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Abstract

To deeply understand the performance of asphalt pavement in long slope sections, the object of this paper is to obtain the viscoelastic 

dynamic response of asphalt pavement in long slope sections considering interface bonding conditions. An asphalt pavement model 

is built, and then for solving the problem, the Laplace-Hankel transformation is used to transfer the partial differential equations to 

the ordinary differential equations. Transfer matrices are adopted to present the relationship of stress and displacement between the 

pavement surface and any pavement depth, and a special transfer matrix characterizes the interface bonding condition. By this method, 

the analytical solution of the stress and displacement at any pavement position is received. After that, an example of asphalt pavement 

in a long slope section is introduced considering the distribution of stress and displacement, the magnitude of the horizontal load, and 

the interface bonding strength. The horizontal vehicle load affects the distribution of shear stress τrz in the pavement. The interface 

bonding strength is more important in long slope sections than in any other normal section of asphalt pavement.
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1 Introduction
The load imposed on the pavement mainly comes from 
vehicles and, based on the form of wheels rolling the road, 
it contains both vertical and horizontal loads. Compared 
with the vertical load of a vehicle, the horizontal load 
caused by slid friction is usually smaller in normal sections 
of the road and is always neglected in pavement design and 
pavement simulation. However, in some special sections of 
the road, e.g., long slope, bus stations, crossroads, etc., the 
vehicle brake, stop, and frequently restart, which causes 
a larger horizontal load than in normal sections of the road. 
In these sections, the interface between layers of asphalt 
pavement is usually not very well, and the pavement sur-
face is prone to cause diseases such as slippage and conges-
tion, which significantly impairs the service life and driving 
comfort of the road. Under these conditions, the horizon-
tal load caused by the vehicle starting and braking can't be 
ignored [1]. To better understand the mechanical behav-
ior of the asphalt pavement in these sections, we focus on 

the performance of the typical asphalt pavement section, 
the long slope section. Therefore, firstly an effective model 
for simulating the working conditions of an asphalt pave-
ment during its whole service life should be built, which 
involves the constitutive relation of the asphalt layer and 
describing the character of the interface bonding condition 
between two layers. And then an efficient approach is nec-
essary to resolve the issue. 

Asphalt mixture consists of bitumen binder, aggregate, 
fine aggregate, additives, etc.; it is typically a viscoelas-
tic material. The researchers employed several constitutive 
laws and methods to simulate the behavior of viscoelas-
tic materials [2–5], such as the Kelvin-Voigt viscoelastic 
model [6], Generalized Maxwell rheological model [7], 
Kelvin, Maxwell, Vanderpoel, and Burgers models are com-
monly used to present the performance of asphalt layers in 
analytical methods [8–9]. Some experts conducted excel-
lent work in this field as well. Darabi et al. [10], proposed 
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a coupled nonlinear viscoelastic (VE)-viscoplastic (VP)-
hardening-relaxation (HR) constitutive model to character-
ize the behavior of asphalt mixtures and then validated that 
the VE-VP-HR model can capture the response of asphalt 
mixtures subjected to various loading paths by experimen-
tal data. Karimi et al. [11], presented a large-deformation 
thermodynamic-based framework and got a large defor-
mation, time-dependent viscoplastic constitutive relation-
ship for predicting the compaction degree of asphalt con-
crete materials under laboratory and field. The Helmholtz 
free energy and rate of energy dissipation functions were 
used in their research to derive rate-dependent constitu-
tive relationships of asphalt concrete during compaction. 
Numerical algorithms associated with the proposed con-
stitutive relationship were implemented in the finite ele-
ment (FE) code ABAQUS by the user material subrou-
tine UMAT to calibrate the constitutive model. Zhu and 
Sun [12] derived a viscoelastic–viscoelastic damage con-
stitutive model based on irreversible thermodynamics 
theory to describe the triaxial creep and triaxial constant 
strain rate compression tests and predict the time-depen-
dent response of asphalt mixtures under various compres-
sion loading conditions. The Burgers model is still one of 
the most widely used constitutive relations for character-
izing the properties of asphalt layers [13–14]. However, 
Burgers constitutive relation has one weakness, which 
can't describe the solidification procedure of asphalt mix-
ture. Because the coefficient that characterizes the perma-
nent deformation of the material is constant, it can only 
display the directly proportional relationship between per-
manent deformation and time. However, the viscous flow 
deformation of the asphalt mixture decreases as the service 
time of the pavement increases. To overcome this draw-
back, Xu and Zhu [15] proposed a modified Burgers model, 
and in this model, the viscosity coefficients of the dashpot 
in the modified Maxwell parameter aren't a constant, and 
it is modified as an exponential function of time. In this 
paper, we adopt the modified Burgers model to describe the 
behavior of the asphalt layer, and a more detailed introduc-
tion of the modified Burgers model is in Section 2.

Asphalt pavement structure with a semi-rigid base is 
usually adopted in China, and the modified bitumen is 
used as a binder between the two layers. Even though 
the binder improves the bonding strength, sometimes the 
bonding condition can't be considered completely contin-
uous for the materials of the asphalt layer and the base 
course have different characteristics. The performance of 
asphalt pavement is affected by the bonding conditions 

between two layers [16–17]. Therefore, the performance 
of bonding conditions should be considered in build-
ing asphalt pavement models. For simulating the behav-
ior of asphalt pavement, bonding conditions are gener-
ally modeled by a specific layer, cohesion zone element, 
and coulomb model [18–20]. Using the Coulomb friction 
model, Wang and Ma [21] simulated the bonding condi-
tion between the adjacent layers of semi-rigid base asphalt 
pavement by contact element and target element. They 
found that disengaging area between the asphalt concrete 
layer and the base layer can negatively affect the strain 
responses of asphalt pavement, especially at the higher 
temperature, and it can also weaken the asphalt pavement 
performance with the increase of the disengaging area. 
In Xu et al. [22] study, by the discrete-element model, 
asphalt pavement was established to discuss the effects 
of temperature changes of the interlaminar bonding layer 
on the mechanical responses of asphalt pavement. Their 
research shows that lower temperature increases the conti-
nuity of asphalt pavement layers, reducing the compressive 
stress in the upper layer. On the contrary, higher tempera-
ture weakens the interlaminar bond, increasing the hori-
zontal tensile stress in the upper layer and at the interlam-
inar interface. Using the calculation software Ever Stress 
FE, characterize the bonding conditions of the asphalt 
pavement structure by setting specially processed 16-node 
elements at layer interfaces and introducing the interface 
stiffness, which is defined as the ratio of the shear stress 
at the top and bottom of the interface element to the rel-
ative shear displacement [23]. For the analysis method, 
the classical Goodman law [24] is used for deriving the 
constitutive relation of the interface because, on one side, 
it can describe the performance of the interface. On the 
other side, it makes the procedure of the formula deriva-
tion concise. Therefore, the Goodman model is adopted in 
this paper to characterize the performance of the bonding 
condition of the asphalt pavement.

Based on the current achievement, in this paper, build-
ing an asphalt pavement model considering the viscoelas-
tic property of the asphalt layer and the bonding strength 
of the interface under the vertical and horizontal vehicle 
load can get a more realistic simulation of the asphalt pave-
ment in long slope sections. On the other hand, the analyt-
ical method is more convenient and accurate to obtain the 
mechanical behaviors of the pavement. Because changing 
parameters and multiple matrices can simulate the pave-
ment in different conditions, rather than building several 
models for each condition.
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The outline of this paper is that in Section 2, the model 
of asphalt pavement considers the incompletely continu-
ous bonding condition under vertical and horizontal vehi-
cle load. The procedure of analytical solution derivation is 
presented in Section 3. To illustrate the application of the 
methods proposed in this paper, an example is calculated in 
Section 4, and the factors which influent the trend of the vis-
coelastic dynamic response of the pavement are analyzed 
in this section. The last part is the conclusion in Section 5.

2 Model of asphalt pavement in long slope sections
2.1 Modified Burgers model
Asphalt pavement comprises several layers, asphalt layer, 
base course, sub-base, subgrade, etc. Due to the proper-
ties of bitumen, the asphalt layer presents viscoelastic fea-
tures, and the other layers are usually considered elastic 
materials for building asphalt pavement models. 

In this paper, the modified Burgers model is selected to 
characterize the constitutive relation of the asphalt layer, 
as shown in Fig. 1 [15]. Based on the classical Burgers 
model, a Maxwell model, and a Kelvin model in series, 
Xu [15] modified the Maxwell model, replacing the vis-
cosity coefficient η1 with an exponential function of t in 
Eq. (1), for describing the procedure of solidification of 
asphalt mixture, 

�1 t AeBt� � � , (1)

where A and B are the coefficients of dashpot in the modi-
fied Maxwell model.

There is no modification in the Kelvin model, so the con-
stitutive relation of the Kelvin model can be expressed as 

� �
�

�k
k

k
d
dt

E� �2 2 , (2)

where σk and εk are the stress and strain of the two parallel 
elements, respectively. η1 is the coefficient of the dashpot 
in the Kelvin model and E2 is the spring's stiffness. 

The normal stress of the spring element in the Maxwell 
model is 

� �1 1 1� E , (3)

where E1 is stiffness of the spring in the modified Maxwell 
model and ε1 is strain of this spring.

For the dashpot, the stress can be expressed as

� �
� �

2 1
2 2� �

d
dt

Ae d
dt

Bt , (4)

where σ2 and ε2 are the stress and strain of the dashpot in 
the modified Maxwell model. 

Based on the property of the series element that, 
σM = σ1 = σ2, εM = ε1 = ε2, the constitution relation can be 
obtained 

� � �M
Bt

M M

Ae E
d
dt

d
dt

� �
1

1

. (5)

In terms of the series of modified Maxwell model and 
Kelvin model, 
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The constitutive relation of the modified Burgers model 
could be proposed as 
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where E11 and E12 are elastic parameters in Maxwell and 
Kelvin model, respectively. η2 is the viscosity coefficient 
in the Kelvin model. σ is the normal stress and ε is the nor-
mal strain.

2.2 Interface bonding conditions 
Former research points out that the bonding condition 
between two pavement layers significantly affects the defor-
mation of asphalt pavement under traffic load [25–27], and 
the bonding condition isn't usually continuous. Especially in 
the section of crossroads, bus stations, long slopes, etc., the 
bonding strength deteriorates with the increase of service 
time of pavement. The Goodman model [28] is selected for 
characterizing the bonding conditions between the pave-
ment layers shown in Fig. 2. 

It reflects the relationship between shear stress and rel-
ative horizontal displacement at the interlayer interface. 
The constitutive relation can be expressed as

Fig. 1 Modified Burgers model
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� �zr i zri iK u( )� � �1 � , (9)

where τzr(i+1) and τzri are the shear stress of the (i + 1)th layer 
and the i layer, respectively. ui+1 and ui are the displace-
ment of the (i + 1)th layer and the ith layer. Ki is the adhe-
sion coefficient, which represents the bonding strength. 
Ki → ∞ means that the interface between two layers is 
almost completely continuous. On the contrary, Ki → 0 
presents the two layers that could move free horizontally. 
∆u is the relative horizontal displacement ∆u = ui+1 – ui.

2.3 Vehicle load
In the long slope sections of the road, because of the vehi-
cle braking and starting, the vertical load and the hori-
zontal load should be considered. Therefore, the vehicle 
load is simplified as both vertical and horizontal parts, as 
shown in Fig. 3. Apart from vehicle braking and starting 
load, the component of vehicle gravity along the surface 
of pavement contributes to the horizontal load as well. 
However, it is smaller than the horizontal load caused 
by vehicle braking and starting, because the angle of the 
slope in high-grade road is usually less than 5–6 degree. 
Therefore, in this model, the horizontal load caused by the 
vehicle gravity is neglected.

Considering the vibration of vehicles driving on the 
road, the continuous semi-sinusoidal load is selected for 
the vertical load. Based on Deng and Li [29] research, for 
considering the maximum shear stress, the horizontal load 
with one direction could be assumed as the symmetry load 
with z axle, and semi-rectangular wave load is selected for 
the horizontal load. The vertical and horizontal load are 
expressed as [30].

P t
p H t H t T
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where H(t) is a step function, t is the loading time, and Td 
is the loading period. Fxbmax is the maximum braking load 
of the vehicle, Fxbmax = φp, φ is the road friction coefficient 
and p is the vertical load amplitude.

At the infinite vertical distance of the road z → ∞, the 
stress and displacement are assumed as 

u r t w r t
r t r tz

( , , ) , ( , , ) ,

( , , ) , ( , , ) .

� � � �

� � � �

0 0

0 0� �zr

 (12)

And then, considering the viscoelastic behaviors of the 
asphalt layer, the asphalt model with an imperfect inter-
face under braking vehicle load is shown in Fig. 4

3 Resolution of the asphalt pavement model
The dynamic equilibrium equations of an axisymmetric 
problem in polar coordinates presented by displacement 
can be expressed as

�
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where λ(t) and G(t) are Lame constant,
� � � �( ) ( ) ( )( ),t E t� � �1 1 2 G t E t( ) ( ) ( )� �2 1 � , e(r, z, t) 
is the volume deformation.
e r z t u r z t r u r z t r w r z t z( , , ) ( , , ) ( , , ) ( , , )� � � � �� � , ∇2 
is a Laplace operator, � � � � �� �� � � � �2 2 2 2 2r r zr . u 
and w represent the horizontal and vertical displacements, 
respectively; ρ is the density of pavement material and t is 
the time variable.

For getting the solution of Eqs. (13) and (14) and the 
relationship of stress and displacement in different layers 
of the pavement, two auxiliary equations coming from 
Hooke’s law were introduced as Eqs. (15) and (16).

Fig. 2 Schematic diagram of Goodman model

Verttcal load P(t)

Hortzontal load g(t)

Fig. 3 The schematics of vehicle load



Gao et al.
Period. Polytech. Civ. Eng., 67(1), pp. 189–199, 2023|193

� �z r z t t e r z t G t w r z t
z

, , ( ) ( , , ) ( )
( , , )� � � �

�
�

2  (15)

� zr r z t G t u r z t
z

w r z t
r

, , ( )(
( , , ) ( , , )

),� � � �
�

�
�

�
 (16)

where σr, σθ and σz represent stresses in the r, θ and z direc-
tions, respectively; τzr is the shear stress.

Equations (13)–(16) are all partial differential equation 
with respect to two variables, t and r. Compare with ordi-
nary differential equation, they are more challenging to be 
solved directly. For transforming partial equation into ordi-
nary equation, Laplace-Hankel transformation is adopted 
in Eqs. (13)–(16). Firstly, Laplace integral transformation 
is applied to the time variable t in Eqs. (13)–(16), and then 
by simplifying these complex equations, which can be 
obtained as 
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Equations (17)–(20) are still a set of partial differential 
equations with one variable r. Then Hankel integral trans-
formation is performed on the variable r in Eqs. (17)–(20). 
After simplification, it can be obtained,
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� �  a(s) and b(s) are 
functions of variables related to material properties in the 
Laplace transformation domain. If the material is consid-
ered as linear elasticity, then a(s) and b(s) are constants. 
In the model shown in Fig. 4, the asphalt layer is consid-
ered viscoelastic, and the other layers are linear elastic.

The modified Burgers model is used to characterize the 
constitutive relation of pavement asphalt layer material. 
By Laplace integral transformation of the time variable t 
in the constitutive Eq. (8) of the modified Burgers model, 
the expression of its viscoelastic operator in the Laplace 
domain can be obtained
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(25)

That is, the mathematical expression of the material 
properties of the asphalt layer is obtained; bring E(s) into 
a(s) and b(s), we can get the specific expression of a(s) and 
b(s). Equations (21)–(24) can be expressed uniformly in 
matrix form

Fig. 4 Calculation model of asphalt pavement structure under vehicle braking condition
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Layer 2     h2

Layer i+1     hi+1
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The solution of Eq. (26) can be obtained based on mod-
ern control theory [31], and it can be expressed as

 X z s z s X s( , , ) exp ( , ) ( , , )� � � �� � � 0 , (27)

where exp[zψ(ξ, s)] characterizes the transfer relationship 
between stresses and displacements at different locations 
in the same material and exp[zψ(ξ, s)] is a fourth-order 
matrix. If exp[zψ(ξ, s)] is expressed in [T], then Eq. (27) 
can be rewritten as

 X z s T X s( , , ) ( , , )� �� � � 0 . (28)

Because the asphalt pavement structure is a half-space 
multi-layers structure system, if the interlayer is consid-
ered to be completely continuous, the stresses and dis-
placements of z = h at the bottom of the layer i and top of 
a layer i + 1 are equal, namely
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Then the stresses and displacements at any depth of the 
pavement can be expressed as (layer i + 1)

 X s T T T T X si i i( ,z, ) [ ][ ]...[ ][ ] ( , , )� �
+1 1 2 1

0� � . (30)

In the section of crossroad, bus station, long longitu-
dinal slope, etc., the bonding strength between pavement 
layers degenerates during its' service life and can't be 
regarded as a completely continuous boundary condition. 

In this paper, the Goodman model is used to charac-
terize the imperfect interface between asphalt pavement 
layers. Equation (28) can be rewritten to

u
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Bring Eq. (31) into (29), and we can get
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where the specific form of [Tci] is
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Therefore, the displacement and stress at any depth of 
layer i + 1 in asphalt pavement with an imperfect interface 
can be expressed as

 X s T T T T X si i ci( ,z, ) [ ] ...[ ][ ] ( , , )� �� � � �1 1 2 1
0= , (34)

where Tci is a special transformation matrix. 
If there are more layers and several discontinuous inter-

faces in the pavement, we only need to give the index i 
a larger value and insert the special transfer matrix into a 
general transfer matrix sequence. For instance, if the inter-
faces between the first and second layers and the ith and 
(i + 1)th layers are discontinuous, Eq. (34) can be modified as
 X s T T T T T X si i ci c( ,z, ) [ ] ...[ ] [ ] ( , , )� �� � � � � �1 1 2 1 1

0= . (35)

This is the advantage of the method proposed in this 
paper for there is no need to build a new model to calcu-
late the dynamic response of asphalt pavement with more 
layers and more imperfect interfaces.

Based on the boundary conditions of the model shown in 
Fig. 4, the analytical solution of stress and displacement at 
any position of the pavement is gained in the Laplace and 
Hankel transformation domain. By introducing the bound-
ary conditions into Eq. (34) and using inverse transformati- 
on of numerical integration [32], the numerical solution of 
any pavement position in a physical domain can be obtained. 

4 Results and discussion
To investigate the factors that affect the dynamic response 
of asphalt pavement, an asphalt pavement with imperfect 
bonding conditions under vertical and horizontal vehi-
cle loads is introduced. The asphalt pavement is simpli- 
fied to a three-layer structure, and Fig. 5 shows the asphalt 
pavement. According to the author's previous research [33], 
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the bonding condition between the asphalt layer and the 
base course of the asphalt pavement has the most signifi-
cant influence on the dynamic response of the pavement. 
Table 1 illustrates the geometric and mechanical param-
eters of the pavement. The vertical load amplitude is 
p = 0.7 MPa, R = 0.15 m, and the load period is Td = 32 ms. 
The vertical displacement, normal vertical stress, and shear 
stress are calculated with different bonding conditions and 
horizontal loads, and the results are shown in Figs. 6–8. 

Fig. 6(a) shows the shear stress of asphalt pavement 
in different positions with and without horizontal force, 
and Fig. 6(b) focuses on the influence of both the inter-
face bonding strength and horizontal force on the shear 
stress τrz in h = 0.075 m. Comparing the two different lines 
in Fig. 6(a), the results illustrate that the horizontal load 
enlarges the shear stress greatly and changes its distribu-
tion in the pavement. The maximum shear stress emerges 
closer to the pavement surface, considering the horizon-
tal load. In the top one, Fig. 6(b), the shear stress sharply 
decreases with K = 108 – 1010 N/m3, and then with the value 
of K increase, the shear stress increases slightly. It also 
means that the interface bonding strength affects the stress 
value in the pavement. However, if the bonding strength is 
large enough, it can be seen as a perfect interface. The bot-
tom one of Fig. 6 illustrates that the horizontal force affects 
the shear stress a lot, and the maximum absolute value 
of shear stress increase as the road friction coefficient φ 
increase linearly. Therefore, in the design stage of pave-
ment in long slope sections, the horizontal vehicle load 
should be and the quality of the instruction is very essen-
tial for ensuring the strength of interface bonding. 

Figs. 7(a), (b), and (c) present the vertical displace-
ment of the pavement considering the positions, the mag-
nitude of the horizontal load, and the interface bonding 
strength, respectively. In Fig. 7(a), the value of displace-
ment decreases as the position is far from the surface of 
the pavement in the depth direction, and the horizontal 
load slightly affects the displacement on the surface of 

Fig. 5 Three-layers asphalt pavement model

Table 1 Geometrical and mechanical parameters of the 
pavement structure

Pavement 
structure

Asphalt 
layer

Base 
course

Soil 
foundation

Thickness /m
elastic modulus /MPa
elastic modulus /MPa
viscoelastic coefficient /(MPa·s)
viscoelastic coefficient 
viscoelastic coefficient 

0.18
1000
100
105
1010
0.01

0.35
—
—
—
—
—

—
—
—
—
—
—

elastic modulus/MPa — 1500 100

Density /(kg/m3)
Poisson ratio 

2100
0.25

2000
0.25

1900
0.35

(a)

(b)
Fig. 6 (a) Comparison of shear stress calculation results with and 
without horizontal load, (b) Calculation results of the maximum 

absolute value of shear stress with different bonding conditions and 
different horizontal loads
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the pavement. The results shown in Fig. 7(c) demonstrate 
again that the horizontal load contributes little to the dis-
placement. On the contrary, the interface bonding strength 

has significant effect on the variation of the vertical dis-
placement of the pavement shown in Fig. 7(b). Especially 
on the condition of K = 107 N/m3, the value of displace- 
ment rises dramatically, and with the interface bonding 
strength increase, the value of displacement goes down 
moderately. The displacement and shear stress of the pave-
ment has the same variable tendency on the changing of 
interface bonding strength. It means that the horizontal 
load contributes to the displacement indirectly, because the 
horizontal load affects the stress distribution in the pave-
ment, and then increased stress causes the decrease of the 
interface bonding strength. 

The normal stress σz in different positions of asphalt 
pavement is calculated with and without horizontal load, 
and the results are shown in Fig. 8(a). Figs. (b) and (c) pres-
ent the calculation results of the normal stress σz consider-
ing the different bonding conditions and different horizon-
tal forces, respectively. In Fig. 8(a), at the same position  
h = 0.5 m, comparing the two different lines which present 
the calculation results of normal stress σz with and without 
horizontal load, respectively, it is evident that the horizon-
tal load leads to the increase of the normal stress σz and it 
also can be seen that the normal stress σz decrease as the 
position deepens in the pavement. Compared with shear 
stress and vertical displacement, the adhesion coefficient 
contributes very little to the vertical stress σz, as shown in 
Fig. 8(b). On the contrary, the normal σz stress increase as 
the road friction coefficient increases considerably. These 
can explain why rutting emerges in the long slope sections 
more likely, for the normal stress σz increase with the hor-
izontal load increase.

5 Conclusions
In this paper, a calculation model of asphalt pavement 
under vertical and horizontal vehicle load is established 
for understanding the influence of horizontal load in long 
slope road sections on the dynamic response of asphalt 
pavement, considering the interface bonding conditions. 
In the procedure of derivation for the analytical solution of 
the model, the method of Laplace-Hankel integral trans-
formation is used to transfer partial differential equations 
to ordinary differential equations, and then a transfor-
mation matrix is introduced to characterize the behavior 
of the imperfect interface. An example of asphalt pave-
ment is presented to validate the method proposed in this 
paper. The main factors that affect the dynamic response 
of asphalt pavement in long slope sections are analyzed, 
and the following conclusions are obtained:

(a)

(b)

(c)
Fig. 7 (a) Comparison of displacement calculation results in 

different depths with and without horizontal load, (b) Comparison of 
displacement calculation results with different bonding conditions, 
(c) Comparison of displacement calculation results with different 

horizontal loads 
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(1) The interface bonding condition between the asphalt 
layer and the base course of asphalt pavement contrib-
utes considerably to the value of shear stress and displace-
ment. As the bonding strength degenerates, the shear stress 
and displacement at the edge of the traffic load in differ-
ent depths increase largely. By contrast, as the adhesion 
coefficient K increase, the shear stress and displacement 
decrease slightly. Therefore, if the adhesion coefficient K is 
large enough, the stress and displacement will not change. 
On that condition, the interface can be seen as perfect.

(2) In the long slope sections of road, the horizontal 
vehicle load enlarges the value of vertical displacement, 

shear stress τrz, and normal stress σz at the edge of vehi-
cle load in different depth of asphalt pavement and affect 
the distribution of the stress, especially the shear stress τrz, 
and the normal stress σz. During the service period of 
asphalt pavement in long slope sections, the horizon-
tal load increases the shear stress τrz, the enlarged shear 
stress τrz  enhances the risk of deterioration of the interface 
bonding strength, and then the decreased interface bond-
ing strength enlarges the shear stress τrz, which is a vicious 
circle. Therefore, in long slope sections of asphalt pave-
ment, the vertical vehicle load and the interface bonding 
strength should be paid more attention together.

(a) (b)

(c)
Fig. 8 (a) Comparison of vertical stress in different depths of asphalt pavement with and without horizontal load, (b) Comparison of vertical stress 

with different adhesion coefficient, (c) Comparison of vertical stress  with different road friction coefficient 
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