 19 show the variation of the axial stress 
σzz along the beam for a point A close to the edge of the 
cross-section, and the variation of the shear stress for 
point B (the maximum shear point for the SVBT torsion) 
in the middle of the cross-section along the beam. Moving 
from the free end of the beam, we can observe an oppo-
site relationship between the shear stresses and the axial 
stresses, where a decrease in shear follows an increase 
in axial stress or the reverse. These results show that the 
internal effect of the RBT propagates along the beam for 
this square-section, while the SVBT solution is no longer 
efficient to represent the central solution.

5 Conclusions
In the present paper, the bending-torsional behavour anal-
ysis of the functionally graded materials (FGMs) cantile-
ver beams (I-section and square-section) has been stud-
ied using a refined 1D/3D beam theories (RBT and RBT* 

Table 3 Maximum rotation of FGM cantilever beam (with square-
section) for various values of the power law exponent (rad 10–3)

power-low exponent RBT RBT* SVBT

full metal 0.3163 0.3163 0.3171

P = 0.5 0.2120 0.2121 0.2129

P = 1 0.1695 0.1695 0.1699

P = 2 0.1489 0.1489 0.1493

P = 3 0.1401 0.1402 0.1405

P = 4 0.1352 0.1353 0.1356

P = 5 0.1242 0.1321 0.1248

full ceramic 0.1107 0.1107 0.1110

Fig. 17 Shear stress  fields at Z = 0 and midspan Z = L/2. Comparison of SVBT and RBT results
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built on the 3D SV's solution). The enrichment of the dis-
placement field includes the main deformation modes of 
the cross-section (Poisson's effects, out-of-plane deforma-
tions and distortions), These sectional modes are extracted 
from the associated 3D SV's solution for any given section 
and lead to a beam theory that really reflects the nature of 
the cross-section (shape and materials). which is important 
for FGM beams. In order to apply RBT/SV, a CSB pack-
age is used which has two tools, C-section and C-beam 
(complete each other). C-section calculates the mechani-
cal characteristics of the cross-section by 2D FEM, then 
C-beam uses these mechanical characteristics to calcu-
late the FGM beam by 1D FEM. Using the cross-section 
and beam problems presented in this paper, a 3D solution 
is given in more detail in terms of 3D displacements and 
deformations to analyze FGM cantilever beams.

The results of the refined 1D beam theories (RBT and 
RBT*) have shown that it is free of all the hypothesis 
of the classical beam and is applicable for an arbitrary 
cross-section. It is evident that RBT/SV is not only capa-
ble of describing the elastic structural performance of 
FGM beams, but also of providing a 3D solution in the 
major internal zone of the beam in terms of displacements 
and stresses (takes into account the edge effect). The axial 
stresses are the result of the bending stress and those 

induced by the torsional warping (actually the shear stress 
too, but it is clear that the torsional stress is more signifi-
cant). As for SVBT, the axial stresses are those resulting 
from the typical SV's stresses in bending.

The shear stress field is completely different for the the-
ories (shape and values) at embedding. For SVBT, the shear 
stresses are due to shear force and bending, while for RBT 
and RBT*, the inhibition stress resulted in a completely 
different shear field (degree of enrichment of cross-section 
strain modes). On the other hand, the results obtained by 
SVBT lead to a more flexible torsion behavior this is due 
to the fact that the embedding leaves the deformation of 
the cross-section free. The fact that this deformation may 
be blocked in RBT and RBT*, when compared to SVBT, 
to a stiffening of the torsional behavior (The rotation at the 
end is twice as small). 
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Fig. 18 Axial stress variation along the FGM and homogeneous (P = 0) 
beam for the point A

Fig. 19 shear stresses  variation along the FGM and homogeneous (P = 
0) beam for the point B
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