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Abstract

This paper presents theoretical and numerical analysis of two

reinforced concrete folded plate structures (RCFPS) of span

length 20 and 30 m, according to linear predictions and predic-

tions of geometric nonlinear behavior of structure. Character-

istic cross-sections are designed on the basics of internal forces

calculated using linear finite strip method (FSM). The ultimate

resistance of characteristic cross-sections is presented through

diagrams of interaction. It was found that the safety factors of

selected cross sections calculated assuming linear structural be-

havior in almost all the cases are on the safe side in relation to

the results obtained assuming large displacements. Significant

differences between the results of linear and nonlinear theory

are observed only at longer RCFPS. The stability analysis re-

quired during the design process is performed by using the com-

plex harmonic coupled finite strip method (HCFSM). A com-

bined application of MPI and OpenMP parallelization methods

in the cloud computing environment is used.
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1 Introduction

For very long time folded plate structures have been real-

ized in practice only in reinforced concrete and made on site.

Development of prefabricated building lead to improvements

of this type of construction so that the folded structures could

be derived by assembly of prefabricated elements and their

connection-monolitization on site. Typical RCFPS taken into

consideration here are simply supported by diaphragms and may

have arbitrary longitudinal edge conditions.

There is a great deal of RCFPS for which both the geometry

and the material properties can be considered as constants along

a main direction, straight or curved, while, generally, only the

loading distribution may vary (e.g. thin-walled beams, cylindri-

cal and prismatic shell roofs [2] and box-girder bridges [3,4]). In

many cases, the performance of these structures is also improved

by means of proper longitudinal prestressing systems. For these

structures, the design process should lead to define the optimal

morphology of the transversal cross-section, which means its

geometry, size, shape and topology, as well as the layout of the

prestressing system, described by the prestressing forces and the

cables profile.

In such context, the attention of this paper is focused on the

optimal design of RCFPS composed by flat plates and subjected

to multiple loading conditions, Fig. 1 (a). A proper modeling of

these structures can be found within the framework of the FSM.

As well known, this method is based on the formulation of a

special class of finite elements that are as long as the structure

and interconnected along the nodal lines that constitute the sides

of the strips themselves. The FSM was originally developed by

Cheung [1]. The well known uncoupled formulation, represents

a semi-analytical finite element method (FEM). As far as linear

analysis is concerned, it takes advantage of the orthogonality

properties of harmonic functions in the stiffness matrix formu-

lation.

However, in the case of the geometric nonlinear analysis, the

integral expressions contain the products of trigonometric func-

tions with higher-order exponents, and therefore the orthogo-

nality characteristics are no longer valid. All harmonics are

coupled, and the stiffness-matrix order and bandwidth are pro-
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portional to the number of harmonics used. This kind of FSM

analysis is named the HCFSM [5, 6].

Determination of elements of the strip stiffness matrices is

very complex and represents the most time consuming part of

the application execution. It requests calculation of a very large

number of integral expressions for the large number of harmon-

ics used (the number of integrals depends by power four to the

number of used harmonics). Calculated integrals are necessary

for the calculation of each strip stiffness matrix in the each itera-

tion. Therefore, the integral expressions are calculated once, in-

dependent of particular strip length, and stored in a memory dur-

ing the execution process [7]. Different optimization strategies

for providing values of integrals have been described in [9, 12].

In order to cope with dramatic increase of computation time due

to coupling of all series terms in HCFSM formulation, a com-

bined application of MPI and OpenMP parallelization methods

is used.

2 Harmonic coupled finite-strip stability equations

If a structure undergoes large displacements, the second or-

der terms regarding the strains cannot be ignored. The strain-

displacement relations, within the context of a Green-Lagrange

strain tensor, represent a sum of linear and non-linear parts.

Analysis of plates in the post-buckling range is generally per-

formed on the basis of von Karman equations or by employ-

ing an energy approach. Only approximate solutions can be ob-

tained, taking into account the in-plane (membrane) and out-of-

plane (bending) boundary conditions.

The nonlinear strain-displacement relations in the FSM can

be predicted by the combination of the plane elasticity and the

Kirchhoff plate theory. Using this assumption in the Green-

Lagrange strain tensor (Eq. (1)) for in-plane nonlinear strains

gives Green-Lagrange HCFSM formulation. Also that, neglect-

ing lower-order terms in a manner consistent with the usual von

Karman assumptions gives HCFSM von Karman formulation.

εi j = 1/2
(
ui, j + u j,i + uk,iuk, j

)
(1)

In the FSM, which combines elements of the classical Ritz

method and FEM, the general form of the displacement function

f =Aq can be written as a product of polynomials and trigono-

metric functions

f = Aq =

r∑
m=1

Amqm =

r∑
m=1

ym(y)

c∑
k=1

Nk(x)qkm (2)

where Ym(y) are functions from the Ritz method, Nk(x) are inter-

polation functions from the FEM and r represents the total num-

ber of the series terms. The local Degrees Of Freedom (DOFs)

are defined as the displacements and rotation of a nodal line

(DOFs = 4), as shown in Fig. 1 (b). The DOFs are also called

generalized coordinates.

If we introduce vectors

e0 =


∂u0

∂x
∂v0

∂y
∂u0

∂y
+

∂v0

∂x

 , e′0 =


∂u0

∂x

0
∂u0

∂y

 , e′′0 =


0
∂v0

∂y
∂v0

∂x

 ,

η0 =


1/2

(
∂w
∂x

)2

1/2
(
∂w
∂y

)2

∂w
∂y

∂w
∂x

 , ζ0 =


1/2

(
∂u0

∂x

)2

1/2
(
∂u0

∂y

)2

∂u0

∂y

∂u0

∂x

 ,χ =


− ∂

2w
∂x2

− ∂
2w
∂y2

−2 ∂2w
∂x∂y

 ,
(3)

where u0, v0 and w = w0 are the displacement components of

a point in the middle plane, the expressions for strains at an ar-

bitrary point will now have the form

ε = ε0 + zχ,

ε0 = e0 + η0 + ζ0 = e′0 + e′′0 + η0 + ζ0.
(4)

Once the displacement functions (Eq. (2)) are known, it is

possible to obtain the strains as products of the following matri-

ces and vectors

e0 = L1Auqu, η0 = 1/2 L1ÃwWL2Awqw,

ζ0 = 1/2 L1Ãu
uUL2Au

uqu
u, χ = L3Awqw,

e′0 = L4Au
uqu

u, e′′0 = L5Av
uqv

u

(5)

where

L1 =


∂/∂x 0

0 ∂/∂y

∂/∂y ∂/∂x

 ,L2 =

 ∂/∂x

∂/∂y

 ,
L3 =


−∂2/∂x2

−∂2/∂y2

−2 ∂2/∂x∂y

 ,L4 =


∂/∂x

0

∂/∂y

 ,L5 =


0

∂/∂y

∂/∂x

 ,
Au =

 Au
u 0

0 Av
u

 ,qu =

 qu
u

qv
u

 , Ãw =

 Aw 0

0 Aw

 ,
W =

 qw 0

0 qw

 , Ãu
u =

 Au
u 0

0 Au
u

 ,U =

 qu
u 0

0 qu
u

 .

(6)

Au
u, Av

u and Aw are the corresponding approximative func-

tions, while qu
u, qv

u and qw represent the vectors of displacement

parameters in the nodal lines.

Then we introduce the matrices, which are referred to as the

strain matrices

Bu1 = L1Au, Bw1 = L1Ãw, Bw2 = L2Aw

Bu
u1 = L1Ãu

u, Bu
u2 = L2Au

u, Bw3 = L3Aw

Bu
u4 = L4Au

u, Bv
u5 = L5Av

u,

(7)

The matrices Bu1...Bv
u5

are obtained as first derivatives, and

the matrix Bw3 as the second derivative of the corresponding

displacement functions. Now we can write the strain vectors

(Eq. (5)) in shorter form

e0 = Bu1qu, η0 = 1/2 Bw1WBw2qw, ζ0 = 1/2 Bu
u1UBu

u2qu
u,

χ = Bw3qw, e′0 = Bu
u4qu

u, e′′0 = Bv
u5qv

u

(8)
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Fig. 1. (a) Elements of prismatic folded plate structure, (b) Simply supported flat shell strip

The strain energy of the strip is given by

U = 1/2

∫
V

εTσdV =

∫
A

∫ t/2

−t/2

[
εT

0 zχT
]  D D

D D

  ε0

zχ


dAdz = 1/2

∫
A

εT
0 Dmε0dA + 1/2

∫
A

εT
0 DmbχdA+

+

∫
A

χTDbχdA = Um + Umb + Ub

(9)

where Um designates the membrane strain energy, Umb the inter-

action between the membrane and bending actions, and Ub the

bending strain energy.

For a homogeneous material, the following property matrices

in the plane Dm and the bending Db yield

Dm =

∫ t/2

−t/2

Ddz, Dmb =

∫ t/2

−t/2

zDdz = 0,

Db =

∫ t/2

−t/2

z2Ddz =
(
t3/12

)
D

(10)

The matrix D is often referred to as the elasticity matrix. In

the present formulation the more general case of orthotropic

properties will be assumed in which the property matrix D is

D =


Ex/

(
1 − µxµy

)
µxEy/

(
1 − µxµy

)
0

µyEx/
(
1 − µxµy

)
Ey/

(
1 − µxµy

)
0

0 0 G

 ,
µxEy/

(
1 − µxµy

)
= µyEx/

(
1 − µxµy

) (11)

The potential energy due to external surface loads p can be writ-

ten simply as

W = −

∫
A

fTpdA (12)

Substituting Eq. (2) into Eq. (12)

W = −

∫
A

qTATpdA (13)

For a concentrated load, the above integral is reduced to the

simple expression of load multiplied by corresponding displace-

ment. For all other distributed loads the potential energy can be

obtained through some simple integration process.

The total potential energy is the sum of the elastic strain en-

ergy stored in the strip and the potential energy of the loads.

Thus

Π = U + W = (Um + Ub) + W =

(
1/2

∫
A

qT
u BT

u1DmBu1qudA+

+1/2

∫
A

qT
wBT

w3DbBw3qwdA

)
+

+

[
1/8

∫
A

qT
wBT

w2WTBT
w1DmBw1WBw2qwdA+

+ 1/4

∫
A

qT
wBT

w2WTDmBu1qudA+

+1/4

∫
A

qT
u BT

u1DmBw1WBw2qwdA+

]
+

{
1/8

∫
A

quT
u BuT

u2 UTBuT
u1 DmBu

u1UBu
u2qu

udA +

+ 1/4

∫
A

quT
u BuT

u4 DmBu
u1UBu

u2qu
udA+

+ 1/4

∫
A

quT
u BuT

u2 UTBuT
u1 DmBu

u4qu
udA+

+ 1/4

∫
A

qvT
u BvT

u5 DmBu
u1UBu

u2qu
udA+

+ 1/4

∫
A

quT
u BuT

u2 UTBuT
u1 DmBv

u5qv
udA+

+ 1/8

∫
A

qT
wBT

w2WTBT
w1DmBu

u1UBu
u2qu

udA+

+1/8

∫
A

quT
u BuT

u2 UTBuT
u1 DmBw1WBw2qwdA

}
−

−

∫
A

qTATpdA

(14)

The multiplication results of the membrane and bending ac-

tions in the first bracket of Eq. (14) are uniquely defined and
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uncoupled, whilst those in second [von Karman assumptions]

and third bracket {Green-Lagrange approach}are functions of

the displacements u0, v0 and w. Consequently, the membrane

and bending actions are coupled in many ways.

In order to obtain the system of stability equations (SSE) from

the variational relations, the principle of minimum total poten-

tial energy is invoked.(
K̂uuqu + K̂wwqw

)
+

[
1/2 K̃wwqw + 1/2 K̃wuqu + 1/4K̃uwqw

]
+

+
{
1/2 K̃uu

uuqu
u + 3/4K̃uu∗

uu qu
u + 3/4K̃uu∗∗

uu qu
u + 1/4K̃vu

uuqu
u+

+1/2 K̃uv
uuqv

u + 1/4K̃u
wuqu

u + 1/4K̃u
uwqw

}
−Q = 0

(15)

The basic and the geometric stiffness matrices are, respectively(
K̂uu =

∫
A

BT
u1DmBu1dA, K̂ww =

∫
A

BT
w3DbBw3dA

)
[
K̃ww =

∫
A

BT
w2WTG1WBw2dA, K̃wu =

∫
A

BT
w2WTG2dA,

K̃uw =

∫
A

GT
2 WBw2dA,

] {
K̃uu

uu =

∫
A

BuT
u2 UTG3UBu

u2dA,

K̃uu∗
uu =

∫
A

G4UBu
u2dA, K̃uu∗∗

uu =

∫
A

BuT
u2 UTGT

4 dA,

K̃vu
uu =

∫
A

G5UBu
u2dA, K̃uv

uu =

∫
A

BuT
u2 UTGT

5 dA,

K̃u
wu =

∫
A

BT
w2WTG6UBu

u2dA, K̃u
uw =

∫
A

BuT
u2 UTGT

6 WBw2dA

}
(16)

where [
G1 = BT

w1DmBw1, G2 = BT
w1DmBu1,

]{
G3 = BuT

u1 DmBu
u1, G4 = BuT

u4 DmBu
u1,

G5 = BvT
u5 DmBu

u1, G6 = BT
w1DmBu

u1

} (17)

We can visualize the construction of a strip stiffness ma-

trix, which is composed of twelve block matrices. As-

sembling block matrices into conventional/geometric stiff-

ness matrix of each strip is performed according to

the scheme presented in Fig. 2, where: ST1 = K̂uu,

ST2 = K̂ww, ST3 = K̃ww, ST4 = K̃wu, ST5 = K̃uw, ST6 = K̃uu
uu,

ST7 = K̃uu∗
uu , ST8 = K̃uu∗∗

uu , ST9 = K̃vu
uu, ST10 = K̃uv

uu, ST11 = K̃u
wu

and ST12 = K̃u
uw (ST5 = ST4T , ST8 = ST7T , ST10 = ST9T ,

ST12 = ST11T ).

3 Finite-Strip Program Visualization and Parallelization

The HCFSM software for geometric nonlinear analysis of thin

plate structures requires long numerical computations and gen-

erates huge amount of numerical data, see Ref. [7, 9] and [12].

In this paper only short overview of the finite-strip program vi-

sualization and parallelization is presented.

To cope with such huge number of data, it is necessary to

use suitable data visualization. These data constitute of incre-

mental displacements and internal forces. They are produced

Fig. 2. Strip stiffness matrix assembling

in human readable format by different HCFSM implementa-

tions (each programmed in different programming languages:

FORTRAN, C, C++), and ought to be translated from human

readable format into special visualization format. Such format-

ted data serve as an input for special data visualization module

which offers different graphical representations of the numerical

results thus greatly simplifying the analyze process. They are

shown in figures of the chapter 4.

The main part of the HCFSM application is an implementa-

tion of iterative numerical procedure for calculation of large dis-

placements and inner forces of thin plate structures under multi-

ple loading conditions. Based on the input data describing struc-

ture under consideration iterative process is started with the aim

of finding displacement solutions which will meet previously

set criteria. During the each iteration step, stiffness matrices and

load vectors are generated for each strip and assembled into sys-

tem stiffness matrix and system load vector later used for solving

the SSE.

A very large number of integrals, calculated for the large

number of harmonics used, are included for the calculation of

each strip stiffness matrix in the each iteration. Some optimiza-

tion strategies for providing values of integrals have been de-

scribed in [9, 12]. In this research, integral expressions are cal-

culated once, independent of particular strip length, and stored

in a memory during the execution process. This approach

represents the parallel HCFSM algorithm which combines the

MPI/OpenMP [8, 13] programming models.

Parallelization effort in this research directly tackles the most

computationally expensive part of the program. Profiling of

HCFSM program execution, when the Green-Lagrange formu-

lation is applied, suggests that the most time consuming part is

computation of the stiffness matrices for every strip, whereas

much less time is spent on finding the solution to SSE using the

method of Gaussian elimination [9].

Calculations of stiffness matrix for different strips are inde-

pendent and can be carried out in parallel on different proces-
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sors. Therefore it is natural to use parallel programming li-

braries, such as MPI to obtain parallel calculation of stiffness

matrix for different strips. Such approach allows substantial

speedup as calculation of each stiffness matrix requires huge

number of arithmetic operations to be conducted on relatively

small set of input data. The cost-effective way to achieve the

speedup is to use cluster composed of suitable number of nodes.

The usual MPI approach to parallel programming uses one

node (called master node) to coordinate other nodes (called slave

nodes) to execute specific tasks. Data are distributed evenly

among the nodes and perfect load balancing is achieved in cases

when all nodes are in charge of the same number of strips. One

limitation of this approach is that the maximum number of nodes

that can be processed in a particular computation depends on the

number of strips in the problem. This means that for inputs with

only a few strips, only a few computational nodes can be used.

However, this limitation is not significant because inputs with

a small number of strips are usually computationally light, and

therefore great computing power is not really needed.

The second parallelization level deals with simultaneous com-

putation of the block matrices (Fig. 2). The block matrices that

depend solely on the geometrical properties of the strip, namely

S T1 and S T2, are computed only once and used as a basis for

construction of the stiffness matrices. The remaining 10 block

matrices are recomputed in each iteration based on the values of

displacements for all harmonics. However, not all of them are of

equal computational intensity. The four block stiffness matrices,

namely S T3, S T11, S T12, and S T6 (in decreasing order of their

contributions), amount to 94% of the time needed for computing

the stiffness matrices of all strips, and offer opportunity to apply

parallel programming within one SMP node taking advantage

of the globally shared address space. We refer to it as OpenMP

approach. OpenMP is an industry standard for shared memory

parallel programming. It is based on a fork-and-join execution

model whereby the master thread forks a specified number of

slave threads which execute blocks of code in parallel. By the

end of the parallel region all threads had reached the barrier and

only the master thread continues execution of user code beyond

the end of the parallel construct. The advantage of OpenMP

is that an existing code can be easily parallelized by placing

OpenMP directives to denote parallel task sections which do not

contain data dependencies, leaving the source code unchanged.

The hibrid approach, consisting of the two-level paralleliza-

tion combining two different parallelization methods, gives

good results, as cumulative speedup is almost 5 times.

4 Numerical examples

Two RCFPSs of span length L = 20 m and L = 30 m, whose

characteristic cross-section, applied service load and finite strip

mesh are shown in Fig. 3, were analyzed. Structures are made

of concrete C35/45 and reinforcement B400.

Maximum applied load is adopted as the triple value of the

service load shown in Fig. 3, in order to reach the limit state

of structure. This maximum load is divided into a total of 37

increments. The symmetry of geometry, loads and supporting

conditions is utilized, so the numerical analysis is carried out

for only half of the structure. Young’s elasticity modulus for

concrete E = 34000 MPa and zero Poisson’s ratio are taken in

the computations. Comparative analysis is done for linear (LIN),

von Karman (VK) and Green-Lagrange (LAG) predictions.

The corresponding load in term of the tangent stiffness matrix

(TSM) eigenvalue λ is depicted in Fig. 4. It can be concluded

that all equilibrium states are stable because all λi > 0. However,

as results of geometrical nonlinearity, the diagrams are quite dif-

ferent to shorter (hardening) and longer (softening) structures.

The differences between the transient cross-section deforma-

tion configurations, which are plotted in Fig. 5, show the in-

fluence of the length and load intensity to shorter and longer

structures.

Fig. 6 shows the results obtained for central displacements w

for shorter and longer structures. The straight lines represent the

corresponding linear solutions.

Load to membrane forces (Nx and Ny) and bending moment

Mx curves are shown in Fig. 7 and Fig. 8.

Fig. 9 illustrates the convergence of the central displacements

w for the last loading level. The convergence is nonmonotonic

and fast.

Fig. 10 shows the convergence behavior of the membrane

force Nx and the bending moment Mx with 21 harmonics used in

the computations. The convergence is nonmonotonic and poor.

In Fig. 11, the distributions of the membrane force Ny

(Σm = 1...21) along the transverse cross-section at midspan are

shown at three loading levels. The effect of nonlinear behavior

is more prominent in the Green-Lagrange prediction.

Comparative analysis of nonlinear effects between von Kar-

man and Green-Lagrange approaches for both short and long

structure is presented in Fig. 12.

Limit state design of characteristic cross sections is performed

according to EC 2, on the basis of internal forces calculated by

linear FSM. Diagrams of interaction (Nu − Mu) of two charac-

teristic cross sections of both RCFPSs are drawn using working

diagrams (WD) of concrete and steel according to EC 2 (line

A) and according to rheological-dynamical analogy (RDA) with

maximum strain in concrete limited to εcu = 3.5‰ (line B, see

Ref. [6]) – Fig. 13 to Fig. 16. Partial safety factors for material

are not applied. Tension force is treated as negative. Positive

bending moment of the border beam stretches the bottom side

of cross-section.

By comparing the behavior of normal force-bending moment

(N − M) function when increasing the load on diagrams of in-

teraction shown in Fig. 13 to Fig. 16, i.e. magnified in Fig. 17,

it is noted that the nonlinear behavior is much more pronounced

in the longer structure. The influence of large displacements is

particularly pronounced in the border beam according to LAG

prediction. N − M path drawn by VK prediction in all analyzed

cases is very close to linear behavior.
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Fig. 3. RCFPSs cross-section, service load and strip idealization

Fig. 4. Variation of TSM eigenvalue with load intensity for 21 series terms: L= 20 m (left) and L = 30 m (right)

Fig. 5. The transient cross-section deformation configurations along the transverse cross-section at midspan: L = 20 m (left) and L = 30 m (right)
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Fig. 6. Central displacement w: nodal line 1 (left) and nodal line 11 (right)

Fig. 7. Central membrane force Nx and central bending moment Mx (nodal line 1)

Fig. 8. Central membrane forces Ny in nodal line 9 (left) and nodal line 11 (right)
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Fig. 9. HCFSM convergence of the central displacement w: nodal line 1 (left) and nodal line 11 (right)

Fig. 10. HCFSM convergence of the central membrane force Nx and the central bending moment Mx (nodal line 1)

Fig. 11. Membrane forces along the transverse cross-section at midspan (L = 30 m): von Karman (left) and Green-Lagrange approach (right)
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Fig. 12. Comparative analysis of nonlinear effects between von Karman and Green-Lagrange predictions

Fig. 13. RCFPS of L = 20 m - Cross-section of the border beam at midspan and corresponding Nu − Mu diagram

Fig. 14. RCFPS of L = 20 m: Cross-section in nodal line 1 and corresponding Nu − Mu diagram
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Fig. 15. RCFPS of L = 30 m - Cross-section of the border beam at midspan and corresponding Nu − Mu diagram

Fig. 16. RCFPS of L = 30 m: Cross-section in nodal line 1 and corresponding Nu − Mu diagram
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Fig. 17. Behavior of N − M function with load increase according to linear

(LIN), Green-Lagrange (LAN) and von Karman (VK) predictions: (a) in border

beam and (b) in nodal line 1, for RCFPSs of span length L =20m (left) and

L =30m (right)

The ultimate resistance (Nu) and global safety factors γ(N) =

Nu/N and γ(q) = qu/q of two selected cross-sections of both

RCFPSs, according to LIN, LAG and VK predictions are shown

in Table 1 and Table 2. Here N and q are the membrane force

due to service load and service load, respectively; the ultimate

resistance Nu is taken from diagram of interaction at intersection

of curve that represents the behavior of N − M function with

load increase and the curve of fracture Nu − Mu, while qu is the

ultimate load at which the ultimate resistance Nu of the cross-

section is reached.

From Table 1 and Table 2 it can be seen that the global safety

factors of the cross sections, obtained by LIN predictions, al-

most always are on the safety side, or very close to the values

from the LAG and VK predictions. The only exception are the

safety factors in the border beam of longer RCFPS, where VK

prediction gives γ(N) for 4.6% (for the curve A) and 4.4% (for

the curve B) lower than the corresponding safety factors calcu-

lated by LIN prediction, while the safety factors γ(q) differ from

the same for 2.4% and 2.2%. It is interesting that at the same

time VK gives ultimate normal force (Nu) 6% lower than pre-

dicted by LIN.

In the analyzed cross section of the border beam global safety

factors are almost identical regardless of whether the linear or

nonlinear predictions are applied, irrespective of the span length.

However, the influence of the RCFPS’s span length on its behav-

ior is clearly visible in nodal line 1 at midspan. While at RCFPS

of span length L = 20 m safety factors are almost identical for

all predictions, at longer RCFPS safety factor γ(N) by VK pre-

diction is 30% higher than according to LIN prediction, and the

corresponding γ(q) is higher by 25.91%. This again confirms

that the linear theory gives the lower values of ultimate resis-

tance of cross section than the nonlinear theory, i.e. that the

results of linear analysis are in most cases on the safe side. As

can be seen from Fig. 17 (b) the right, according to LAG predic-

tion the ultimate bearing capacity of the cross section in nodal

line 1 at midspan of longer structure is not reached even at max-

imum load analyzed, and in this case the value of safety factors

in Table 2 could not be calculated.

Safety factors for non-linear predictions in relation to the ser-

vice load γ(q) are different from the safety factors determined in

relation to the membrane force due to service load γ(N) and in

most of the analyzed cross sections is γ(q) > γ(N). In most an-

alyzed cases the ultimate limit state by nonlinear predictions is

reached at higher load levels than in the case of linear behavior.

5 Conclusions

Adoption of the optimal RCFPS’s design method depends on

the desired accuracy on one and the complexity (cost) of anal-

ysis on the other side. Therefore, in this paper the numerical

analysis of two RCFPS of span length 20 and 30 m is performed,

using a simpler method - linear FSM and much more complex

and demanding nonlinear methods (LAG and VK).

Based on comparative analysis of the results obtained by lin-

ear and nonlinear predictions it is observed that in RCFPS of

span length 20 m such results are very similar. This means that

the linear FSM is optimal method for the design of shorter RCF-

PSs. However, in RCFPS of span length 30 m difference be-

tween global safety factors of analysed cross sections accord-

ing to linear and nonlinear predictions is up to 30%. Results

obtained by linear FSM are almost always on the safe side in

relation to the nonlinear predictions. Thus, by nonlinear analy-

sis methods material savings can be achieved, but at the cost of

increase in the price of analysis procedure.

The finite strip analysis of geometric nonlinear folded-plate

structures is performed applying the von Karman and Green-

Lagrange predictions for strains, which are both characterized

by the coupling of all harmonics. The coupling of all se-

ries terms dramatically increases calculation time in an existing

finite-strip sequential program when a large number of series

terms are used.

The HCFSM algorithm offers good potential for both MPI

and OpenMP parallelization. Therefore it is not surprise that

Geometric Nonlinear Analysis of Folded Plates 1832014 58 3



Tab. 1. The ultimate resistance and global safety factors of the cross-section in nodal line 1 at midspan

Span length L = 20 m L = 30 m

Combination of working
A B A B

diagrams of concrete and steel

linear

effects of

service load
N = -777.75kN; M = 149.62 kNm N = -1556.753 kN; M = 230.19 kNm

Nu -1490 -1520 -2830 -2870

(LIN)
γ(N) 1.916 1.954 1.818 1.843

γ(q) 1.916 1.954 1.818 1.843

Green-

effects of

service load
N = -763.477 kN; M = 143.912 kNm N = -1401.483 kN; M = 176.17 kNm

Lagrange
Nu -1505 -1550 -2540 -2560

(LAG)
γ(N) 1.971 2.03 1.812 1.827

γ(q) 2.008 2.07 1.905 1.922

von Karman

effects of

service load
N = -776.517kN; M = 148.951kNm N = -1533.584kN; M = 213.33kNm

Nu -1490 -1520 -2660 -2700

(VK)
γ(N) 1.919 1.957 1.734 1.761

γ(q) 1.926 1.965 1.7745 1.8025

Tab. 2. The ultimate resistance and global safety factors of the cross-section in nodal line 1 at midspan

Span length L = 20 m L = 30 m

Combination of working
A B A B

diagrams of concrete and steel

linear

effects of

service load
N = 44.568 kN; M = 8.35 kNm N = 51.647 kN; M = 15.339 kNm

Nu 99 105 120 128

(LIN)
γ(N) 2.221 2.356 2.323 2.478

γ(q) 2.221 2.356 2.323 2.478

Green-Lagrange

effects of

service load
N = 44.325 kN; M = 8.22 kNm N = 50.741 kN; M = 13.32 kNm

Nu 100 105 not reached not reached

(LAG)
γ(N) 2.256 2.369 - -

γ(q) 2.260 2.373 - -

von Karman

effects of

service load
N = 44.335 kN; M = 8.30 kNm N = 52.309 kN; M = 14.70 kNm

Nu 100 105 158 170

(VK)
γ(N) 2.256 2.368 3.02 3.25

γ(q) 2.254 2.365 2.925 3.143
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MPI/OpenMP hybrid approach shows good results in the paral-

lelisation. In this paper only short overview of the finite-strip

program visualization and parallelization is presented.
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