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Abstract

The effect of fly ash (FA) dosage on concrete’s compressive strength and stress-strain relationship is investigated in two steps in 

this article. First, an experimental program was conducted on concrete mixtures designed with 0% (control batch of 30 MPa 

mean cylinder compressive strength), 10, 20, 30, and 40% of ordinary Portland cement (OPC) mass replaced by FA, which is taken 

from a new source in an Asia country. The test results showed that compared to other investigated dosages, concrete using 20% 

FA/OPC mass-replacement gained the most improvement in the 28-day compressive strength and tensile split strength, as well as the 

compressive strength development. Second, a probabilistic investigation was conducted using Dropout Neural Network, Bayesian 

Neural Network, and Gaussian Process models. These artificial intelligence-based models were compared to other models reviewed 

from the literature, showing relatively good results in terms of the statistical metric R2, which are 0.92, 0.9, and 0.88, respectively. 

The three models were tested and validated with a dataset of 1032 experimental results on FAC collected from the literature. When 

testing with the experimental results obtained in the first step, a good correlation between the predicted values and the experimental 

results was observed within the confidence interval of (5%, 95%), showing the reliability of the proposed models. Thus, the stress-

strain relationship of fly ash concrete can also be investigated in a probabilistic manner. It is proved in this study that among the 

proposed models, Dropout Neural Network has the best balance between performance and time complexity.
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1 Introduction 
The requirement of harmonization between economic 
development and environment protection is becoming 
a worldwide trend nowadays. In recent decades, research-
ers' special attentions have been paid to the utilization of 
industrial byproducts, i.e., fly ash, silica fume, blast fur-
nace slag, etc. as alternative sources for building materi-
als, especially for concrete construction. The idea of using 
fly ash (FA) to partially or fully replace ordinary Portland 
cement (OPC) as a binder in concrete totally meets the 
requirement of sustainable construction since it not only 
reduces the carbon dioxide from the cement manufactory, 
that occurs worldwide greenhouse effect, but also suffi-
ciently solves the problem of industrial waste materials. 
At the beginning, FA was mostly utilized as an additive 

to the admixtures of concrete for the benefits in workabil-
ity of fresh concrete. Then, replacing various proportions 
of OPC with an appropriate amount of FA as a binder was 
found to be efficient to enhance mechanical properties of 
fly ash concrete (FAC) [1, 2]. The actual FA amount used 
varies widely depending on the application, mechanical 
and chemical properties of FA, specification limits, as well 
as on the geographic location and climate. It is specified 
by ACI Committee 232.2R-18 that FA can be introduced in 
concrete either as a separately-batched material or as a com-
ponent of blended cement with the normal rate of 15 to 35% 
by mass of total cementitious material [1, 3]. The ACI code 
also specifies that for fly ash in different types and from 
various sources, individual study shall also be conducted 
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to determine the appropriate percentages of total by-mass 
cementitious materials of fly ash and other pozzolans. This 
fact motivated the authors to conduct an experimental study 
to obtain a new dataset to examine the application ability of 
a new source of FA from Hongsa thermal power plant (Lao 
DPR) in concrete industry of the country. The main con-
cern is to investigate the effect of FA/OPC mass-replace-
ment percentage on a number of mechanical properties of 
FAC including compressive strength, split tensile strength 
and stress-strain relationship. The replacement percent-
age was gradually increased from 0% (control batch with 
30 MPa cylinder compressive strength), 10, 20, 30, and 
40% by mass. The water/binder ratio and the total binder 
weight in the concrete mixture were both kept constant. 
The tests were conducted at the Building Construction and 
Inspection Laboratory LAS-XD 125, Hanoi University of 
Civil Engineering (HUCE).

Since the late of the 20th century, artificial intelligence 
approaches have been widely adopted to analyze and pre-
dict mechanical properties of concrete [4]. However, these 
advanced methods have not been commonly applied in 
the research works performed on the utilization of fly ash 
from Asian countries recently [5–12]. Meanwhile, Young 
et al.  [13] collected a database of more than 10,000 con-
crete samples then used the database to train Machine 
Learning  (ML) models for predicting the compressive 
strength of concrete; the obtained results are reliable with 
an average error of around 10%. Nguyen et al. [14] inves-
tigated Deep Learning architectures to predict the com-
pressive strength of fly ash concrete and found that these 
models can provide an acceptable error rate of under 20%. 
Tahwia et al. [15] adopted artificial neural network (ANN) 
for the prediction of the nonlinear relationship of vari-
ous fly ash concrete properties at different ages from 3 to 
180 days with their ingredients. Besides, other statistical 
models providing more feature interpretations such as 
Gaussian Process for Regression, Multivariate Adaptive 
Regression Spline etc. have been explored by various 
authors [16, 17]. Ahmad et al. [18] used a number of ML 
techniques to investigate the compressive strength of fly 
ash-based geo-polymer concrete, their performances were 
evaluated and compared via different metrics, showing 
that the ensemble-based technique achieved the highest 
performance. A similar conclusion was also confirmed by 
Amin et al. [19]. Furthermore, the authors pointed out that 
fly ash and temperature have significant impact on the con-
crete strength via feature importance study. For non-en-
semble learning model, Khursheed et al.  [20] found that 

minimax probability machine regression method could 
outperform counterparts in predicting the compressive 
strength at 28 days of fly-ash concrete. Recently, a thor-
ough review about more than 30 ML models for predicting 
mechanical properties of concrete could be found in [21]. 
Furthermore, data-driven has been proved to be able to 
effectively predict the performance of whole 3D structures 
with numerous elements  [22], even with the presence of 
complicated components such as seismic excitations [23], 
semi-rigid connections [24]. Among a vast configuration 
of ANN with various topologies, different possible weight 
values, some special techniques such as back-propaga-
tion or counter propagation [25] are required to learn the 
most optimal model parameters. Furthermore, depend-
ing on unique properties of each investigated structure, 
some specialized techniques could be derived to improve 
the performance and stability of ANN models, e.g., data 
ordering in  [26]. Hence, after obtaining self-conducted 
experimental results, the authors developed three data-
driven models using probabilistic approaches including 
Dropout Neural Network (Dropout-NN), Bayesian Neural 
Network (Bayesian-NN), and Gaussian Process (GP) mod-
els. A fair number of 1032 experimental results collected 
from literature  [27] were incorporated to investigate the 
effect of FA/OPC replacement percentage on concrete 
compressive strength and stress-strain relationship. 

2 Research significance
The aforementioned reviewed works on using ML models 
for predicting the compressive strength of fly ash concrete 
are enumerated in Table 1 [14, 18–20, 28–30].

It can be seen in Table 1 that the novelty of the ML 
application in this study is the use of probabilistic mod-
els, which is capable of not only providing well-predicted 
results but also estimating how confident the results are 
through the associated confidence intervals. Such a kind 
of result is more relevant for experimental data rather 
than a single point estimation because even with the same 
ingredients and ratio, one usually still obtains slightly 
scattered results from different series of experiments. 

The analysis results of the three probabilistic models 
adopted in this study are compared to those of another 27 
ML models used in the aforementioned reviewed works. 
With relatively good analysis results obtained, it is shown 
that the most favorable FA/OPC mass-replacement per-
centage in terms of compressive strength is determined 
by both experimental and probabilistic approaches in this 
study.Furthermore, the stress-strain relationship of fly ash 
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concrete is also analyzed by probabilistic ML models, 
whereas most of the previous research works only focused 
on the concrete strength, which is only the peak point of 
the curve.

Last but not least, the new test results obtained by the 
authors on the fly ash taken from a new source also contrib-
ute to and enrich the experimental database of mechanical 
properties of concrete using fly ash from various thermal 
power plants in Asia and the world. These results show the 
feasibility of utilizing fly ash in concrete as a sustainable 
construction material and help developing countries in 
Asia adapt the worldwide trend of harmonizing economic 
development and environmental protection with the mean 
of green construction.  

3 Experimental investigations
3.1 Specification of test specimens
The concrete mixture proportions of test specimens are 
shown in Table 2. 

In the table, the control mixture that purely used cement 
as the binder (0% of FA/OPC) is labeled as MS-30-00, 
in which the term "MS" stands for "material specimen" 
and the number "30" is to represent the target mean cyl-
inder compressive strength of the control batch, which is 
30  MPa. FA/OPC mass-replacement percentages of 10, 

20, 30 and 40% were designed for the remaining mix-
tures, which can be referred to as MS-30-10, MS-30-20, 
MS-30-30, and MS-30-40, respectively. It is noted that 
the total weight of binders (including OPC and FA) and 
the water/binder (W/B) ratio were both kept constant at 
380 kg/m3 and 0.54, respectively. Besides, due to the dif-
ference between the specific gravities of OPC and FA, 
there was an increment in the total FAC volume when 
OPC was partially replaced by FA. Then, the correspond-
ing proportions calculated for a cubic meter of FAC are put 
in the parentheses.

In this study, local OPC with a specific gravity of 
3.1 g/cm3 and the fineness determined following the Blaine 
method higher than 2800 cm2/g was used. These proper-
ties are all in accordance with ASTM C150/C150M [31]. 

The chemical composition and physical properties of 
the particular fly ash used in this study are also listed in 
Table 3. It was determined by the Blaine method [32] that 
the FA used in this research had a specific surface area of 
2123 cm2/g. The results were based on the residual amount 
of 42.4% retained on a 45 µm sieve. The specific gravity of 
the material was also determined as 1.88 g/cm3 [32].

In Table 2, the coarse aggregates were gravel produced 
from local crushed stone having a nominal maximum size 
of 20 mm. The fine aggregate was also from local natural 
sand with a maximum particle size of 5 mm. The aggre-
gates' sizes were all within the allowable limits specified 
in ASTM C33/C33M [33].

Testing on material specimens was conducted at 
LAS-XD 125, Hanoi University of Civil Engineering 
(NUCE). Concrete cylinder specimens with 150 mm-di-
ameter and 300 mm-height, as well as 150 mm-cube spec-
imens were prepared for experimental studies according 
to international and local standards, respectively [34, 35]. 
Both cylinders and cubes were cast for testing of compres-
sive and tensile strengths as well as the stress-strain rela-
tionship of the investigated mixtures. The compressive 

Table 1 Summary of reviewed research works

Works  Machine learning 
model & Type

Fly ash 
concrete 

data

Database 
size

Nguyen et 
al. [14]

DNN and 
ResNet-based 

models
Deterministic by the 

authors 335

Ahmad et 
al. [18] BR, AR, DT Deterministic From 

literature 154

Amin et al. 
[19]

DT, SVR, 
baggin, 

AdaBoost, RF
Deterministic From 

literature 156

Khursheed 
et al. [20]

MPMR, RVM, 
GP, ENN and 

ELM
Deterministic From 

literature 112

Sevim et 
al. [28]

MLR, ANN, 
PSO-Anfis, 
GA-Anfis

Deterministic by the 
authors 196

Huang et 
al. [29]

SVR-based 
models + HLO 
optimization

Deterministic From 
literature 144

Farooq et 
al. [30]

Ensemble 
models Deterministic From 

literature 1030

This study
Dropout-NN, 
Bayesian-NN, 

GP
Probabilistic

From 
literature 
+ by the 
authors

1109
(1032+77)

Table 2 Concrete mixture proportion (in kg)

Mixture Cement Fly ash Sand Gravel Water

MS-30-0 380 0 760 1140 205

MS-30-10 342 
(339.0) 38 (37.7) 760 

(753.3)
1140 

(1130.2)
205 

(203.2)

MS-30-20 304 
(298.7) 76 (74.7) 760 

(746.8)
1140 

(1120.2)
205 

(201.4)

MS-30-30 266 
(259.1) 114(111.1) 760 

(740.3)
1140 

(1110.5)
205 

(199.7)

MS-30-40 228 
(220.2) 152 (146.8) 760 

(734.0)
1140 

(1101.0)
205 

(198.0)
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strengths were measured at 7, 14, 28 and 90 days, with 
every three samples in a test group to calculate the average 
results. After de-molding at the one-day age, the concrete 
specimens were cured in large plastic bags at room tem-
perature until being tested.

3.2 Experimental results
3.2.1 Workability of concrete
Fig. 1 shows the workability of fresh concrete mixtures in 
terms of slump values. It can be seen that although the con-
trol mixtures MS-30-00 (OPC) and MS-30-10 (10% FAC) 
had equal slumps, there is a general trend that the slump 
increases with an increment in the FA/OPC replacement 
percentage. This is because most FA particles are spheri-
cal in shape with various sizes and have good dispersion, 
whereas cement particles have irregular polygonal shapes. 
As a result, FAC mixtures have a lower water requirement 
than the control concrete mixture.

The unit weights were measured from all the con-
crete mixtures at 7-day and 20-day ages as shown in 
Fig. 2. It can be seen in Fig. 2 that an increase in FA/OPC 
mass-replacement percentage leads to a decrease in con-
crete unit weight. At 7-day age, there is a 6.35% reduction 
in unit weight between OPC concrete (2524 kg/m3) and 
40% FAC (2364 kg/m3). Likewise, the corresponding con-
crete unit weight at the 20-day age was reduced from 2499 

to 2345 kg/m3, i.e., with a reduction of 6.16%. The reduc-
tion in the unit weight of FAC is due to the low specific 
gravity of FA compared to OPC. The control mixtures 
(0% FA/OPC) had the highest water loss, whereas the 40% 
FAC mixture had the lowest value.

In conclusion, it can be seen from Figs. 1 and 2 that 
using FA helps concrete gain better workability in terms 
of the concrete slump and the rate of hydration reaction.

3.2.2 Concrete strengths
The 28-day cylinder compressive strength measured from 
testing is shown in Fig.  3. It is noticed from the figure 
that the 20% FAC (MS-30-20) performed the maximum 
cylinder compressive strength, which is 31.1 MPa, com-
pared to the remaining replacement ratio and is even a bit 
higher than those of the original OPC concrete, which is 

Fig. 1 Measured slump of fresh concrete

Fig. 2 Measured concrete unit weight

Table 3 Properties of fly ash used

Chemical composition Unit Value

SiO2 % 40.54

Al2O3 % 29.55

Fe2O3 % 4.56

CaO % 5.58

MgO % 0.03

Na2O % 0.93

K2O % 0.32

SO3 % 0.34

P4O10 % 0.05

TiO2 % 0.38

MnO2 % 0.03

Physical properties

Specific gravity g/cm3 1.88

Blaine fineness cm2/g 2123

% Retained on 45 µm sieve of No. 325 42.40

Loss on ignition % 0.69

Water requirement % of the control 102.00

Strength index at 7 days % of the control 86.00

Strength index at 28 days % of the control 93.00
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30.44  MPa. Meanwhile, the 30% (MS-30-20) and 40% 
(MS-30-40) FAC specimens had relatively low values of 
22.20 and 20.41  MPa, corresponding to the respective 
considerable reductions of 27.1% and 33.0% from that of 
the control OPC concrete. 

A similar trend can also be observed from the test 
results on tensile split strength shown in Fig. 4. It is shown 
that the 20% FAC test value of 3.07 MPa is the maximum 
tensile split strength, followed by those of 10% FAC and 
OPC concrete, which are 3.05 and 2.78 MPa, respectively. 
The tensile split strength values of the 40% and 30% FAC 
specimens were again the lowest values obtained from the 
experiments.

The development of compressive strength at 7, 14, 28, 
56, and 90-day ages obtained from testing on 150 × 300  mm 
cylinder specimens are shown in Fig. 5.

It can be seen in Fig. 5 that all the FAC concrete had 
lower compressive strength than the control OPC concrete 
before the age of 7 days. However, from the age of 14 days, 
the 10% and 20% FAC had the higher values. From 28-day 
onward, the 20% FAC gained the maximum compressive 
strength with the highest development curve compared to 
the others. Besides, a slight improvement in strength with 
age can also be observed for 20% FAC.

3.2.3 Stress-strain curve
Testing to obtain the stress-strain curve of FAC concrete 
was conducted in accordance with ASTM C469 [36] on 
150 mm by 300 mm cylinder samples. In principle, a dis-
placement-controlled compression machine should be used 
in order to capture the post-peak part of the curve since the 
cylinder of the hydraulic jack can be set to move downward 
to the concrete specimen with an instant displacement rate 
to maintain the compression pressure on the specimen 
even when the peak of the stress-strain curve is reached. 
A displacement limit can also be set to ensure the safety of 
the whole system when the specimen is totally damaged. 
This is impossible when the load-controlled compression 
machine is used in the test because of the loss of attach-
ment between the machine and the specimen after the 
peak, leading to the loss of compressive pressure on the 
specimen. On the other hand, continuing to increase the 
compression load without any limitation at this post-peak 
stage may lead to a dangerous situation for the apparatus 
in the testing system when the specimens are totally failed.

However, since there was a lack of displacement-con-
trolled compression machine associated with an actuator 
at the Building Construction and Inspection Laboratory 

Fig. 3 Experimental results of compressive strength

Fig. 4 Experimental results of tensile split strength

Fig. 5 Experimental results of strength development
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LAS-XD 125, Hanoi University of Civil Engineering 
(NUCE), an improvement solution was proposed to over-
come this difficulty as follows:

•	 A specimen from the same batch shall be tested in 
advance just to approximately determine the stress 
value at peak. The load-controlled machine shall be 
operated by a well-qualified and experienced techni-
cian so that he could purposely adjust the loading rate 
from 300 kPa/s during the first stage from 0–40% of 
the maximum stress down to 200 kPa/s during the 
second stage of 40–90%, and then to 50–100 kPa/s 
when a level of 90% of the peak stress is reached till 
the end of the test. This is to obtain the stress-strain 
curve not only to the peak but also to the remaining 
post-peak part.

•	 All the LVDTs shall be installed to the steel plate 
fixed to the cylinder of the hydraulic jack, with 
a measurement length of 300 mm (equals to the spec-
imen height) instead of being installed directly to the 
specimen (with a measurement length of 150 mm) or 
instead of attaching the concrete strain-gauges to the 
concrete surface. This is to avoid all the disturbances 
occurred by cracks on the surfaces of the specimens, 
especially when the peak of the stress-strain curve is 
reached. Hence, strain data can still be measured for 
the post-peak behavior;

•	 The test shall be stopped when the strain values reach 
around 4 × 10–3 mm/mm or severe cracks occur and 
the specimens are about to break, whichever comes 
sooner.

By doing so, the whole post-peak behavior may not be 
fully reflected but at least a number of individual points 
could be captured. This is the best of the authors' efforts 
to overcome the difficulty of the laboratory conditions in 
an Asian developing country like Vietnam. 

It is shown in Fig. 6 that the compression machine, 
LVDTs, load cell located between the compression machine 

and the column specimen were all connected to a TDS-560 
data-logger and a computer to record all the corresponding 
test data in a 2-second interval.

The stress-strain curves of FAC specimens measured 
from the tests are shown in Fig. 7.

A number of observations can be made from Fig. 7 as 
follows: (i) For 10% and 20% FAC, there is no significant 
change in compressive strength compared to that of OPC 
concrete; (ii) For 20% FAC, there is a certain increment 
in strain value at peak compared to that of OPC concrete, 
corresponding to a reduction in the stiffness of the mate-
rial; and (iii) The values of ultimate strains of 0, 10 and 
20% FAC are all from 0.30 to 0.40%.

4 Machine learning models for assessing mechanical 
properties of FAC
Together with the experimental results obtained by the 
authors, test results on FAC are collected from litera-
ture [27] owing to two reasons: (i) Their features, includ-
ing cement, water, fine and coarse aggregate, fly ash, and 
curing days, are similar to the FAC tested in this study; and 
(ii) A total number of 1032 samples is large enough to train 
a machine learning model. Specifically, histograms of FAC 
components from the data are illustrated in Fig. 8. Hence, 
it is useful to develop a data-driven model for predicting 
FAC compressive strength based on their main ingredients.

On the other hand, the test data obtained by the authors 
in this experimental study are illustrated via the histo-
grams in Fig. 9.

It is shown in Fig. 9 that the input features, including 
water, stone, and sand, remain unchanged while cement, 
fly ash replacement, and ages are varied. The training pro-
cess and the testing step are completely disjointed, they 

Fig. 6 Experimental setup Fig. 7 Experimental results on stress-strain relationship



1104|Nguyen and Dang
Period. Polytech. Civ. Eng., 66(4), pp. 1098–1113, 2022

use two different databases. However, values of input fea-
tures of testing data fall within the corresponding ranges 
of the training and validation data. Thus, one expects that 
a properly trained model could approximate the compres-
sive strength to some extent.  

Furthermore, the uncertainty of the predicted results 
is also desirable because concrete is an inherently hetero-
geneous material. Additionally, there are inevitable noise 
or errors during experiments. Thus, with the same mix-
ture proportions, one can obtain different compression 
strengths for different experimental series. To this end, 
three artificial intelligence models, including two neural 
network-based models, i.e., Dropout Neural Network [37], 
Bayesian Neural Network [38], and another machine 
learning model, namely, Gaussian Process [39], are used 
for probabilistic investigation in this study.

4.1 Conventional Neural Network (ANN)
Mimicking the information flow in the brain where data 
are processed via a complex system of neurons connected 
together, a neural network consists of multiple layers, 
each layer comprises a various number of neurons, form-
ing a nonlinear mapping from input data to output results 
as shown in Fig. 10(a). Formally, such a nonlinear map-
ping can be described as follows:

Y F f f fL L� � � � � � �� ��� �X W X W W W| | |( 2 1 1 2 ,	 (1)

where L is the total number of layers, W is the matrix of 
the network's parameters to be determined, X and Y stand 
for input and output vectors, respectively.

The connection between two consecutive layers l-1 and 
l is performed by aggregating a linear matrix-vector mul-
tiplication and a nonlinear activation function as follows:

Fig. 8 Histogram of components of FAC collected from literature [16] Fig. 9 Histogram of components of FAC from the experiment

Fig. 10 Architectures of a) Artificial Neural Networks b) Dropout Neural Networks c) Bayesian Neural Networks 
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X X W W X bl l l l l l lf h� � � � � � �� �1 | ,	 (2)

where l = 1,2,…,L – 1, Xl and Xl+1 are vector values of layer 
l and l + 1, Wl and bl are weight matrix and bias vector at 
layer l and h denotes a user-defined nonlinear activation 
function. 

In this study, one adopts the Rectified Linear Unit 
(ReLU) function for hidden layers, as commonly adopted 
in the literature. The network parameters W are deter-
mined in a supervised manner as follows: at first, one 
needs to label the FA data, i.e., giving a set of FAC ingre-
dients, then outputs of interest are defined, e.g., the com-
pressive strength. After that, the database is divided into 
two non-overlapping groups, namely training, and vali-
dation datasets. Afterward, the network's weights W are 
iteratively updated using an optimization algorithm to 
minimize the deviation between prediction values and 
actual values. The training process terminates when the 
error level is sufficiently small, or the number of iterations 
attains a predefined limit. 

4.2 Dropout Neural Network (Dropout-NN)
It is well-known that training a neural network with multiple 
hidden layers requires a significant amount of appropriate 
data. Otherwise, if data is limited, the over-fitting problem 
likely occurs, which means the network performs satisfac-
torily on training data but produces poor results on unseen 
testing data. To mitigate this obstacle, the Dropout mecha-
nism is adopted with the main idea that any neuron in the 
network can be omitted randomly with a predefined prob-
ability p. Thus, the resulting network will not be over-re-
lied on any specific nodes (Fig. 10(b)). Dropout Neural 
Network (Dropout-NN) can be regarded as an ensemble of 
smaller networks so that it can provide non-optimal but sat-
isfied prediction accuracy with different data, rather than 
being best-fitted for one particular dataset. Furthermore, 
Dropout-NN is able to provide statistical estimates such as 
mean values and standard deviations or confidence inter-
vals rather than a deterministic value of quantities of inter-
est. In this way, one is able not only to obtain predicted 
results but also to assess how confident results are.

Mathematically, the mechanism of the dropout tech-
nique is described in detail as follows. Considering a node 
j in layer l, its state of presence or absence is independently 
sampled from a Bernoulli distribution with a predefined 
probability , as below:

r pj
l ~ Bernoulli � � ,	 (3)

where rj
l is a binary variable, 0 is to be dropped out, while 

1 is to be activated. For the value of Dropout probability p, 
one adopts the value 0.5 as recommended in [40]. Then the 
input vector for layer  of the network is updated by:

X Xl l lr � � ,	 (4)

where Ä denotes the element-wise product, Xl and X̃ l are 
the input values for layer l of the original plain network 
and the dropout network, respectively. 

Next, Eq. (2) is rewritten as below: 

f hl l l l l lX W W X b|� � � � �� � .	 (5)

The described process is analogously applied to every 
layer in the network except for the output layer. Afterward, 
the network is trained by performing a number of itera-
tions of forward-pass for calculating output results and 
deviation and backward-pass to update the weight val-
ues  W. It is noted that at each training iteration, differ-
ent nodes are eliminated with a probability p, forming dif-
ferent thinner variants of the original plain architecture. 
In  this study, Dropout-NN is constructed by the authors 
with the help of the deep learning Pytorch [41].

4.3 Bayesian Neural Network (Bayesian-NN)
Bayesian Neural Network (Bayesian-NN) is a Bayesian 
approach-based deep learning model where network 
parameters W of a neural network shown in Fig. 10(c) are 
characterized by their distributions instead of an optimal 
set of values. The prior distribution of W can be initialized 
with one of the popular distributions such as uniform or 
Gaussian ones. Afterward, the training process is carried 
out to discover the posterior distribution p(W |D) given 
a  dataset (X, Y). Each weight of Bayesian-NN requires 
two parameters, i.e., its mean value and variation instead 
of only one estimated value. The mathematical expression 
of the weight matrix is re-written as below:

W I� � �� � � ��� �� with   0, ,	 (6)

where μ, σ denote means and standard deviations of W, I 
is the unity matrix. The metric for measuring the perfor-
mance of the Bayesian-NN is the Kullback-Leibler diver-
gence (KL) expressed as follows:

KL q p D E
q
p Dq( ( | , ) | log

,
,

W W
W

WW�� ��
�� ��

�� ��| | )
|

||� � �
� �
� �� � .	 (7)

The implementation of the Bayesian-NN is realized 
with the help of the probabilistic library Pyro [42] written 
in Python and supported by the machine learning library 
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Pytorch. Here, the Bayesian-NN has an architecture of 
6/32/32/1, with the prior distribution of the weights being 
Gaussian distribution with zero mean and unit variance.

4.4 Gaussian Process (GP)
Gaussian Process, also known as the Kriging method, is 
a  Bayesian approach-based machine learning model for 
probabilistic regression problems, which has been applied 
in multiple domains such as high-performance concrete, 
structural reliability, and so on. The core idea of GP is that 
the closer in space the input data, the more correlated the 
outputs of the model. Here, GP serves to derive the plausi-
ble posterior probability of the compression strength based 
on the FAC ingredients and training data. Formally, a GP 
model is a stochastic process which can be fully speci-
fied by its mean function ψ(X) = E[Y(X)] and its covari-
ance function C(X, X') = E[(Y(X) – ψ(X))(Y(X') – ψ(X'))]. 
Training data consists of n pairs of inputs and targets 
{(Xi, Yi ), i = 1,…,n}. Then, let K be the covariance matrix 
for the training data kij = C(Xi, Yi), and k(x) is the cova-
riance vector of a test case with training data. Then, the 
predictive distribution with its mean and variance can be 
calculated as follows:

y

C

T

y
T

X k K Y

X X X k K k

� � � � �

� � � � � � � �

�
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1
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̂
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On the other aspect, one of the most popular choices 
of covariance functions is squared exponential kernel, 
namely, Gaussian kernel as below:

K X X
X X
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where xl
(i), xl

( j) are component l of Xi, Xj, respectively; λ, σ0 
are hyperparameters to be determined through the train-
ing process. 

Lastly, the log-marginal-likelihood (LML) function 
is used as the loss function for measuring the deviation 
between predicted values and true values. 

log log ,
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where p(Y |X) = (Y |0,K) is the Gaussian-type likelihood 
function.

In this study, the implementation of the GP is realized 
with the aid of the library Gpytorch [43] which is also 
based on the machine learning library Pytorch.

4.5 Computation results and discussions
4.5.1 Training machine learning models for predicting 
compressive strength of FAC
In order to train the machine learning models for predicting 
the compressive strength of FAC based on its components 
and curing days, the FAC dataset provided by Yeh [27] is 
employed. Generally, the data are split into two non-over-
lapping subsets, i.e., training and validation, with a ratio 
of 80/20. Finally, the model is tested with the experimen-
tal data presented in the previous section, which are com-
pletely unseen by the model in the training process. The 
typical training process settings are set as follows: (i) Adam 
optimizer with an initial learning rate of 10–4, divided by 
2.0 when the validation loss does not decrease; (ii) stan-
dard normalization used to suppress the scale difference 
of input variables; and (iii) Kaiming initialization method 
is adopted for initializing weights' values with zero-center 
Gaussian distributions. Table 4 summarizes the key param-
eters of ML models. For Bayesian-NN, the parameters are 
the number of hidden layers, and the number of neurons 
per hidden layer, learning rate. For Dropout-NN, there is 
the percentage of dropout in addition to those mentioned 
above, and for GP, the parameters are the kernel function 
for the covariance of GP and the prior mean of GP, which 
is calculated as the mean of training data. In some studies, 
GP is referred to as a non-parametric model because the 
model is mainly determined from data rather than using 
a set of parameters predefined by users. 

On the other aspect, to select an adequate neural net-
work architecture including the number of hidden layers 
and the number of neurons, the simple yet effective Grid 
Search technique is utilized. The number of hidden layers 
varies in the range of (1, 2, 3, 4, 5) while the number of 
neurons is selected from the range of (8, 16, 32, 64, 128, 
256, 512). For simplicity, one utilized the same number of 
neurons for all hidden layers. Next, each candidate con-
figuration is trained with the same training process men-
tioned previously. The Grid Search algorithm simply tries 
all pairs of these two hyper-parameters and then selects the 
configuration with the lowest loss function on validation 
data which is the mean squared error expressed as below:

Table 4 Key parameters of machine learning models

Dropout-NN Bayesian-NN GP

Layers 6/64/64/1 Layers 6/32/32/1 squared exponential kernel

KL loss MSE loss LML loss

lr = 1E-4 lr = 1E-4

p = 0.5 prior distribution 
of weights (0,I)
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where N is the number of training data, and Ŷ are predicted 
values. The above procedure is carried out in an automatic 
fashion with the help of the hyperparameter optimization 
library Optuna [44]. Neural architecture search results 
show that the top-3 configurations are: (i) 4 hidden layers 
of 128 neurons; (ii) 1 layer with 512 neurons, and (iii) 2 
layers with 32 neurons, as enumerated in Table 5. 

However, it can be seen that the third configuration is 
significantly less complex than the other, providing a bet-
ter balance between model performance and model com-
plexity. Specifically, it has about 150 times less parameters 
to determine than the 6/256/256/256/256/1 architecture 
(1313 vs. 199425) which achieves the lowest MSE error. 
Moreover, when adapting ANN for probabilistic mod-
els such as Bayesian-NN and Dropout-NN, the number 
of parameters will be considerably increased due to their 
specialized requirements, e.g., for Bayesian-NN, the num-
ber of parameters will be double since each neuron will 
have two parameters, i.e., mean and standard deviation. 

Thus, one selects the 6/32/32/1 network architect as the 
base model for this study, i.e., an input layer with six neu-
rons, two hidden layers with 32 neurons and 1-neuron out-
put for concrete compression strength. More specifically, 
the input features are fly ash replacement measured in per-
centage, concrete age in days, and cement, stone, sand, and 
water, all measured in unit weight (kg/m3). Meanwhile, the 
output of interest is the compressive strength measured in 
MPa.  Since these features are of different physical natures 
and of different scales, thus the data are preprocessed by 
using the Min-Max Scaler technique to scale all features 
to the range of (0,1). For Dropout-NN, because one utilizes 
a dropout rate p of 50%; thus, the number of neurons of 
hidden layers is doubled to 64.

Fig. 11 displays the training curves for the three prob-
abilistic methods. It is noted though the loss functions 
are not the same, one still can compare the convergence 
behavior based on their trends. The learning curve of 
Dropout-NN decreases rapidly for the first 2000 iterations, 
followed by the gradual decrease of the loss function. The 
final model is obtained after 10000 iterations. A similar 
trend is observed for Bayesian-NN, though its learning 
curve is more fluctuated. In addition, the training time of 
Bayesian-NN is nearly double that of Dropout-NN (56 min-
utes vs. 26 minutes). While for GP, it quickly achieves the 
best value after around 100 iterations, but afterward, the 
loss function increases and does not decrease again even 
with more iterations. The total training time of GP is very 
fast, i.e., 6 minutes. These results are as expected because 
the machine learning model usually has a faster conver-
gence rate than those of deep learning models. 

The predicted results of the final models are shown in 
Fig. 12, in which each scattered black point has X and Y 
coordinates corresponding to experimental strength and 
the predicted value from the trained models. In addi-
tion, the solid red line indicates the ideal case where the 

Table 5 Neural architecture search results

No Number of 
layers

Number of 
neurons

Number of 
parameters MSE

1 4 256 199425 0.311

2 1 512 4097 0.313

3 2 32 1313 0.317

4 2 64 4673 0.323

5 3 64 8833 0.328

6 3 256 133633 0.332

7 3 128 34049 0.333

8 2 256 67841 0.333

9 1 64 513 0.335

10 2 128 17537 0.340

Fig. 11 Training curves for a) Dropout Neural Network b) Bayesian Neural Network c) Gaussian Process
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predicted values are exactly equal to the experimental 
ones, whereas the shaded area refers to the 90% confidence 
interval (CI) of (5%, 95%), i.e., there is 90% probability that 
this area will contain actual experimental data. To create 
the CI, one repeats the prediction 100 times, then derives 
the mean, 5% and 95% quantile values. Scatter points pre-
sented in the figure are random examples obtained from 
these 100 calculations.

Obviously, with training and validation data, the 
machine learning models are able to predict the compres-
sive strength of FAC with satisfactory accuracy, as most of 
the points lie around the ideal 45-degree line. However, for 
some points relating to very high-performance concretes 
with a strength of more than 60 MPa, the discrepancy is 
more pronounced, and the confidence interval is also wid-
ened. It is suggested that to improve model performance 
for high-performance concrete, one should take into 
account some additional additives as the input features of 

the machine learning model. On the other hand, when test-
ing with this study's experimental data, a good correlation 
between the predicted and the experimental values can be 
observed, as illustrated in Fig. 12 where data points lie 
close to the ideal 45-degree line. These results confirm the 
credibility of the proposed probabilistic machine learning 
models. It is also noted in Fig. 12 that the first row presents 
results on training data, the second and the third rows are 
for validation and testing data, respectively. 

When comparing the probabilistic models together, 
the CI of GP is larger than those of Dropout-NN and 
Bayesian-NN, especially with samples ranging from 0 to 
40 MPa on validation data, and around 30 MPa strength 
of the authors' testing data. In contrast, the Dropout-NN 
provides the least uncertain results, as its CI area is the 
smallest but still able to cover almost data points. Thus, 
in  this study, the Dropout-NN yields better performance 
than the counterparts.

Fig. 12 Prediction results of concrete compressive strength obtained from a) Dropout-NN model b) Bayesian-NN model c) GP model
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In addition, Fig. 13 compares the performance of thirty 
ML models in predicting the concrete compressive strength 
including three investigated probabilistic models and oth-
ers in the literature. The model performances are reported 
using the common statistical metric R2. It can be seen that 
linear regression models and some statistic-based ones 
provide relatively low R2 results, which means the calcu-
lation of compressive strength using FAC components is 
a non-linear regression problem. The probabilistic mod-
els investigated in this study can also achieve relatively 
accurate results of 0.92, 0.90, and 0.88 for Dropout-NN, 
Bayesian-NN and GP, respectively. It is noted that though 
these models do not outperform ensemble-based models, 
their appealing property is that they can provide the asso-
ciated uncertainty estimation, as demonstrated above. 

Besides, a sensitivity analysis is conducted to estimate 
the impact of investigated FAC components on the com-
pressive strength prediction. The contribution of each 
component is calculated via the following equation [18]:

�f f X f Xi max i min i� � � � � � ,	 (12)

where fmax(Xi) and fmin(Xi) are maximum and minimum 
values of compressive strength obtained by models using 
only ith FAC components while setting other components 
to their mean values, respectively. ∆fi denotes the contri-
bution score. Furthermore, these contribution scores can 
be rewritten under the form of relative values measured in 
percentage as below:

C f

f
i

i
n�

�
�

�
1

.	 (13)

Fig. 14 presents sensitivity results obtained by the three 
proposed probabilistic models, showing that cement has 
the largest influence on the compressive strength, fol-
lowed by concrete age and water. The fly-ash replacement 
has also noticeable effects on the concrete strength, more 
pronounced than those of sand and stone. It can also be 
observed that the neural network-based models assign 
more distinguishable weights to FAC components than the 
machine learning Gaussian Process model; thus, the dif-
ferences between their contribution scores are clearer.

Fig. 13 Comparison of ML models in statistical metric R2

Fig. 14 Sensitivity study results obtained from a) Dropout-NN model b) Bayesian-NN model c) GP model
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4.5.2 Probabilistic model for predicting stress-strain 
curves of FAC
Another application of the probabilistic models proposed 
in this study is to predict the stress-strain curves of FAC at 
28-day age. For this purpose, the architectures of the probabi-
listic models are the same in Table 5, the output under inves-
tigation is stress in MPa, while the input features are water, 
stone, sand, cement, fly ash replacement, and strain (instead 
of concrete ages as the previous subsection). The data used 
to train and validate the probabilistic model are experimen-
tal data presented in the previous section with a total of 
551 data points, divided into training and validation datasets 
with a ratio of 80:20. The results for five FA/OPC replace-
ment percentages, namely, 0, 10, 20, 30, and 40% obtained 
from Dropout-NN, Bayesian-NN and Gaussian Process 
models are shown in Figs. 15, 16 and 17, respectively. 

It is shown in Figs. 15, 16 and 17 that, generally, the 
probabilistic models can adequately capture the behav-
ior of fly ash concrete from the initial elastic stage to the 
plastic hardening stage and to softening stage. In addi-
tion, the uncertainty will increase with increasing strain 
for all replacement percentages, for example, using the 
Dropout-NN model with 20% FA, the 90%-CI around 
0.002 strain is nearly 5.0 MPa, which is double that around 
0.001 strain (2.0 MPa). The results also suggest that there 
are more uncertainties with 30 and 40% replacement than 
those with replacement of 20% or less. Similar trends are 
also obtained when the Bayesian-NN and GP models are 
used for the analysis. It can also be seen in the figures that 
all the three models could provide the results with the same 
trend and properties as discussed above. However, the CI 
of the GP model is larger than those of the Dropout-NN 

Fig. 15 Prediction results of concrete stress-strain curve obtained by Dropout-NN model

Fig. 16 Prediction results of concrete stress-strain curve obtained by Bayesian-NN model

Fig. 17 Prediction results of fly ash concrete stress-strain curve obtained by GP model
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and Bayesian-NN models to some extent. In terms of time 
complexity, the Bayesian-NN model takes nearly two and 
three-fold the training time compared to the Dropout-NN 
and GP models, respectively. Therefore, the selected 
Dropout-based model has the best balance between per-
formance and time complexity.

5 Conclusions
Based on the experimental data obtained and the probabi-
listic investigation using three artificial intelligence-based 
models proposed in this study, a number of conclusions 
can be withdrawn as follows:

•	 It is feasible to produce fly ash concrete (FAC) with a 
mean cylinder compressive strength of about 30 MPa 
in laboratory conditions utilizing fly ash taken from 
Hongsa thermal power plant, Lao DPR. This is an 
encouragement for further studies and applications of 
sustainable construction materials from new fly ash 
sources in this Asian developing country;

•	 It is experimentally proved that compared to the other 
investigated dosages of fly ash, the by-mass 20% of 
ordinary Portland cement (OPC) to be replaced by 
fly ash (FA) is the most efficient percentage since the 
obtained FAC not only performed better workabil-
ity with higher slump and lower water lost due to the 
hydration reaction, but also gained the highest 28-day 
compressive strength and tensile split strength as 
well as the most favorable development of compres-
sive strength;

•	 In this study, three probabilistic models including 
Dropout Neural Network (Dropout-NN), Bayesian 
Neural Network (Bayesian-NN) and Gaussian Process 
(GP) are adopted and compared to other 27 machine 
learning models from the literature (that were mostly 
conducted in a deterministic manner) with relatively 
good results in terms of statistical metric R2, which 
are 0.92, 0.90 and 0.88, respectively. This sets a basis 
to promote the proposed probabilistic models for fur-
ther investigation. 

•	 The predictions obtained from the proposed prob-
abilistic models include not only the compressive 
strength as a point estimation but also the whole 
stress-strain curve associated with the correspond-
ing uncertainty quantification in terms of (5%, 95%) 
confidence interval. It is shown from the probabilistic 
investigations that the FA/OPC replacement percent-
age of 20% is also the most effective value for FAC. 

•	 It is proved in this study that among the proposed 
models, Dropout-NN is the model having the best 
balance between performance and time complexity. 

Although the nature of fly ash can vary from region 
to region, the eventual optimum FA replacement may 
not be the same, but the presented methodology can be 
adjusted straightforwardly and provide desirable results. 
Additionally, the experimental results can enrich the fly 
ash concrete database in Asia countries. On the other 
hand, artificial intelligence probabilistic models can also 
be used as benchmarks for future studies. 

In order to reduce the considerable uncertainties 
observed from the investigations on concrete presented 
in this study, a possible way is to take into account the 
process factors such as type of curing, humidity, environ-
mental temperature, etc. By doing so, the proposed model 
can be extended to on-site samples which involve uncon-
trolled process factors. Another aspect to improve in the 
next study is to upgrade the proposed models into an auto-
mated framework which includes a variety of machine 
learning and deep learning models and a friendly input/
output interface, helping structural engineers spend more 
time on the analysis of the concrete properties with less 
time on coding or learning algorithms.  
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