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Abstract

The success-history based adaptive differential evolution (SHADE) algorithm is an efficient modified version of the differential evolution 

(DE) algorithm, and it has been successfully applied to solve some real-world optimization problems. However, to the best of our 

knowledge, it has been rarely applied in the field of structural optimization. The optimal design of structures with frequency constraints 

is well known as a highly nonlinear and non-convex optimization problem with many local optima. In this paper, the SHADE algorithm 

is examined in the context of size optimization of large-scale truss structures with multiple frequency constraints. In SHADE, a historical 

memory of successful control parameter settings is used to guide the generation of new control parameters. In order to demonstrate 

the effectiveness and efficiency of SHADE, three truss optimization problems with multiple frequency constraints are presented. 

The three examples considered in this paper include a 600-bar single-layer dome-shaped truss, a 1180-bar single-layer dome-shaped 

truss, and a 1410-bar double-layer dome-shaped truss. The results obtained by the SHADE algorithm are presented and compared 

with the best-known results reported in the literature. Numerical results indicate the effectiveness and superior performance of SHADE 

over other algorithms in terms of solution accuracy and robustness. It is worth mentioning that in all the three cases considered, the 

optimal designs obtained by SHADE are the best ones reported in the literature so far. However, SHADE often requires fewer structural 

analyses than those required by the other algorithms.
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1 Introduction
The natural frequencies of a structure are the most essential 
characteristics to determine the dynamic behavior of the 
structure [1]. In design practice, situations are frequently 
encountered where the design requirements of a struc-
ture or structural component include lower limits on one 
or more of the natural frequencies [2]. For example, in the 
structural design of satellites, it is necessary to impose cer-
tain frequency requirements on the design process to avoid 
dynamic coupling between two satellite subsystem fre-
quencies or between low-frequency modes of the launcher 
and the satellite structure [3]. In such situations, the opti-
mal design of structures with frequency constraints is of 
great practical importance because it provides an effective 
way to control and manipulate the dynamic characteristics 
of a structure in a variety of ways, and thus improve its 
dynamic performance [4]. 

Over the last few decades, and many researchers have 
given considerable attention to develop efficient optimiza-
tion algorithms to solve structural optimization problems 
with frequency constraints. Pioneering works in this field 
were carried out using gradient-based optimization tech-
niques [5–7]. However, it has been recognized for many 
years that frequency constraints are highly nonlinear, 
non-convex, and implicit with respect to the design vari-
ables, and this makes dynamic sensitivity analysis difficult 
or even impossible [8, 9]. Thus, in structural optimization 
problems with multiple frequency constraints, it is very dif-
ficult to obtain an initial feasible design, which satisfies the 
multiple frequency constraints simultaneously [9]. It is well 
known however that the performance of gradient-based 
optimization techniques heavily depends on the selection of 
initial search point [10]. Moreover, these techniques require 
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complex and time-consuming dynamic sensitivity analysis 
and may easily get trapped in local optima [9]. For these 
reasons, gradient-based optimization techniques may face 
serious difficulties in solving this class of structural opti-
mization problems. To overcome these difficulties, meta-
heuristic algorithm could be served as appropriate alter-
natives. In recent decades, thanks to substantial advances 
in the computational capability of computers, numerous 
metaheuristic algorithms have been introduced to solve 
a wide range of optimization problems. The distinctive fea-
ture of these algorithms is that they do not need to gradient 
information, which makes them easy to implement. Over 
the past three decades, various metaheuristic algorithms 
have been used successfully to solve structural optimiza-
tion problems with frequency constraints. In this regard, 
Wei et al. [9] proposed the niche hybrid genetic algorithm 
(NHGA) for size and shape optimization of truss structures 
with frequency constraints. Subsequently, Wei et al. [11] 
improved the computational cost of the NHGA by using the 
advantages of parallel computing and introduced the niche 
hybrid parallel genetic algorithm (NHPGA) to solve truss 
shape and size optimization problems with frequency con-
straints. Kaveh and Zolghadr [12] proposed a hybridization 
of the charged system search (CSS) and the big bang-big 
crunch (BB-BC) algorithms and applied it to the optimiza-
tion of truss structures with multiple frequency constraints. 
Kaveh and Ilchi Ghazaan [13] utilized the enhanced collid-
ing bodies optimization (ECBO) algorithm and its cascade 
version (ECBO-Cascade) for size optimization of large-
scale dome structures with multiple natural frequency con-
straints. Kaveh [14] adopted democratic particle swarm 
optimization (DPSO) for the optimization of large-scale 
dome trusses under multiple frequency constraints. Kaveh 
and Ilchi Ghazaan [15] introduced a hybrid metaheuris-
tic algorithm, called MDVC-UVPS, by combining vibrat-
ing particles system (VPS) algorithm, multi-design vari-
able configuration (Multi-DVC) cascade optimization, and 
upper bound strategy (UBS), and applied it to large-scale 
dome optimization problems with multiple frequency con-
straints. Many other similar studies exist in the literature 
that utilized various metaheuristic algorithms to solve truss 
optimization problems with frequency constraints [16–23].

Differential evolution (DE) is a simple yet powerful pop-
ulation-based evolutionary algorithm proposed by Storn 
and Price [24]. Since its development in 1997, DE has 
been proven to be very competitive particularly in solving 
complex numerical optimization problems [25], and has 
been successfully applied to a wide range of optimization 

problems arising in different fields of applied science and 
engineering [26]. However, it has been well recognized that 
the search performance of DE depends strongly on the set-
ting of its control parameters, including the population size 
N, the scaling factor F, and the crossover rate CR [27, 28]. 
Furthermore, it is well known that the optimal setting of 
these parameters is usually a problem-specific task, and 
thus is usually determined by trial and error or by sensitiv-
ity analysis [29]. Motivated by this, numerous efforts have 
been focused on the development of adaptive or self-adap-
tive mechanisms to dynamically adjust the control param-
eters throughout the evolutionary process [28, 30–33]. 
Among them, adaptive differential evolution with optional 
external archive (JADE) [31] is a well-known and effec-
tive variant of DE, in which a control parameter adapta-
tion mechanism is employed to automatically adjust the 
control parameters F and CR to appropriate values. JADE 
also adopts a greedy mutation strategy called "DE/cur-
rent-to-pbest/1" with optional external archive, which 
exploits the information from both the best solution and 
other good solutions. Success-history based adaptive dif-
ferential evolution (SHADE) [28] is an improved version of 
JADE, and it uses a success history-based parameter adap-
tation scheme. In SHADE, unlike JADE which generates 
new control parameter values based on the mean values 
for F and CR that have been successful in previous gener-
ations, a historical record of successful control parameter 
settings is employed to guide the generation of future con-
trol parameter values [34]. The main distinctive feature of 
the SHADE algorithm is that it has the ability to automati-
cally adjust the control parameters F and CR. SHADE was 
ranked the fourth best algorithm among the 21 algorithms 
participated in the 2013 IEEE congress on evolutionary 
computation (IEEE CEC 2013) [35], and has been success-
fully applied to some real-world optimization problems, 
including optimal power follow (OPF) [36], protein struc-
ture prediction (PSP) [37], etc. However, it has been rarely 
applied in the field of structural optimization [23, 38]. From 
the results in [23], it seems that better results could have 
been achieved by SHADE if an appropriate parameter set-
ting had been considered for the problem under study.

The main purpose of this study is to investigate the effi-
ciency and effectiveness of the SHADE algorithm in deal-
ing with large-scale truss optimization problems with mul-
tiple frequency constraints. To evaluate the performance 
of SHADE, three benchmark examples are presented and 
discussed. These examples include a 600-bar single-layer 
dome truss with 25 design variables, a 1180-bar single-layer 
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dome truss with 59 design variables, and a 1410-bar dou-
ble-layer dome truss with 47 design variables. The results 
obtained by SHADE are compared with the best-known 
solutions from the literature. It should be noted that since 
SHADE is an improved variant of the traditional differen-
tial evolution (DE), in order to allow a fair comparison of 
the results with previously published references, improved 
and hybrid metaheuristic algorithms are often considered 
in the comparison. The experimental results revealed that 
SHADE provides superior results compared to the results 
reported in previous studies. 

The rest of this paper is organized as follows: After the 
Introduction section, Section 2 presents the formulation of 
truss optimization problems with frequency constraints. 
Section 3 describes the SHADE algorithm. In Section 4, 
three benchmark truss sizing optimization problems with 
frequency constraints are investigated. Finally, Section 5 
provides the concluding remarks.

2 Formulation of truss optimization with frequency 
constraints
In a truss sizing optimization problem with multiple fre-
quency constraints, the objective of optimization is gen-
erally to minimize the total weight of the structure while 
satisfying some constraints on the natural frequencies of 
the structure. Both the shape and topology of the struc-
ture are pre-specified and remain unchanged during the 
optimization process. Hence, the cross-sectional areas of 
the members are considered as the only design variables 
of the problem. Each design variable is confined within its 
permissible range. The mathematical formulation of this 
problem can be expresses as follows [23]:
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where X is the vector of design variables representing 
member cross-sectional areas; D is the number of design 
variables, i.e., the number of member groups; xk is the 
n-th design variable, i.e., the cross-sectional area of the 
k-th member group; W(X) denotes the objective function 
which is the total weight of the truss; m is the number of 
truss members; ρn, An, and Ln are the material density, 

cross sectional area, and length of the n-th truss member, 
respectively; ωj is the j-th natural frequency of the struc-
ture and ωj

* is its corresponding lower bound; ωk is the 
k-th natural frequency of the structure and ωk

* is its cor-
responding upper bound; and xk

l and xk
u are the lower and 

upper bounds of the k-th design variable, respectively. 
Since the optimization problem formulated above is 

a constrained one, it is necessary to transform it to an 
unconstrained optimization problem. The popular penalty 
function method is adopted in this research for this pur-
pose. In the penalty function method, a penalty term is 
incorporated in the objective function for any violation of 
the constraints [39]. In this way, the original constrained 
optimization problem is transformed into an uncon-
strained one. The penalty function used here is a dynamic 
multiplicative penalty function called the Kaveh-Zolghadr 
technique, which is formulated as follows [40]:
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where fpenalty(X) is the penalty function; v denotes the 
sum of violations of the constraints; c is the number of 
constraints; and vi is the relative violation of the i-th con-
straint. If the i-th constraint is satisfied, then the value of 
vi will set to zero, otherwise it is calculated based on the 
severity of violation. This can be expressed mathemati-
cally by the following equation:
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In Eq. (4), ε1 and ε2 are the parameters of the penalty 
function, and they need to be tuned to adjust the sever-
ity of the penalty being applied to infeasible solutions. 
The appropriate setting of these parameters is a challeng-
ing task and requires many preliminary trials, because they 
may affect the exploration and exploitation tendencies of 
the optimizer [41]. Indeed, if the parameters ε1 and ε2 are 
too small, too much effort is devoted to searching infeasi-
ble regions of the search space while feasible regions are 
not explored effectively and the algorithm may even fail to 
converge to a feasible solution. On the other hand, if these 
parameters are too large, infeasible regions of the search 
space may not be explored enough and thus premature con-
vergence may occur [42]. In this research, the parameter ε1 
is set as a constant value, whereas the parameter ε2 is set to 
increase linearly with the number of iterations. It follows 
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that at different stages of the search process, different 
penalty values are imposed on the same constraint vio-
lation values. Indeed, at the beginning of the optimiza-
tion process, low penalty values are assigned to infeasi-
ble solutions. As a result, even highly infeasible solutions 
are allowed to enter the population of early generations, 
which means that the search agents are allowed to move 
freely through the entire search space, which means that 
more exploration is provided. However, as the number of 
iterations increases, so does the penalty values. As a result, 
during the final stages of the search process, feasible solu-
tions are preferred over infeasible ones, and infeasible solu-
tions with smaller violations are preferred over infeasible 
solutions with larger violations. In this way, the search 
process is directed towards feasible regions of the search 
space, meaning that more exploitation is provided [43]. 

Using the penalty function method, the above con-
strained optimization problem can be rewritten as the fol-
lowing unconstrained optimization problem: 

Find : , , ,X x x xD� �� �1 2
, (6)

to minimize : P X W X f Xpenalty� � � � �� � � , (7)

subject to : , , , ,x x x k Dk
l

k k
u� � � �1 2 , (8)

where P(X) is the penalized objective function. 
To determine the natural frequencies and associated 

mode shapes of an undamped structure, the following 
algebraic equation known as the matrix eigenvalue prob-
lem must be solved [44]:

k m n Nn n n� � �� � �2
1 2, , , , , (9)

where k and m denote the stiffness and mass matrices of 
the structure, respectively; ωm is the n-th natural frequency 
of the structure; ϕn is the n-th mode shape of the structure; 
and N is the number of degrees of freedom of the structure. 

3 Success-history based adaptive differential evolution 
(SHADE) algorithm
As mentioned earlier, SHADE is an improved version of 
JADE [31], and it employs a historical memory of success-
ful control parameter settings to guide the generation of 
the next control parameter values [28]. In this research, we 
use SHADE 1.11, the latest version of the SHADE algo-
rithm [33]. We first describe the steps involved in SHADE 

1 The source code of the SHADE algorithm is available at https://ryo-
jitanabe.github.io/code/SHADE1.1.1_CEC2014_Matlab_Octave.zip

in Sections 3.1 to 3.6. Then, in Section 3.7., the SHADE 
algorithm is characterized in terms of exploration and 
exploitation of the search space. In addition, the assump-
tions and limitations of the applied SHADE algorithm are 
also discussed. 

3.1 Initialization
Similar to many other population-based metaheuristic 
algorithms, SHADE starts with a population of randomly 
generated individuals. Then, by following a loop of evo-
lutionary operations such as generation and selection, the 
population is updated. This process of is repeated until the 
termination criteria are satisfied. The initial population is 
represented as follows:

x Lb rand Ub Lb
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where superscript (0) represents initialization; x j i,
( )0  denotes 

the j-th design variable of the i-th individual of the ini-
tial population; N is the population size; D is the num-
ber of design variables; Lbj and Ubj are the lower and 
upper bounds of the j-th design variable, respectively; 
and rand[0,1] is a uniformly distributed random number 
between zero and one. 

3.2 History-based parameter adaptation
As mentioned before, SHADE employs a history-based 
parameter adaption scheme to guide the selection of 
future control parameter values [28]. As shown in Table 1, 
SHADE maintains a historical memory containing H 
entries for both the DE control parameters CR and F. The 
parameter F ∊ [0,1] is a scaling factor to control the mag-
nitude of the differential mutation operator and CR ∊ [0,1] 
is the crossover rate [33]. At the beginning of the search 
process, all MCR and MF values are initialized to 0.5, i.e., 
MCR,i = MF,i = 0.5(i = 1, 2, …, H). At each generation of the 
SHADE algorithm, for each individual xi, the control param-
eters CRi and Fi are calculated by the following equations:

CR
if M

randn M otherwisei

CR r

i CR r
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,

, , .
, (11)

F randc Mi i F ri� � �, , .0 1 , (12)

Table 1 The historical memory used by the SHADE algorithm [33]

Index 1 2 … H–1 H

MCR MCR,1 MCR,2 … MCR, H–1 MCR, H

MF MF,1 MF,2 … MF, H–1 MF, H

https://ryojitanabe.github.io/code/SHADE1.1.1_CEC2014_Matlab_Octave.zip
https://ryojitanabe.github.io/code/SHADE1.1.1_CEC2014_Matlab_Octave.zip
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where randn and randc represent the Gaussian and Cauchy 
distributions, respectively; and ri is an integer randomly 
selected from 1 to H. In case a value for CRi outside the 
interval [0, 1] is generated, it is replaced by the limit value 
to which it is closer. If the value of Fi is found to be greater 
than 1, then it is truncated to 1, and if Fi < 0, Eq. (12) is exe-
cuted repeatedly to generate a valid value [31]. In Eq. (11), 
when the MCR,ri

 value becomes equal to the termination 
value ⊥, CRi is set to zero. 

3.3 The DE/current-to-pbest/1 mutation strategy
SHADE uses a mutation strategy called "DE/current-
to-pbest/1", which was first proposed by Zhang and 
Sanderson [31] for JADE. In DE/current-to-pbest/1, the 
mutation vector is generated by the following equation:

v x F x x F x xi G i G i pbest G i G i r G r G, , , , , ,. .� � �� � � �� �
1 2

. (13)

In the above equation, G is the index of the current gen-
eration; xi,G is the i-th individual of the generation G; Fi is 
the F parameter used by individual xi; and vi,G is the mutant 
vector corresponding to xi,G. The individual xpbest,G is ran-
domly chosen from the top p × N(p ∊ [0,1]) individuals in 
the G-th generation. The individuals xr1,G and xr2,G are ran-
domly chosen from the individuals in the G-th generation 
such that the indices r1 and r2 differ from each other as well 
as i. The greediness of the DE/current-to-pbest/1 mutation 
strategy is controlled by the parameter p, which balances 
the trade-off between exploration and exploitation [33]. 
In SHADE, each individual xi has an associated pi, which 
is given by the following equation [28]:

p rand pi min� �� ��, .0 2 , (14)

where pmin is set in such a way that at least two individu-
als are nominated to represent the individual xpbest,G, i.e., 
pmin = 2/N [28]. As can be seen from Eq. (14), the maximum 
value for pi is 0.2, as suggested by Zhang and Sanderson [31]. 

After the mutation strategy is applied, each element of the 
mutant vector that falls outside the search space is re-initial-
ized according to the following equation proposed in [31]:

v
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After the mutant vector vi,G is generated, it is combined 
with the parent vector xi,G in order to generate the trial 
vector ui,G. In the SHADE algorithm, the binomial cross-
over operator, which is the most common crossover oper-
ator used in DE, is used and implemented as follows [33]:
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where rand[0,1) is a uniformly distributed random num-
ber from [0,1); and jrand is a design variable index which is 
selected uniformly and randomly from the interval [1, D].

3.4 Selection
After all the trial vectors have been generated, the selection 
operation is performed to determine that either the trial 
vectors or the parent ones are chosen for the next genera-
tion. In SHADE, similar to the standard DE, each trial vec-
tor ui,G is compared against its corresponding parent vector 
xi,G, and the one with a better fitness value is survived to 
the next generation. This can be expressed as follows:

x
u if P u P x

x otherwise
i G

i G i G i G

i G
,

, , ,

,

� �
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�
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��
1
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where P(ui,G) and P(xi,G) are the penalized objective func-
tion values associated with the i-th trial vector and parent 
vector, respectively.

3.5 External archive
In order to maintain the population diversity, SHADE uses 
an external archive. Parent vectors which were replaced by 
their corresponding trial vectors, and therefore were not 
able to survive in the next generation, are preserved in the 
archive. While executing the mutation operation, xr2,G in 
Eq. (13) is selected from P ∪ A, the union of the population 
P and the archive A. In this study, the size of the archive is 
set to the same as the size of the population, i.e., |A| = |P|, 
as in [28]. Whenever the size of the archive exceeds |A|, 
some elements are randomly removed from the archive to 
provide space for the newly inserted elements. 

3.6 Historical memory update
In each generation, the CRi and Fi values that have been 
successfully used to generate a trial vector ui,G better than 
the corresponding parent vector xi,G are recorded as SCR 
and SF, respectively, and at the end of the generation, the 
memory contents are updated using the algorithm shown in 
Algorithm 1 [33]. In this algorithm, the index k(1 ≤ k ≤ H) 
specifies the position in the memory to be updated. At the 
beginning of the search process, k is initialized to 1, and it 
is increased by one every time a new element is inserted 
into the memory. If the index k gets larger than the mem-
ory size, i.e., k > H, then it is reset to one. It is worth noting 
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that if all the individuals in a generation fail to generate 
a trial vector better than the corresponding parent vector, 
i.e., SCR = SF = 0, then the memory is not updated. 

In Algorithm 1, the term meanWL denote the weighted 
Lehmer mean, which is calculated using the following 
equation [33]: 

mean S
S

S
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where ∆Pk is the amount of fitness improvement, which 
is used in order to influence the parameter adaption. Note 
that the term S in Eq. (18) refers to either SCR or SF. 

Finally, the pseudocode of the SHADE algorithm is 
shown in Algorithm 2. 

3.7 Exploration and exploitation characteristics of the 
SHADE algorithm
A close examination of Eq. (13) reveals that it is not possible 
to clearly distinguish between exploration and exploitation 
phases of the SHADE algorithm. This is because of the fact 
that the DE/current-to-pbest/1 mutation strategy utilizes 
not only the information of the best solution and other good 
solutions in the current population (see the second term 
of Eq. (13)), but also the information of recently explored 
inferior solutions (see the third term of Eq. (13)). Indeed, 
on one hand, any of the top p × N(p ∊ [0,1]) individuals of 

the current population can be randomly selected to rep-
resent xpbest,G in Eq. (13). It is mentioned again that the 
parameter p controls the balance between exploration and 
exploitation. In fact, if the value of p is small, only a few 
of the top individuals are nominated to represent xpbest,G, 
and this allows for better exploitation of the search space 
(i.e., the algorithm behaves more greedily). In contrast, 
if the value of p is large, many of the top individuals are 
nominated to represent xpbest,G, and thus wider explora-
tion of the search space is encouraged (i.e., the algorithm 
behaves more randomly). The aforementioned feature of 
the SHADE algorithm makes it particularly well suited for 
solving multimodal optimization problems where more 
greedy mutation strategies such as DE/current-to-best/1 

Algorithm 1 The memory update algorithm used by SHADE [33]

if SCR ≠ 0 and SF ≠ 0 then
if MCR,k,G = ⊥ or max(SCR) = 0

MCR,k,G+1 = ⊥;
else

MCR,k,G+1 = meanWL(SCR);
end
MF,k,G+1 = meanWL(SF);
k = k + 1;
if k > H then

k = 1;
end if

else
MCR,k,G+1 = MCR,k,G ;
MF,k,G+1 = MF,k,G ;
end if

Algorithm 2 Pseudocode of the SHADE algorithm

Initialization phase
G = 1;
Archive A = 0;
Index counter k = 1;
Intialize population PG = (xi,G, x2,G,…, xN,G) randomly;
Set all values MCR anf MF to 0.5;
Main loop
while The termination criteria are not satisfied do

SCR = 0, SF = 0;
for i = 1 to N do

ri = Select from [1,H] randomly;
if MCR,ri = ⊥ then

CRi,G = 0;
else

CRi,G = randni(MCR,ri
, 0.1);

end if
Fi,G = randci(MF,ri

, 0.1);
pi,G = rand[pmin, 0.2];
Generate trial vector ui,G according to DE/current-to-pbest/1;

end for
for i = 1 to N do

if P(ui,G) ≤ P(xi,G) then
xi,G+1 = ui,G;

else
xi,G+1 = xi,G;

end if
if P(ui,G) ≤ P(xi,G) then

xi,G → A;
CRi,G → SCR, Fi,G → SF;

end if
end for
If necessary, remove randomly selected individuals from the 
archive A such that the archive size never exceeds |A|;
Update the memory contents using the algorithm shown in 
Algorithm 1;
G = G + 1;

end while
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often leads to premature convergence. On the other hand, 
in order to improve the population diversity and enhance 
the exploration ability, the recently explored inferior solu-
tions are also incorporated into the DE/current-to-pbest/1 
mutation strategy, and their difference from the current 
population is considered as a promising progress direc-
tion towards the global optimum. Therefore, in spite of the 
greedy characteristics of SHADE, the information pro-
vided by recently explored inferior solutions is utilized to 
diversify the population in order to prevent the algorithm 
from premature convergence. 

Like other metaheuristic algorithm, SHADE does not 
make any assumptions about the problem being optimized 
and can therefore be applied to a wide class of optimiza-
tion problems. However, according to the no-free-lunch 
theorem, it is not possible to have a general-purpose uni-
versal metaheuristic that can outperform all other meta-
heuristics for every conceivable optimization problem. 
So, like other population-based metaheuristic algorithms, 
SHADE may require a high computational cost to obtain 
the global optimal solution of an optimization problem, 
or even it may not reach it at all. In addition, SHADE can-
not be directly appliedto discrete optimization problems 
and requires some adjustments.  

4 Numerical examples
In this section, in order to demonstrate the efficiency and 
effectiveness of the SHADE algorithm in solving struc-
tural optimization problems with frequency constraints, 
the algorithm is applied to three large-scale truss optimi-
zation problems with frequency constraints. The problems 
include a 600-bar single-layer dome-shaped truss with 
25 design variables, a 1180-bar single-layer dome-shaped 
truss with 59 design variables, and a 1410-bar double-layer 
dome-shaped truss with 47 design variables. Table 2 lists 
the material properties, cross-sectional area bounds, and 
frequency constraints of the above-mentioned problems. 
The results obtained by the SHADE algorithm are pre-
sented and compared with the best-known results reported 
in the literature. In order to allow a fair comparison of the 
results with previously published references, improved and 

hybrid metaheuristic algorithms are often considered for 
the comparison purpose. Due to the stochastic nature of 
metaheuristic algorithms, 20 independent successful runs 
are implemented for each problem. Note that different ran-
domly generated initial populations are considered in each 
run. The best weight, the worst weight, mean weight, and 
standard deviation of the optimized weights obtained by 
SHADE over the runs are provided in the results tables. 
The design variables corresponding to the best design, the 
number of objective function evaluations required to reach 
the best design, and the constraint violation for the best 
design are also reported. The Friedman rank test is also 
carried out to rank the algorithms on the basis of the best 
weight, mean weight, and standard deviation of the opti-
mized weights. Some sensitivity analyses are performed 
on a number of important parameters of the SHADE algo-
rithm. Based on the results of sensitivity analysis, which 
will be presented in Section 4.1.1, both the population size 
N and the memory size H are set to 50 in all experiments. 
For all experiments, the maximum number of objective 
function evaluations (MaxNFEs) is set to 20000 as the 
termination criterion of the search process. It should be 
noted that since it is known that a number of algorithms 
in the literature do not satisfy the frequency constraints, 
we therefore consider only those algorithms which have 
provided fully feasible optimal designs with no constraint 
violation. For this purpose, by means of the finite element 
method (FEM) code used in this research for free vibration 
analysis of truss structures, we check the optimal designs 
reported in the literature for possible constraint violation. 
It is pointed out that all the codes are implemented in the 
Matlab environment and computations are carried out by 
a PC with Windows 10, Intel(R) Core (TM) i5-7200U CPU 
2.50 GHz 2.71 GHz, and 8.00 GB RAM. 

4.1 The 600-bar single-layer dome
The first design example considered is the sizing optimi-
zation of the 600-bar dome-shaped truss structure shown 
in Fig. 1(a)–(b). The dome is a rotationally periodic struc-
ture with 24 identical substructures, each of which has 9 
nodes and 25 elements (see Fig. 1(c)). Consequently, the 

Table 2 Material properties, cross-sectional area bounds, and frequency constraints of the optimization problems

Property 600-bar truss 1180-bar truss 1410-bar truss

Elasticity modulus (N/m2) 2 × 1011 2 × 1011 2 × 1011

Material density (kg/m3) 7850 7850 7850

Cross-sectional area bounds (m2) 0.0001 ≤ Ai ≤ 0.01 0.0001 ≤ Ai ≤ 0.01 0.0001 ≤ Ai ≤ 0.01

Frequency constraints (Hz) ω1 ≥ 5, ω3 ≥ 7 ω1 ≥ 7, ω3 ≥ 9 ω1 ≥ 7, ω3 ≥ 9
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whole structure has a total of 216 nodes and 600 elements, 
and the angle between any two adjacent substructures is 
15 degrees. Table 3 shows the Cartesian coordinates of the 
nodes of the first substructure. The only design variables of 
the problem are the 25 cross-sectional areas of the 25 ele-
ments of the substructures. Therefore, this is a sizing opti-
mization problem with 25 design variables. A non-structural 
mass of 100 kg is added to each free node of the dome. As 
can be seen from Table 2, frequency constraints are imposed 
on the first and third natural frequencies of the structure.

4.1.1 Sensitivity analysis of the population size and the 
memory size
Before the optimization process starts, sensitivity analy-
ses are carried out to study the influence of population size 

and memory size on the performance of the SHADE algo-
rithm. The 600-bar dome-shaped truss problem is consid-
ered for this purpose. In order to determine the best value 
of population size, it is varied from 40 to 80 with a step size 
of 10. The maximum number of objective function eval-
uations is set to 20000 in all the experiments except for 
N = 60(MaxNFEs = 20040), N = 70(MaxNFEs = 20020), 
and N = 90(MaxNFEs = 20070). Note that in all the exper-
iments, the memory size is set to be equal to the popula-
tion size, i.e., H = N. Table 4 summarizes the results of 
sensitivity analysis of population size of the SHADE algo-
rithm over the 20 runs of experiments. As is evident from 
the table, with a population size of N = 50, the SHADE 
algorithm achieved the best performance in terms of best 
weight, mean weight, worst weight, and standard devia-
tion. The same procedure is followed to determine the best 
value of memory size. For this purpose, different memory 
sizes (e.g., 10, 20, 30, 40, 50, 100, 150, 200, and 1000) are 
considered for the SHADE algorithm. For all the experi-
ments, the maximum number of objective function evalu-
ations is set to 20000 and the population size is set to 50. 
The results of sensitivity analysis of memory size of the 
SHADE algorithm are presented in Table 5. From this 
table it is observed that the SHADE algorithm has the best 

Fig. 1 Schematic of the 600-bar single-layer dome: (a) perspective view; 
(b) top view; (c) substructure

Table 3 Nodal coordinates (m) of the sub-structure of the 600-bar 
single-layer dome

Node number Coordinates (x, y, z)

1 (1.0, 0.0, 7.0)

2 (1.0, 0.0, 7.5)

3 (3.0, 0.0, 7.25)

4 (5.0, 0.0, 6.75)

5 (7.0, 0.0, 6.0)

6 (9.0, 0.0, 5.0)

7 (11.0, 0.0, 3.5)

8 (13.0, 0.0, 1.5)

9 (14.0, 0.0, 0.0)

Table 4 Sensitivity analysis of the population size of the SHADE algorithm (600-bar dome-shaped truss)

Statistical results
Population size

N = 40 N = 50 N = 60 N = 70 N = 80 N = 90 N = 100

Best weight (kg) 6057.58 6057.42 6057.60 6057.99 6060.90 6062.58 6068.42

NFEs 19920 19850 19860 19110 19920 19710 19900

Mean weight (kg) 6060.36 6058.02 6058.18 6059.78 6063.40 6068.40 6075.95

Worst weight (kg) 6073.67 6058.93 6059.59 6062.16 6066.44 6071.10 6081.27

Standard deviation (kg) 3.50 0.39 0.46 0.93 1.45 1.84 3.00

MaxNFEs 20000 20000 20040 20020 20000 20070 20000

Number of runs 20 20 20 20 20 20 20
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performance in all statistical measures when the memory 
size H is equal to 50. Therefore, in all optimization prob-
lems, the population size N and the memory size H are set 
to 50 and 50, respectively. It is worth mentioning that all 
optimized weights reported in Tables 4 and 5 for sensitivity 
analysis correspond to fully feasible designs with no con-
straint violation. 

4.1.2 Comparison with other metaheuristic 
optimization algorithms
This problem was previously investigated by many research-
ers using various metaheuristic algorithms such as ECBO 
and ECBO-Cascade [13], DPSO [14], MDVC-UVPS [15], 
chaotic firefly algorithms based on Logistic map (CLFA) 
and Gaussian map (CGFA) [16], enhanced forensic-based 
investigation (EFBI) [17], chaotic water strider algorithm 
(chaotic WSA) [18], set-theoretical-based Jaya algorithm 
(ST-JA) [19], parameter free Jaya algorithm (PFJA) [20], 
a new variant of the colliding bodies optimization (CBO) 
algorithm called MWQI-CBO [21], Rao algorithms (Rao-1, 
Rao-2, and Rao-3) [22], improved slime mould algorithm 
(ISMA) [23], etc. Table 6 compares the results obtained by 
the SHADE algorithm with previous results reported in the 
literature. The connectivity information of the nodes of the 
first substructure is also shown in Table 6. It is evident from 
the table that SHADE has better performance than all the 
other compared algorithms in terms of accuracy and robust-
ness. In fact, the SHADE algorithm showed the best results 
with respect to best weight, mean weight, worst weight, and 
standard deviation. The best weight obtained by SHADE is 
6057.42 kg, which to the best of our knowledge is the best 
result reported in the literature so far (1,07 kg lower than that 
of CGFA (6058.49 kg)). The mean weight of the SHADE 
algorithm is 6058.02 kg, which is even lower than the best 
weights obtained by other reported algorithms. The worst 
weight obtained by the SHADE algorithm is 6058.93 kg, 

which is only slightly higher than the best weight of CGFA 
(6058.49 kg), but much lower than the best weights obtained 
by other compared algorithms. It can also be seen from 
Table 6 that the standard deviation of the SHADE algo-
rithm, which is 0.39 kg, is significantly lower than those of 
the others, demonstrating the high robustness and reliability 
of the SHADE algorithm. In terms of computational cost, 
the maximum number of objective function evaluations of 
the SHADE algorithm is 20000, which is more than those 
of DPSO (9000), CGFA (10000), EFBI (12000), and ST-JA 
(12000), but less than or equal to those of the others. It is 
however obvious from the results that SHADE performs 
much better than DPSO, CGFA, EFBI, and ST-JA in terms 
of best, mean, and worst weights as well as standard devia-
tion of optimized weights. The SHADE algorithm requires 
only 13250 objective function evaluations to find a feasi-
ble optimum design corresponding to a structural weight of 
6058.36 kg, which is lower than the best weights obtained 
by other reported algorithms. Table 7 presents the results of 
the Friedman rank test. As mentioned before, the SHADE 
algorithm ranked first with respect to all indicators, namely 
best weight, mean weight, and standard deviation. Table 8 
presents the first five natural frequencies evaluated at the 
best designs of SHADE and other compared algorithms. 
The first and third natural frequencies derived from the 
FEM code are also reported (please see rows 1* and 3* in 
Table 8). It is worth noting that, according to the results 
reported in the literature [13–21, 23], none of the frequency 
constraints are violated. However, the results derived from 
the FEM code show that the best designs of CGFA and cha-
otic WSA only slightly violate the frequency constraints 
(less than 0.0004% and less than 0.0005%, respectively), 
which may probably be due to the loss of accuracy caused 
by the rounding of the design variable values reported in 
Table 6. Therefore, the best designs obtained by CGFA and 
chaotic WSA are considered as feasible solutions, and thus 

Table 5 Sensitivity analysis of the memory size of the SHADE algorithm (600-bar dome-shaped truss)

Statistical results
Memory size

H = 10
(0.2*N)

H = 20
(0.4*N)

H = 30
(0.6*N)

H = 40
(0.8*N)

H = 50
(1.0*N)

H = 100
(2.0*N)

H = 150
(3.0*N)

H = 200
(4.0*N)

H = 1000
(20.0*N)

Best weight (kg) 6058.51 6057.91 6057.43 6057.69 6057.42 6057.63 6057.93 6058.57 6059.66

NFEs 19900 19900 20000 19950 19850 19950 20000 19900 17900

Mean weight (kg) 6061.02 6059.28 6058.74 6058.76 6058.02 6058.41 6059.06 6059.79 6061.60

Worst weight (kg) 6065.05 6062.74 6060.55 6061.26 6058.93 6059.95 6061.68 6064.11 6063.93

Standard deviation (kg) 1.67 1.11 0.64 0.88 0.39 0.57 0.75 1.21 1.28

MaxNFEs 20000 20000 20000 20000 20000 20000 20000 20000 20000

Number of runs 20 20 20 20 20 20 20 20 20
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these algorithms are included in the comparison. An exam-
ination of the results presented in Table 8 shows that the 
natural frequencies calculated by the FEM code are very 
close to those reported in the literature, and the very small 
differences are probably due to the rounding of the design 
variable values, as discussed above. Fig. 2 shows the con-
vergence histories of the best and mean results obtained 

by the SHADE algorithm for the 600-bar truss. From the 
figure it can be seen that the two curves lie very close to 
each other, confirming the high robustness of the SHADE 
algorithm. Fig. 3 shows the optimized weights obtained by 
SHADE for the 600-bar truss. The figure indicates that in 
10 out of 20 runs, the SHADE algorithm has converged to 
solutions with weights below the mean weight. 

Table 6 Comparison of optimal cross-sectional areas (cm2) for the 600-bar dome-shaped truss

Element number 
(element nodes)

ECBO-
Cascade 

[13] 

DPSO 
[14] 

MDVC-
UVPS 

[15]

CGFA 
[16]

EFBI 
[17]

chaotic 
WSA 
[18]

ST-JA 
[19]

PFJA 
[20]

MWQI-
CBO 
[21]

ISMA 
[23]

This 
study

SHADE

1 (1-2) 1.0299 1.365 1.2575 1.3190 1.0999 1.4829 1.3964 1.1867 1.1414 1.1035 1.3072

2 (1-3) 1.3664 1.391 1.3466 1.3826 1.4922 1.2619 1.5177 1.2967 1.1930 1.5801 1.4158

3 (1-10) 5.1095 5.686 4.9738 4.9379 6.0744 4.9784 5.5370 4.5771 4.9972 6.2180 5.0912

4 (1-11) 1.3011 1.511 1.4025 1.3222 1.6234 1.4155 1.2549 1.3356 1.3359 1.0522 1.3762

5 (2-3) 17.0572 17.711 17.3802 17.1285 17.4918 17.5189 16.7759 18.3157 16.4705 17.1566 17.1326

6 (2-11) 34.0764 36.266 37.9742 37.4657 37.2118 36.8573 36.8528 38.5097 40.9204 36.5568 36.7970

7 (3-4) 13.0985 13.263 13.0306 12.7071 12.7873 13.0251 12.8198 13.5917 12.5481 12.8425 12.7967

8 (3-11) 15.5882 16.919 15.9209 15.4252 14.8239 15.0761 15.4141 16.8824 16.8270 15.3463 15.3146

9 (3-12) 12.6889 13.333 11.9419 11.3642 12.1764 11.6297 12.0638 13.8766 12.3559 11.9044 11.4263

10 (4-5) 10.3314 9.534 9.1643 9.3343 9.0163 9.5607 9.3500 9.5286 9.8049 9.4559 9.3386

11 (4-12) 8.5313 9.884 8.4332 8.3872 8.5044 8.2689 8.2980 9.4218 8.8128 8.1976 8.3567

12 (4-13) 9.8308 9.547 9.2375 9.1101 8.9951 8.8515 8.8205 9.7643 8.9853 9.0644 9.1674

13 (5-6) 7.0101 7.866 7.2213 7.1472 7.0357 7.0387 7.4253 7.2431 7.4324 7.6937 7.1952

14 (5-13) 5.2917 5.529 5.2142 5.1701 5.0993 5.2711 5.1621 5.3913 4.4777 5.1748 5.1822

15 (5-14) 6.2750 7.007 6.7961 6.6239 6.1918 6.5632 6.6351 6.7468 6.7637 6.7264 6.6314

16 (6-7) 5.4305 5.462 5.2078 5.2427 4.9514 5.1025 4.9351 5.1493 5.3079 4.8059 5.1532

17 (6-14) 3.6414 3.853 3.4586 3.5213 3.9186 3.4304 3.5639 3.8342 3.7870 3.6390 3.5759

18 (6-15) 7.2827 7.432 7.6407 7.6096 7.6312 7.7083 8.0435 8.0665 7.5167 7.7180 7.6149

19 (7-8) 4.4912 4.261 4.3690 4.2877 4.4271 4.3958 4.2061 4.2800 4.3198 4.0911 4.3305

20 (7-15) 1.9275 2.253 2.1237 2.1684 2.3280 2.0435 2.3310 2.2509 1.9381 2.1339 2.1479

21 (7-16) 4.6958 4.337 4.5774 4.6704 4.8534 4.4764 4.4953 4.5372 4.8992 4.4482 4.6249

22 (8-9) 3.3595 4.028 3.4564 3.5380 3.9632 3.659 3.4287 3.5615 3.2783 3.4785 3.5261

23 (8-16) 1.7067 1.954 1.7920 1.8252 1.8527 1.9727 1.8660 1.7744 1.8130 1.8191 1.8462

24 (8-17) 4.8372 4.709 4.8264 4.8110 4.7818 4.8843 4.9318 4.6445 4.8722 4.8903 4.7961

25 (9-17) 2.0253 1.410 1.7601 1.6589 1.4354 1.6167 1.5022 1.6141 1.9181 1.7001 1.6374

Best weight (kg) 6140.51 6344.55 6115.10 6058.49 6076.35 6064.04 6065.811 6333.251 6147.96 6068.34 6057.42

6058.361

Mean weight (kg) 6175.33 6674.71 6119.95 6076.67 6098.52 6081.23 6072.734 6380.31 6215.29 6083.93 6058.02

Worst weight (kg) N/A N/A N/A N/A 6113.56 N/A 6084.749 N/A N/A 6095.41 6058.93

Standard deviation (kg) 34.08 473.21 16.23 22.42 11.95 8.29 6.182 47.396 51.42 7.36 0.39

NFEs 17300 N/A 17513 N/A N/A N/A N/A 8580 16560 20000 19850

MaxNFEs 20000 9000 30000 10000 12000 30000 12000 25000 20000 20000 20000

CV2 (%) 0 0 0 0.0004 0 0.0005 0 0 0 0 0

Number of runs 5 10 30 20 10 20 10 20 20 25 20
1 The SHADE algorithm has achieved a feasible design corresponding to a structural weight of 6058.36 kg after 13250 objective function evaluations.
2 Constraint violation
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4.2 The 1180-bar single-layer dome
The 1180-bar single-layer dome-shaped truss structure 
shown in Fig. 4(a–b) is considered as the second design 
example. The dome is also a rotationally periodic struc-
ture, and it consists of 20 identical substructures, each of 
which spans an angle of 18 degrees. As shown in Fig. 4(c), 
each substructure has 20 nodes and 59 elements, result-
ing in a total of 400 nodes and 1180 elements. The nodal 
Cartesian coordinates of the first substructure are shown 

in Table 9. The connectivity information of the nodes of 
the first substructure is given also in Table 10. The 59 
cross-sectional areas of the 59 elements of the substruc-
tures are the only design variables of the problem. Hence, 
this is a sizing optimization problem with 59 design vari-
ables. A non-structural mass of 100 kg is attached to all 
free nodes of the dome. Similar to the previous design 
example, frequency constraints are imposed on the first 
and third natural frequencies of the structure.

Table 7 The Friedman rank test results for the 600-bar dome-shaped truss

ECBO-
Cascade [13] 

DPSO 
[14] 

MDVC-
UVPS [15]

CGFA 
[16]

EFBI 
[17]

chaotic 
WSA [18]

ST-JA 
[19]

PFJA 
[20]

MWQI-
CBO [21]

ISMA 
[23]

This 
study

SHADE

Friedman rank of 
best weight 8 11 7 2 6 3 4 10 9 5 1

Friedman rank of 
mean weight 8 11 7 3 6 4 2 10 9 5 1

Friedman rank of 
standard deviation 8 11 6 7 5 4 2 9 10 3 1

Table 8 Natural frequencies (Hz) of the 600-bar dome-shaped truss evaluated at optimal designs

Frequency 
number

ECBO-
Cascade [13] 

DPSO 
[14] 

MDVC-
UVPS [15]

CGFA 
[16]

EFBI 
[17]

chaotic 
WSA [18]

ST-JA 
[19]

PFJA 
[20]

MWQI-
CBO [21]

ISMA 
[23]

This 
study

SHADE

1 5.001 5.000 5.000 5.000 5.0001 5.0005 5.0002 5.0011 5.004 5.0003 5.0000

1*1 5.0031 5.0089 5.0023 5.00002 5.0001 5.0005 5.0002 5.0100 5.0064 5.0003 5.0000

2 5.001 5.000 5.000 5.000 5.0001 N/A 5.0002 5.0011 5.004 5.0003 5.0000

3 7.001 7.000 7.000 7.000 7.0000 7.0000 7.0002 7.0000 7.000 7.0002 7.0000

3* 7.0070 7.0213 7.0047 7.0000 7.0000 7.00003 7.0002 7.0210 7.0056 7.0002 7.0000

4 7.001 7.000 7.000 7.000 7.0000 N/A 7.0006 7.0000 7.000 7.0002 7.0000

5 7.002 7.000 7.000 7.001 7.0024 N/A 7.0006 7.0000 7.001 7.0003 7.0000
1 The results derived from our finite element method (FEM) code the first and third natural frequencies
2 The more precise value is 4.999980 Hz. 
3 The more precise value is 6.999966 Hz. 

Fig. 2 The best and mean convergence histories of the SHADE 
algorithm for the 600-bar dome-shaped truss

Fig. 3 Diversity of the optimized weights obtained by the SHADE 
algorithm for the 600-bar dome-shaped truss
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This structure was previously optimized using several 
metaheuristic algorithms such as ECBO-Cascade [13], 
DPSO [14], MDVC-UVPS [15], chaotic WSA [18], 
PFJA [20], Rao-1 and Rao-2 [22], ISMA [23], etc. Table 10 
presents a comparison of the optimal results obtained by 
the SHADE algorithm with those reported in the litera-
ture. It is observed from the table that SHADE performs 
much better than all the other compared algorithms in 
terms of accuracy and efficiency. Indeed, the SHADE 
algorithm produced the best results in terms of best, 
mean, and worst weights. The best design obtained by the 
SHADE algorithm has a structural weight of 37321.72 kg, 
which to our best knowledge is the best result reported in 
the literature so far (45.75 kg lower than that of the ISMA 
(37367.47 kg)). The mean weight of the SHADE algorithm 
is 37343.26 kg, which is even lower than the best weights 
obtained by other reported algorithms, indicating the 
high accuracy and robustness of the SHADE algorithm. 
The standard deviation obtained by SHADE is 19.25 kg, 
which is only higher than that of the Rao-2 (8.58 kg), but 
much lower than those of other compared algorithms. In 
terms of computational cost, the maximum number of 
objective function evaluations of the SHADE algorithm is 
20000, which is less than or equal to those of the others. 
It is noted that the SHADE algorithm requires only 15800 
objective function evaluations to achieve a feasible design 
corresponding to a structural weight of 37362.17 kg, which 

is better than the best weights obtained by other algorithms 
in Table 10. The results of the Friedman rank test are pre-
sented in Table 11. It is seen from the table that the SHADE 
algorithm ranked first in terms of best and mean weights. 
Table 12 lists the first five natural frequencies correspond-
ing to the optimal designs obtained by SHADE and other 
algorithms in the literature. The first and third natural fre-
quencies calculated by the FEM code used in this research 
are also reported (please see rows 1* and 3* in Table 12). 
It is clear from the table that none of the frequency con-
straints are violated, indicating the feasibility of the opti-
mal designs reported in Table 10. Therefore, all the con-
straint violations (CV values in Table 10) are set to zero. 
It can be observed from Table 12 that the values derived 
by the FEM code for the first and third natural frequen-
cies are very close to those reported in the literature, and 
the very small differences are probably due to the round-
ing of the design variable values. Fig. 5 compares the con-
vergence histories of the best and mean results obtained 
by the SHADE algorithm for the 1180-bar truss. It can be 
seen that the curves are very close together, which demon-
strates high stability and reliability of the SHADE algo-
rithm. The optimized weights obtained by SHADE for the 
1180-bar truss are shown in Fig. 6. From the figure it can 
be seen that 12 out of 20 optimized weights achieved by 
the SHADE algorithm fell below the mean weight. 

4.3 The 1410-bar double-layer dome
In the last design example, we consider the size optimiza-
tion of the 1410-bar double-layer dome-shaped truss shown 
in Fig. 7(a)–(b). The dome is also a rotationally periodic 
structure consisting of 30 identical substructures. Each 
substructure, which spans an angle of 12 degrees, has 13 

Fig. 4 Schematic of the 1180-bar single-layer dome: (a) perspective 
view; (b) top view; (c) substructure

Table 9 Nodal coordinates (m) of the sub-structure of the 1180-bar 
single-layer dome

Node 
number Coordinates (x, y, z) Node 

number Coordinates (x, y, z)

1 (3.1181, 0.0, 14.6723) 11 (4.5788, 0.7252, 14.2657)

2 (6.1013, 0.0, 13.7031) 12 (7.4077, 1.1733, 12.9904)

3 (8.8166, 0.0, 12.1354) 13 (9.9130, 1.5701, 11.1476)

4 (11.1476, 0.0, 10.0365) 14 (11.9860, 1.8984, 8.8165)

5 (12.9904, 0.0, 7.5000) 15 (13.5344, 2.1436, 6.1013)

6 (14.2657, 0.0, 4.6358) 16 (14.4917, 2.2953, 3.1180)

7 (14.9179, 0.0, 1.5676) 17 (14.8153, 2.3465, 0.0)

8 (14.9179, 0.0, -1.5677) 18 (14.9179, 2.2953, -3.1181)

9 (14.2656, 0.0, -4.6359) 19 (13.5343, 2.1436, -6.1014)

10 (12.9903, 0.0, -7.5001) 20 (3.1181, 0.0, 13.7031)
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Table 10 Comparison of optimal cross-sectional areas (cm2) for the 1180-bar dome-shaped truss

Element number 
(element nodes)

ECBO-
Cascade [13]

DPSO 
[14]

MDVC-UVPS 
[15]

chaotic 
WSA [18] PFJA [20] ISMA 

[23]
Rao-1 
[22]

Rao-2 
[22]

This 
study

SHADE

1 (1-2) 8.0110 7.926 7.3691 6.9078 7.952 7.2170 7.8959 7.3290 7.1228

2 (1-11) 8.7028 10.426 9.3399 10.7524 10.466 9.6995 9.7301 8.9843 9.6201

3 (1-20) 3.1616 2.115 2.7203 2.9439 2.089 2.4203 3.0395 2.2198 2.3299

4 (1-21) 13.6820 14.287 13.2822 13.487 14.219 13.7398 14.0549 14.9049 13.7900

5 (1-40) 3.2865 3.846 3.6758 3.3147 3.944 3.0521 3.3696 3.5063 3.5864

6 (2-3) 6.0397 5.921 6.1391 6.9318 5.979 6.1827 6.4880 5.6930 6.0257

7 (2-11) 8.4370 7.955 7.0964 7.6325 7.775 7.2240 6.5686 7.3918 7.1295

8 (2-12) 6.4122 6.697 6.0208 6.2343 6.351 6.7305 6.4686 6.0614 6.6226

9 (2-20) 2.6346 1.889 2.1225 1.3899 1.896 2.3985 1.9171 1.8952 1.9530

10 (2-22) 11.7440 11.881 12.3488 12.9919 11.908 12.1406 9.5624 12.2717 11.7304

11 (3-4) 7.9272 7.121 6.8578 6.9162 7.241 6.9400 6.9007 7.2064 7.2836

12 (3-12) 5.4548 6.080 5.7773 5.119 5.647 5.5447 4.7037 5.5662 6.0315

13 (3-13) 6.7221 6.599 6.9931 8.7795 6.700 7.1585 6.6932 6.6235 6.6959

14 (3-23) 8.1544 7.772 7.3355 6.684 7.799 7.2911 7.0856 7.7710 7.0130

15 (4-5) 9.7560 9.358 10.5464 9.317 9.198 9.1486 8.9411 9.3547 9.1492

16 (4-13) 6.5905 6.213 6.9589 6.483 6.282 6.7518 6.1621 5.3972 6.3961

17 (4-14) 7.0392 8.200 8.0977 8.2833 7.695 8.0406 7.9640 7.7431 8.2877

18 (4-24) 6.9219 7.799 7.7738 8.0703 7.520 7.5381 7.9441 6.8348 7.5500

19 (5-6) 11.6919 11.752 12.4614 12.7141 11.840 12.1508 11.0882 12.3818 12.7054

20 (5-14) 9.8890 7.494 7.8154 7.0934 7.230 8.2227 8.6185 7.9853 8.3432

21 (5-15) 9.3316 9.696 10.2039 10.069 10.211 9.4734 9.4246 9.8527 10.6372

22 (5-25) 9.1093 9.177 8.9262 9.7217 9.252 8.6688 9.0507 10.4516 9.0214

23 (6-7) 18.1212 17.326 16.5275 17.2315 17.222 17.2540 16.8125 14.9770 17.4130

24 (6-15) 10.6725 11.797 9.0166 9.7761 11.417 10.7425 10.1184 12.3260 10.3270

25 (6-16) 13.5340 14.002 13.8204 13.2779 14.196 13.4192 13.1714 13.1421 13.6138

26 (6-26) 12.0248 11.562 11.4021 11.5212 11.639 11.7981 11.7831 11.3121 11.4680

27 (7-8) 23.1245 23.981 24.2631 21.2086 24.065 24.1043 22.7860 23.3776 23.5722

28 (7-16) 15.2630 12.996 14.5494 13.0618 13.377 13.6533 14.7236 13.1092 14.0620

29 (7-17) 18.3075 16.591 17.7753 17.9725 16.469 18.1446 18.0196 18.8585 18.1928

30 (7-27) 15.2361 15.910 15.4594 14.0147 16.057 15.1399 15.9128 15.6792 15.0966

31 (8-9) 40.0749 34.642 34.1372 33.5273 34.125 33.6250 36.5751 32.4636 34.3266

32 (8-17) 18.4775 19.860 19.1254 20.1075 18.866 18.8972 17.4997 18.8287 18.3050

33 (8-18) 26.0689 25.079 24.1954 23.098 24.600 24.7076 24.8820 22.7241 23.9768

34 (8-28) 21.2213 18.965 21.5899 22.0597 21.103 21.2846 22.2113 20.0712 21.2256

35 (9-10) 46.3724 47.514 49.4717 49.187 47.696 49.5489 49.6996 48.8253 48.3061

36 (9-18) 23.6689 28.133 26.2915 26.835 27.760 24.9924 24.7757 29.6377 25.0328

37 (9-19) 35.0703 33.023 33.7558 31.4569 33.518 33.2066 32.2627 33.7600 33.3295

38 (9-29) 27.9369 32.263 29.7608 30.2512 31.773 31.2906 30.2725 32.0940 30.6787

39 (10-19) 34.2912 33.401 34.0489 34.4764 33.592 36.3060 34.5930 36.5235 36.1348

40 (10-30) 1.0726 1.344 1.0024 1.1023 1.000 1.0023 1.0130 1.0010 1.0031

41 (11-21) 8.5106 9.327 9.0344 9.9842 9.455 9.4299 10.1462 9.7921 9.4517

42 (11-22) 6.8664 7.202 7.5316 7.5443 7.189 6.7476 6.7192 7.0223 7.4488

43 (12-22) 5.8229 6.792 6.3726 7.6993 6.767 6.7758 6.8349 6.7364 6.5251

44 (12-23) 5.3986 6.228 5.7643 6.0238 6.322 5.8630 6.2105 5.4003 5.7713

45 (13-23) 8.0669 6.601 6.7270 6.4087 6.720 6.7186 6.3702 6.8698 6.7446
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Continuation of Table 10

Element number 
(element nodes)

ECBO-
Cascade [13]

DPSO 
[14]

MDVC-UVPS 
[15]

chaotic 
WSA [18] PFJA [20] ISMA 

[23]
Rao-1 
[22]

Rao-2 
[22]

This 
study

SHADE

46 (13-24) 6.9797 6.584 6.7021 6.4428 6.425 5.3396 5.8349 6.3982 6.3670

47 (14-24) 7.2735 8.320 7.8082 8.4235 8.451 8.0751 7.8920 8.0176 7.8546

48 (14-25) 9.1827 8.844 8.1225 8.7143 8.176 8.2697 7.7339 8.0822 8.1084

49 (15-25) 10.6227 11.254 10.1777 9.8677 10.069 11.1665 10.3879 10.4368 9.9441

50 (15-26) 11.5740 12.162 10.1825 11.4715 12.219 10.4236 10.3624 10.6422 10.1114

51 (16-26) 15.5194 13.854 13.4590 15.248 13.257 12.8953 12.7819 13.2563 13.7876

52 (16-27) 14.1342 13.844 13.9788 12.9199 13.782 13.9238 13.4706 14.3907 13.5021

53 (17-27) 17.1612 17.536 18.1070 19.5895 17.573 18.5162 19.3227 18.5010 18.2259

54 (17-28) 19.0798 20.551 19.2212 20.1524 19.909 18.9697 20.1512 18.2627 18.9636

55 (18-28) 23.4414 24.072 23.4359 24.519 24.019 23.7699 26.2932 24.5053 24.1903

56 (18-29) 26.5726 27.287 27.6479 25.838 27.701 25.4931 27.4623 27.0310 25.0437

57 (19-29) 33.4104 32.965 33.6805 36.4546 32.918 32.4964 34.8006 34.6221 33.0168

58 (19-30) 37.1198 36.940 35.7035 37.7461 37.001 35.7653 35.6905 35.3352 37.3380

59 (20-40) 4.7593 3.837 4.7617 3.7146 3.864 4.6791 5.3624 4.7698 4.4459

Best weight (kg) 37770.71 37779.81 37451.77 37642.38 37695.59 37367.47 37520.42 37508.67 37321.72

37362.171

Mean weight (kg) 37885.15 38294.45 37545.53 37795.53 37755.05 37432.92 37557.4 37526.99 37343.26

Worst weight (kg) N/A N/A N/A N/A N/A 37555.37 N/A N/A 37405.11

Standard deviation (kg) 133.84 550.5 64.85 165.32 58.025 45.13 22.66 8.58 19.25

NFEs 19180 N/A 19391 N/A 18650 16320 44790 44280 20000

MaxNFEs 20000 50000 30000 30000 25000 20000 45000 45000 20000

CV (%) 0 0 0 0 0 0 0 0 0

Number of runs 5 10 30 20 20 25 10 10 20
1 The SHADE algorithm has achieved a feasible design corresponding to a structural weight of 37362.17 kg after 15800 objective function evaluations.

Table 11 The Friedman rank test results for the 1180-bar dome-shaped truss

ECBO-
Cascade [13] DPSO [14] MDVC-

UVPS [15]
chaotic 

WSA [18] PFJA [20] ISMA [23] Rao-1 [22] Rao-2 [22] This study

SHADE
Friedman rank of best 
weight 8 9 3 6 7 2 5 4 1

Friedman rank of 
mean weight 8 9 4 7 6 2 5 3 1

Friedman rank of 
standard deviation 7 9 6 8 5 4 3 1 2

Table 12 Natural frequencies (Hz) of the 1180-bar dome-shaped truss evaluated at optimal designs

Frequency 
number

ECBO-
Cascade [13] DPSO [14] MDVC-

UVPS [15]
chaotic 

WSA [18] PFJA [20] ISMA [23] Rao-1 [22] Rao-2 [22] This study

SHADE
1 7.000 7.000 7.000 7.0001 7.0000 7.0000 7.0007 7.0005 7.0000

1* 7.0023 7.0088 7.0019 7.0001 7.0084 7.0000 7.0007 7.0005 7.0000

2 7.001 7.000 7.001 N/A 7.0000 7.0000 7.0007 7.0005 7.0000

3 9.002 9.000 9.000 9.0049 9.0024 9.0000 9.0008 9.0027 9.0000

3* 9.0245 9.0472 9.0124 9.0049 9.0541 9.0000 9.0008 9.0027 9.0000

4 9.002 9.000 9.000 N/A 9.0024 9.0000 9.0008 9.0027 9.0000

5 9.062 9.005 9.005 N/A 9.0129 9.0033 9.0174 9.0273 9.0007



50|Kaveh et al.
Period. Polytech. Civ. Eng., 67(1), pp. 36–56, 2023

nodes and 47 elements (please see Fig. 7(c)). Therefore, the 
entire structure has a total of 390 nodes and 1410 elements. 
Table 13 lists the nodal Cartesian coordinates of the first 
substructure. The connectivity information of the nodes of 
the first substructure is also given in Table 14. The cross 
sectional area of each element of the substructure is con-
sidered as a sizing design variable. However, both the 
shape and topology of the structure are kept unchanged 
during the optimization process. Therefore, this is a siz-
ing optimization problem with 47 design variables. Non-
structural masses of 100 kg are attached to all free nodes. 
As shown in Table 2, frequency constraints are imposed 
on the first and third natural frequencies of the structure.

The 1410-bar dome optimization problem was previ-
ously solved using different metaheuristic algorithms such 
as ECBO-Cascade [13], DPSO [14], MDVC-UVPS [15], 

chaotic WSA [18], ST-JA [19], PFJA [20], Rao-1 and 
Rao-2 [22], ISMA [23], etc. A comparison of the opti-
mal results obtained by the SHADE algorithms with 
those given by other algorithms is presented in Table 14. 
We can see from the results of the table that in terms of 
best, average, and worst weights, SHADE produces better 
results than other compared algorithms. The best weight 
of the SHADE algorithm is 10236.73 kg, which to the best 
of our knowledge, is the best feasible solution reported in 
the literature so far for this problem (44.33 kg lower than 
that of the Rao-2 (10281.06 kg)). The mean and worst 
weights obtained by SHADE are also even lower than the 
best weights obtained by other algorithms in Table 14. 
The standard deviation values obtained by the Rao-1 
and Rao-2 algorithms (4.12 kg and 3.06 kg, respectively) 

Fig. 5 The best and mean convergence histories of the SHADE 
algorithm for the 1180-bar dome-shaped truss

Fig. 6 Diversity of the optimized weights obtained by the SHADE 
algorithm for the 1180-bar dome-shaped truss

Fig. 7 Schematic of the 1410-bar double-layer dome: (a) perspective 
view; (b) top view; (c) substructure

Table 13 Nodal coordinates (m) of the sub-structure of the 1410-bar 
double-layer dome

Node 
number

Coordinates  
(x, y, z) Node number Coordinates  

(x, y, z)

1 (1.0, 0.0, 4.0) 8 (1.989, 0.209, 3.0)

2 (3.0, 0.0, 3.75) 9 (3.978, 0.418, 2.75)

3 (5.0, 0.0, 3.25) 10 (5.967, 0.627, 2.25)

4 (7.0, 0.0, 2.75) 11 (7.956, 0.836, 1.75)

5 (9.0, 0.0, 2.0) 12 (9.945, 1.0453, 1.0)

6 (11.0, 0.0, 1.25) 13 (11.934, 1.2543, -0.5)

7 (13.0, 0.0, 0.0)
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Table 14 Comparison of optimal cross-sectional areas (cm2) for the 1410-bar dome-shaped truss

Element number 
(element nodes)

ECBO-
Cascade [13] 

DPSO 
[14] 

MDVC-
UVPS [15]

chaotic 
WSA [18]

ST-JA 
[19] PFJA [20] ISMA 

[23]
Rao-1 
[22]

Rao-2 
[22]

This 
study

SHADE

1 (1-2) 7.9969 7.209 5.8499 6.3476 5.3860 6.1902 7.5409 7.4709 5.8948 5.8073

2 (1-8) 6.1723 5.006 4.5115 5.188 4.4361 4.4036 4.2469 6.3452 4.9416 4.4575

3 (1-14) 35.5011 38.446 19.4823 24.4074 27.7395 31.2253 39.4526 36.3515 29.1048 29.2417

4 (2-3) 10.2510 9.438 8.8480 8.5241 8.1780 8.4715 9.1605 10.4516 9.7312 9.2327

5 (2-8) 5.3727 4.313 5.0084 5.5439 6.1189 4.8590 5.6874 6.0640 6.9672 5.0947

6 (2-9) 1.3488 1.494 1.3568 1.202 1.5996 1.5759 1.6950 1.6703 1.4920 1.5153

7 (2-15) 11.4427 8.455 17.4331 14.6949 18.7495 12.9451 10.0121 13.4066 19.5519 16.7115

8 (3-4) 9.7157 9.488 9.1098 9.3726 9.2413 9.3263 9.5577 8.7980 9.2523 9.2952

9 (3-9) 1.3005 3.480 2.8712 1.462 2.6310 3.2716 3.1140 1.6167 1.7498 2.5666

10 (3-10) 2.5046 3.495 3.5473 2.5768 2.2419 3.2878 3.3181 2.0968 2.1261 2.8494

11 (3-16) 10.7849 16.037 12.3768 10.722 7.9773 12.6719 11.3804 5.7884 6.0843 9.7496

12 (4-5) 10.1954 9.796 10.1099 8.7231 10.1147 10.0979 9.1226 9.7369 9.8695 9.4270

13 (4-10) 2.2300 2.413 2.5797 1.9054 2.1849 2.5803 2.0173 2.2057 1.9067 2.4404

14 (4-11) 5.1186 5.681 5.8381 3.8895 6.4570 5.3769 5.1731 4.8995 4.2620 5.0692

15 (4-17) 14.0053 15.806 13.6402 12.8913 18.2837 16.0581 17.2736 17.6401 16.6403 16.5099

16 (5-6) 8.9713 8.078 9.9096 8.05 8.2311 8.6789 8.9213 8.3681 8.4249 8.4388

17 (5-11) 4.0756 3.931 3.6543 2.9941 3.1540 3.3199 3.6048 3.5504 2.7837 3.5592

18 (5-12) 5.9211 6.099 6.1529 7.2349 5.8960 6.4966 7.0700 6.3018 7.1246 6.2774

19 (5-18) 10.6915 10.771 11.2448 15.3852 19.8678 10.8804 11.4002 11.9611 13.3816 11.9678

20 (6-7) 10.6220 13.775 13.1071 13.8992 13.5511 14.0056 12.9837 12.7131 12.9834 13.1426

21 (6-12) 4.5064 4.231 5.2361 5.6867 5.5768 5.0843 5.7632 4.8717 5.3181 5.5297

22 (6-13) 8.4086 6.995 7.0691 7.8515 6.7898 6.9952 7.5395 7.3640 6.7909 7.1816

23 (6-19) 5.8405 1.837 2.0015 1.0011 1.0175 1.0270 1.0251 1.1361 1.0845 1.0710

24 (7-13) 5.0342 4.397 4.7178 4.327 4.1502 4.3788 4.1529 4.8399 4.4445 4.7317

25 (8-9) 3.8932 2.115 2.6101 3.5281 2.7295 2.1951 2.8327 3.3318 2.9908 2.5033

26 (8-14) 6.1647 4.923 4.5434 4.5177 4.1142 4.2562 5.0185 5.4117 4.7755 4.3824

27 (8-15) 6.8990 4.047 4.6174 6.8448 5.8905 4.6605 4.9278 5.6457 6.6551 5.2803

28 (8-21) 11.6387 5.906 9.6758 12.9102 11.5388 8.8694 9.3110 11.8737 14.1558 11.3890

29 (9-10) 3.8343 3.392 3.6296 3.8706 4.3093 3.2333 3.0206 4.1043 4.3985 3.5157

30 (9-15) 1.4772 1.902 1.4891 1.0192 1.8975 1.7611 1.1071 1.0000 1.9432 1.5929

31 (9-16) 1.3075 4.381 3.4020 1.2962 2.5412 3.2831 1.7734 1.3190 1.6670 2.3454

32 (9-22) 4.4876 8.442 6.2153 2.5497 4.6417 7.1936 4.8328 2.4216 3.8517 4.9127

33 (10-11) 6.0196 5.011 5.9308 5.6478 5.4994 4.9840 5.0213 5.0380 5.6797 5.1727

34 (10-16) 2.6729 3.577 3.2334 2.775 2.4481 3.6672 2.5054 2.0298 2.2237 2.6676

35 (10-17) 1.6342 2.805 2.7173 2.1062 2.0894 2.4062 2.3223 2.7563 2.1280 2.3925

36 (10-23) 1.8410 2.024 1.3932 2.5833 1.7796 2.1576 3.2361 4.7604 1.0056 2.8330

37 (11-12) 6.8841 6.709 6.5660 7.3146 7.9676 7.1043 6.7371 6.3381 6.9507 7.3064

38 (11-17) 4.1393 5.054 4.8170 3.7673 4.9463 5.2070 5.0727 4.0629 4.9632 5.0684

39 (11-18) 3.3264 3.259 3.2626 2.9003 3.3697 3.6853 3.1729 3.4340 3.0043 3.5115

40 (11-24) 1.0000 1.063 1.0165 1 1.0136 1.0007 1.0001 1.0016 1.0043 1.0005

41 (12-13) 6.9373 5.934 7.2529 7.0355 6.9306 6.6302 6.1117 6.8108 6.5501 6.7922

42 (12-18) 4.4568 7.057 5.9226 6.9735 6.4813 6.6773 6.2896 6.7405 6.4851 6.2743

43 (12-19) 4.6758 5.745 5.3115 5.5549 5.3985 5.2167 5.3444 5.5967 5.4731 5.1402

44 (12-25) 1.0084 1.185 1.0010 1.0001 1.0063 1.0016 1.0001 1.0080 1.0002 1.0024
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are however lower than that of the SHADE algorithm 
(11.15 kg). In terms of computational cost, the maximum 
number of objective function evaluations of the SHADE 
algorithm is 20000, which is less than or equal to those 
of other algorithms. The results show that the SHADE 
algorithm requires only 12050 objective function evalua-
tions to find a feasible design corresponding to a structural 
weight of 10276.75 kg, which is lower than the best weights 
of other reported algorithms. Table 15 presents the results 
of the Freidman rank test. As mentioned above, it can be 
seen that the SHADE algorithm ranked first in terms of 
best and mean weights. In terms of standard deviation, 
the SHADE algorithm however ranked third after Rao-1 
and Rao-2. The first five natural frequencies evaluated at 
the best designs obtained by SHADE and other compared 
algorithms are listed in Table 16. The first and third nat-
ural frequencies obtained by the FEM code used in the 
present study are also presented (please see rows 1* and 
3* in Table 16). From the results reported in the literature 
[13–15, 18–20, 22, 23], it is observed that none of the 

frequency constraints are violated. However, the results 
derived from the FEM code indicate that the best design 
obtained by chaotic WSA only slightly violates the fre-
quency constraints (less than 0.0035%), which may prob-
ably be due to the loss of accuracy caused by the round-
ing of the values of the design variables reported in Table 14. 
Therefore, the best design gained by chaotic WSA is con-
sidered as a feasible solution, and thus this algorithm is 
included in the comparison. As is clear from the results in 
Table 16, the natural frequencies obtained by the FEM code 
are very close to those reported in the literature, and the 
very small differences are probably due to the rounding of 
the values of the design variables, as noted above. Note that 
in the case of this example, CLFA and CGFA are excluded 
from the comparison because the best designs obtained 
by these algorithms are highly infeasible, as also noted 
by Dede et al. [22]. The convergence histories of the best 
and mean results obtained by the SHADE algorithm for the 
1410-bar truss are depicted in Fig. 8. It can be seen from the 
figure that the curves are very close together, demonstrating 

Continuation of Table 14

Element number 
(element nodes)

ECBO-
Cascade [13] 

DPSO 
[14] 

MDVC-
UVPS [15]

chaotic 
WSA [18]

ST-JA 
[19] PFJA [20] ISMA 

[23]
Rao-1 
[22]

Rao-2 
[22]

This 
study

SHADE

45 (13-19) 7.5103 7.274 7.7499 8.5706 7.8888 8.1289 7.8981 7.7374 7.5534 7.4893

46 (13-20) 5.2449 4.798 4.7836 5.6116 4.3830 4.5151 5.1166 4.9869 4.7768 4.6857

47 (13-26) 1.0550 1.515 1.0035 1.0127 1.0086 1.0010 1.0052 1.0000 1.0222 1.0049

Best weight (kg) 10504.20 10453.84 10345.12 10318.99 10283.94 10326.296 10309.41 10322.21 10281.06 10236.73

10276.751

Mean weight (kg) 10590.67 11100.57 10393.83 10521.67 10379.632 10399.828 10556.67 10331.59 10289.22 10255.52

Worst weight (kg) N/A N/A N/A N/A 10491.617 N/A 10825.00 N/A N/A 10275.46

Standard 
deviation (kg) 52.51 334.20 39.15 122.1458 57.586 75.441 130.92 4.12 3.06 11.15

NFEs 19460 N/A 17750 N/A 19620 16900 20000 37050 44850 20000

MaxNFEs 20000 50000 20000 30000 20000 25000 20000 45000 45000 20000

CV (%) 0 0 0 0.0034 0 0 0 0 0 0

Number of runs 5 10 30 20 10 20 25 10 10 20
1 The SHADE algorithm has achieved a feasible design corresponding to a structural weight of 10276.75 kg after 12050 objective function evaluations.

Table 15 The Friedman rank test results for the 1410-bar dome-shaped truss

ECBO-
Cascade [13] 

DPSO 
[14] 

MDVC-
UVPS [15]

chaotic 
WSA [18]

ST-JA 
[19]

PFJA 
[20]

ISMA 
[23]

Rao-1 
[22]

Rao-2 
[22]

This 
study

SHADE

Friedman rank of 
best weight 10 9 8 5 3 7 4 6 2 1

Friedman rank of 
mean weight 9 10 5 7 4 6 8 3 2 1

Friedman rank of 
standard deviation 5 10 4 8 6 7 9 2 1 3
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the high robustness of the SHADE algorithm. Fig. 9 shows 
the optimized weights obtained by the SHADE algorithm 
for the 1410-bar truss. The figure indicates that in 13 out 
of 20 runs, the optimized weights obtained by the SHADE 
algorithm are below the mean weight.

5 Conclusions
The success-history based adaptive differential evolution 
(SHADE) algorithm is an advanced variant of differen-
tial evolution (DE). The distinctive feature of the SHADE 
algorithm is the use of a historical memory of successful 
control parameter settings to guide the generation of the 
next control parameter values. SHADE has shown very 
promising performance in optimization of benchmark 
mathematical functions. However, it has been less used 
for real-world optimization problems. Owing to the highly 
nonlinear and non-convex constraints involved, structural 
optimization with frequency constraints is considered to 

be one of the most challenging fields in structural optimi-
zation. In the present work, in order to tackle this class of 
optimization problems, the SHADE algorithm is applied 
to solve the size optimization problem of large-scale dome 
truss structures with multiple frequency constraints. 
The design examples include a 600-bar single-layer dome 
truss, a 1180-bar single-layer dome truss, and a 1410-
bar double-layer dome truss. The results obtained by the 
SHADE algorithm are presented and compared with the 
best-known results reported in the literature. Based on 
the preceding results and discussion, some concluding 
remarks can be drawn as follows:

1. The SHADE algorithm seems to have the most prom-
ising performance in terms of solution accuracy and 
computational efficiency. 

2. In all the three cases considered, the optimal designs 
obtained by the SHADE algorithm are the best ones 
reported in the literature so far. 

Table 16 Natural frequencies (Hz) of the 1410-bar dome-shaped truss evaluated at optimal designs

Frequency 
number

ECBO-
Cascade [13] 

DPSO 
[14] 

MDVC-
UVPS [15]

chaotic 
WSA [18]

ST-JA 
[19] PFJA [20] ISMA 

[23]
Rao-1 
[22]

Rao-2 
[22]

This 
study

SHADE

1 7.002 7.001 7.000 7.0000 7.0002 7.0009 7.0001 7.0040 7.0006 7.0001

1* 7.0048 7.0127 7.0027 6.99981 7.0002 7.0125 7.0001 7.0040 7.0006 7.0001

2 7.003 7.001 7.001 N/A 7.0002 7.0009 7.0001 7.0040 7.0006 7.0001

3 9.001 9.003 9.000 9.0021 9.0006 9.0001 9.0002 9.0013 9.0001 9.0000

3* 9.0047 9.0105 9.0021 9.0021 9.0006 9.0083 9.0002 9.0013 9.0001 9.0000

4 9.001 9.005 9.000 N/A 9.0021 9.0002 9.0002 9.0023 9.0021 9.0003

5 9.003 9.005 9.000 N/A 9.0021 9.0002 9.0005 9.0030 9.0021 9.0003
1 The more precise value is 6.999762 Hz.

Fig. 8 The best and mean convergence histories of the SHADE 
algorithm for the 1410-bar dome-shaped truss

Fig. 9 Diversity of the optimized weights obtained by the SHADE 
algorithm for the 1410-bar dome-shaped truss
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3. Numerical results reveal that in all of the test cases, 
the mean weight gained by the SHADE algorithm 
is lower than the best weights achieved by all the 
compared algorithms, which demonstrates the effec-
tiveness and robustness of the SHADE algorithm in 
solving frequency-constrained structural optimiza-
tion problems. 

4. The number of structural analyses required by 
SHADE to reach a feasible design better than the 
optimal designs found by the compared algorithms is 
generally far less than those required by these algo-
rithms to reach the optimal designs, which shows the 
computational efficiency of the SHADE algorithm. 

5. From the free vibration analysis results, it is observed 
that the optimal designs obtained by the SHADE 
algorithm are fully feasible, indicating that the algo-
rithm could exactly satisfy the frequency constraints.  

We believe that the main reason for the excellent per-
formance of the SHADE algorithm in this research is 
mainly due to some features of the DE/current-to-pbest/1 
mutation strategy, which make the algorithm particularly 
suitable for large-scale optimization problems with many 
design variables. For example, in SHADE, instead of using 
only the information of the single best solution, the infor-
mation of a set of most promising solutions are utilized 
with the aim to balance the greediness of the mutation and 
the diversity of the population. This feature helps the algo-
rithm to prevent premature convergence in high-dimen-
sional search spaces.  
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