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Abstract

Over	 the	past	 decades,	 numerous	damage	diagnosis	 techniques	based	on	modal	 flexibility	 have	been	 studied	 and	developed	 for	

various types of structures, but rarely for structures made of functionally graded (FG) materials. This paper aims to present the 

extensive	applicability	of	a	modal	flexibility	sensitivity-based	damage	index	termed	as	MFBDI	for	damage	identification	of	FG	beams.	

The  formulation	of	 this	damage	 index	 is	based	on	 the	closed-form	of	modal	flexibility	sensitivity	derived	 from	the	direct	algebraic	

method.	The	applicability	of	the	offered	damage	identification	method	is	numerically	demonstrated	on	a	clamped-clamped	FG	beam	

and a two-span FG beam under (i) single and multiple damage cases, (ii) noise-polluted measurement data, and (iii) only the information 

of	 the	first	 few	 incomplete	modes.	 The	 identification	 results	 indicate	 that	when	 the	noise	 level	 added	 to	 the	mode	 shape	data	 is	

below	10%,	the	offered	method	can	correctly	localize	the	locations	of	damaged	elements	and	approximately	quantify	their	damage	

magnitudes	in	the	FG	beams.	In	addition,	the	influences	of	the	number	of	used	modes,	damage	magnitudes,	and	gradient	index	values	

are also investigated in the numerical simulations.
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1 Introduction
Functionally graded (FG) materials classified as a class 
of advanced heterogeneous composites are usually made 
of ceramic and metallic components. An overview of FG 
materials production techniques developed in the last 30 
years was recently presented by Saleh et al. [1]. Due to 
their special properties, FG materials have a wide variety 
of applications in many disciplines.  FG beam-like struc-
tures are important structural components found exten-
sively in many engineering fields such as civil, mechani-
cal, and aeronautical engineering. Under realistic service 
conditions, the continuous operation of these structures 
without alarming the accumulation of damage is poten-
tially dangerous. Therefore, it is necessarily undertaken to 
perform condition assessment of the FG beam structures 
and identify damages at the early stage.

Over the last three decades, a great variety of structural 
health monitoring (SHM) methodologies have been stud-
ied and developed for many kinds of structures. Among 
these, vibration-based SHM (VBSHM) approach that deals 
with the problem of structural damage detection and quan-
tification has attracted significant attention in the SHM 
research community. Comprehensive literature reviews of 
this approach are given in [2–4]. Other review articles by 
Montalvão et al. [5] and Gomes et al. [6] discussed with 
a particular emphasis on applications of VBSHM approach 
to composite material structures. It is found that in the 
above literature reviews, little-to-no research work has 
been carried out to identify damage in structures made 
of FG materials. Until quite recently, a few studies have 
been conducted on numerical investigations on damage 
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identification of FG beams [7, 8]. Lu et al. [7] proposed 
a sensitivity-based approach based on finite element updat-
ing model for multiple-damage localization and quantifica-
tion of axially FG beams. Yang et al. [8] proposed a damage 
detection strategy based on sensitivity analysis of element 
modal strain energy for locating and quantifying damage 
elements in FG beam-like structures.

In VBSHM approach, seeking or evolving damage-sen-
sitive features is one of the important tasks [9–11]. Many 
of these damage features have been presented and sum-
marized systematically in published review articles [2–4]. 
Among them, the modal flexibility constructed directly 
from mode shapes and natural frequencies can be served 
as a damage-sensitive feature. The major advantage of 
using the modal flexibility is that it does not require the use 
of complete mode shapes and is more sensitive to the first 
lower vibration modes [12, 13], which is highly welcomed 
in real measurement. It was also verified to be more sen-
sitive to damages compared to other features (e.g., mode 
shape or natural frequency) [14]. Pandey and Biswas [12] 
first proposed the idea of using changes in modal flexi-
bility matrix for localizing damages in a beam structure, 
which has drawn significant attention. Since then, world-
wide researchers have devoted a lot of effort to the devel-
opment and application of damage diagnosis techniques 
based on modal flexibility for various types of structures 
[15, 16, 17–24, 25–28].

Over the last years, a number of researchers have focused 
on calculating the sensitivity of modal flexibility related 
directly to structural physical parameters. For instance, 
Yang [29] introduced a mixed sensitivity method based on 
combining the sensitivities of modal flexibility and eigen-
values for damage detection in a 31-bar truss structure. 
Li et al. [30] proposed the concept of generalized flexibil-
ity matrix and studied its changes and sensitivity for find-
ing the damage locations and their severities of an isotro-
pic beam. Li et al.'s work [30] was then further improved 
by Liu and Li [31] who considered the boundedness of the 
damage severity in the solution of damage equations. It is 
worthy to remark that in the mentioned works, the sen-
sitivity formulas of modal flexibility which was derived 
from the sensitivity of the complete flexibility (the inverse 
of stiffness matrix) are still relatively simple. In an effort 
to calculate the truncated modal flexibility sensitivity 
using the structural eigensolution sensitivities based on 
a direct algebraic method, Yan and Ren [32] introduced 
a closed-form sensitivity formulation of modal flexibility 
for localization and quantification of damage elements in 

isotropic beams. They demonstrated that the damage iden-
tification results from their method have less dependence 
on the truncated higher-order modes. Nevertheless, so far, 
its ability and effectiveness for structures made of com-
posite structures have not yet been reported. 

Basing on the research gaps mentioned above, the pres-
ent work extends the modal flexibility sensitivity-based 
damage index termed as MFBDI for damage identifi-
cation of FG beams, which is essentially an extension of 
the work by Yan and Ren [32]. When the modal flexibil-
ity sensitivity is calculated in [32], the first few complete 
mode shapes are needed. However, it will not be practi-
cal and impossible if measurements of all DOFs on the 
studied structure are required. To meet this requirement, 
iterated improved reduction system (IIRS) reduction tech-
nique [33] is employed here to expand the measured ones 
to a full set of mode shapes. Numerical examples including 
a clamped-clamped FG beam and a two-span FG beam are 
investigated to test the performance of the proposed dam-
age index. For each FG beam, several hypothetical dam-
age scenarios are designed in different locations and dam-
age magnitudes. The effects of various noise levels, damage 
magnitudes, and gradient index values are also demon-
strated to show how well this proposed index can perform 
in the damage predictions.

2 MFBDI formulation
This section presents the formulation of MFBDI [32], 
which will be extensively applied to FG beams. First, the 
change in modal flexibility is established. Then, the sensi-
tivity analysis of modal flexibility is formulated.

2.1 Modal flexibility change
Assuming a structural system with N degree-of-freedoms 
(DOFs), the true flexibility matrix of the structure can be 
determined using vibration characteristics derived from 
the analytical stiffness matrix (K) and mass matrix (M):

F � ��� ��� 1 T , (1)

where Φ  R(N × N) is the mass-normalized mode shape 
matrix, and Λ–1 is the diagonal matrix of natural frequen-
cies squared.

In real testing, it is always impossible to measure all 
vibration modes of the structure. In other words, only 
a limited number of lower vibration modes are measur-
able. In such cases, we can approximately estimate the 
modal flexibility matrix of the structure using the trun-
cated lower modes (mode shapes and modal frequencies). 
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Considering the first few nmod-vibration modes, the modal 
flexibility matrix of a healthy and damaged structure 
(F and Fd) is expressed as
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where λr and Φr are, respectively, the rth eigenvalue and 
eigenvector. One should mention herein that the eigenvec-
tor from a dynamic test is usually available and measur-
able with incomplete or missing components due to eco-
nomic limitations and/or limited measurement points. 
To remedy this drawback, it is possible to employ well-es-
tablished model-order reduction methods like iterated 
improved reduced system (IIRS) [33] to relate the master 
(measured) part to a full set of eigenvector through a coor-
dinate transformation:
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where TIIRS is the coordinate transformation from the mas-
ter part to the full set of the eigenvector, and its detailed 
formulas were presented in [24, 33]; the subscripts s and m 
are the slave and master DOFs respectively. 

From Eqs. (2) and (3), a modal flexibility change (ΔF) 
formulated in terms of comparing the flexibility matrix 
components before and after damage is defined as follows
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2.2 MFBDI sensitivity
As well known, any changes in structural physical prop-
erties due to damage will influence on dynamic character-
istics, thereby resulting in modal flexibility. When a small 
perturbation appears in structural physical parameter p, 
the modal flexibility changes can be calculated by consid-
ering the first-order derivative of Eq. (2).
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The sensitivity formulation of modal flexibility for the 
rth mode with respect to p can be represented as
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After rearrangement, the modal flexibility sensitivity in 
Eq. (7) is split as the sum of two parts
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The component Γ in Eq. (8) is recast into a compact 
form as
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As can be seen in Eq. (9), the modal flexibility sensi-
tivity requires the calculation of the first-order derivatives 
of eigenvector and eigenvalue. According to Lee and Jung 
[34, 35], the eigenvalue and eigenvector sensitivity can be 
determined by
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Substituting Eq. (10) into Eq. (9), one has
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Assuming that in the degradation process, the mass 
distribution is almost identical. Additionally, to simplify 
the sensitivity analysis, each of the eth structural element 
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assigned to design parameter named pe is supposed to be 
independent of each other. With these two assumptions, 
the component Γ in Eq. (11) becomes 
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In Eq. (13), ΔK derived from the first-order Taylor's 
series represents the overall perturbation of the structural 
stiffness. When the stiffness of the damaged structure (Kd) 
is unknown, ΔK can be represented by assembling the 
eth element stiffness (Ke) that multiplies a damage ratio 
(de  [0,1]) as in the following formula
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in which Ne is the total element number of the structural 
FE model.

By substituting Eq. (14) into Eq. (13), we obtain
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Thus, combining Eq. (15) and Eq. (12), the modal flex-
ibility sensitivity in Eq. (8) is transformed into Eq. (16) 
which can be used to decide the damage ratio de as follows:
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Finally, let Eq. (5) be equal to Eq. (16), one can obtain a 
linear system of equations
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Then Eq. (17) can be rewritten simply as

S d F� �� � � � �e � , (18)

where {ΔF}  Rn2 is the residual vector, and [S]  Rn2×Ne 
is the sensitivity matrix. As can be observed in Eq. (18), 
the values in {de} denote the damage locations and their 

corresponding extents that are directly obtained by solv-
ing the linear equations. When the magnitude of damage 
elements is imposed the non-negative constraint, non-neg-
ative least squares method [36] identified as a particularly 
suitable method could yield an expected result.

3 Numerical results and discussion
In this part, the damage index MFBDI presented will be 
applied to diagnose the damage of two FG beam struc-
tures made of a mixture of aluminum (Al) (as metal) and 
alumina (Al2O3) (as ceramic). The material properties of 
these structures vary continuously and smoothly through 
their thickness direction, which is stated in the following 
power-law distribution
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where the subscripts m and c denote respectively the 
metal and ceramic constituents of FG beam; and k is the 
non-negative power-law index.

The mechanical properties (i.e., Young's modulus E, and 
mass density ρ) of the constituent materials (Al and Al2O3) 
used in two FG beam structures are listed in Table 1, and 
the gradient index k is taken to be equal to 0.3. The first 
structure considered is a clamped-clamped FG beam [37], 
which is modelled by using 16 equal-length Timoshenko 
beam elements. The whole model contains 17 nodes and 
51 DOFs. As shown in Fig. 1(a), the geometrical dimen-
sions of the FG beam are given by the length of L = 1.5 m, 
the width of b = 0.1 m, and the thickness of h = 0.05 m. 
A two-span continuous FG beam is then taken as the sec-
ond one which has the same geometrical dimensions and 
material properties. The FE model of the second beam is 
shown in Fig. 1(b) and it contains 33 nodes with 99 DOFs 
and 32 equal-length Timoshenko beam elements.

Damage in the FG beam structures is assumed as stiff-
ness degradation, and its location is assigned to the element 
number. Four different damage scenarios for each beam 
structure are examined under single, double, triple, and 
multiple damage elements. For example, for the clamped- 

Table 1 Material properties of the used FGM components

Material
Properties

Young's modulus 
(E) (MPa)

Poisson's 
ratio

Mass density 
(ρ) (kg/m3)

Aluminum (Al) 70 0.3 2700

Alumina (Al2O3) 380 0.3 3800
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clamped FG beam, scenario A represents a single damage 
at the clamped support that could be caused by bending 
moment, while scenarios B, C and D, respectively, rep-
resent double, triple and multi-damage damage scenarios 
that are more common with different damage locations and 
severities corresponding to the different maximum internal 
forces. The detailed information on these four scenarios is 
summarized in Table 2.

In this example, only the first three vibration modes 
are available for damage identification of two FG beam 
structures. Herein, due to difficulties in measuring rota-
tional components of vibration mode shapes, it is practi-
cal to utilize only the translational DOFs for implement-
ing the damage identification process. As such, only 30 
translational DOFs of the clamped-clamped FG beam 
model and 60 translational DOFs of the two-span continu-
ous FG beam model are needed. Besides, to simulate real 
measurement conditions, the incomplete vibration modes 
will be contaminated with different random noise levels. 
The added noise levels are imposed as follows [38, 39]

data data randnoise � � �� �1 2 1�( ) , (20)

where data denotes the noise-free measured eigenvalue 
vector or the noise-free measured eigenvector compo-
nents; datanoise denotes the measurement data polluted by 
an additive noise level, η. Specifically, the additive noise 
level of the eigenvalues is fixed at 0.5%, whereas the eigen-
vector components are contaminated with random noise 
levels ranging from 1% to 10%. Using Monte Carlo sim-
ulations, 1000 noise-polluted samples are conducted for 
each noise level to estimate the noise resistance capacity 
of the proposed damage identification method. Fig. 2 illus-
trates the noise distribution applied to the modal data with 
error levels of 3%, 5%, and 10%.

The average damage factors calculated using the pro-
posed index MFBDI for all damage scenarios of clamped-
clamped FG beam and two-span continuous FG beam are 
respectively presented in Fig. 3 and Fig. 4. Here, the dam-
age factor of each element that exceeds a preset threshold 
value (e.g., 0.05) is identified to be damaged. Overall, it is 
demonstrated that under incomplete measurement data 
polluted noise levels (i.e., 3%, 5%, and 10%), the proposed 
index MFBDI can properly identify the actual damaged 
location(s) in all assumed damage scenarios of both the 
FG beams. With regards to damage estimation, the mag-
nitudes of the actually damaged elements obtained by the 
MFBDI are approximately predicted. As also shown in 
the figures, the trends in prediction errors increase with 
the increase of noise intensity from 3% to 10%. This 
implies that a high noise level (e.g., 10%) in the measure-
ment data has an adverse effect on the accuracy of damage 
prediction results.

(b)
Fig. 1 Schematic of two FG beam structures; (a) Clamped-clamped FG beam, (b) Two-span continuous FG beam

(a)

Table 2 Four different damage scenarios of the clamped-clamped 
FG beam

Scenario Damaged elements 
(stiffness degradation)

Clamped-clamped 
FG beam A 1 (20%)

B 5 (15%) & 16 (20%) 

C 1 (20%) & 15 (15%) & 16 (30%) 

D 1 (15%) & 2 (20%) & 5 (30%) & 6 
(30%) & 14 (20%)

Two-span 
continuous FG beam E 1 (20%) 

F 1 (20%) & 15 (20%) 

G 7 (20%) & 8 (15%) & 32 (20%) 

H 1 (15%) & 7 (20%) & 8 (30%) & 
22 (30%) & 32 (20%)
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For further examination of the uncertainties in struc-
tural damage identification due to the uncertain nature of 
noisy measurements, the coefficient of variance (COV) is 
then utilized to deal with the statistical assessment of the 
identification results. The COV is calculated as the ratio of 
the standard deviation (σde ) to the mean (mde ), which is 
expressed as:

COV %� � � �
�d
d

e

e
m

100 . (21)

The COV values for identified damage elements in each 
scenario of the clamped-clamped FG beam and the two-span 
continuous FG beam under noise levels are reported in Fig. 5 
and Fig. 6, respectively. From these figures, we can observe 
that: (i) the values of COV increase linearly with increasing 
noise intensities; (ii) the element that has larger COV com-
pared with others has more uncertainty in its damage predic-
tion. In other words, a large COV value, e.g., element 15 in 
scenario C and element 7 in scenario G, are likely to give a 
miss-damage prediction. Therefore, when the noise level in 
the mode shape data is as high as 10%, the MFBDI possibly 
yields unreliable damage detection outcomes.

Furthermore, the influences of the number of used 
modes, damage magnitudes, and gradient index values 
are successively investigated. Damage scenario A of the 
clamped-clamped FG beam is taken as an example for this 
purpose. The proposed damage index is applied to sce-
nario A using different vibration modes (first 2, 3, and 
4 modes). According to Fig. 7, although the COV values 
for the damaged element 1 are the same for the consid-
ered modes, it is found that better damage identification 
results are obtained when the minimum number of con-
sidered modes is three. Fig. 8 exhibits the COV values for 

(c)
Fig. 2 Noise distribution applied to the modal data with different error 

levels; (a) 3% noise level, (b) 5% noise level, (c) 10% noise level

(b)

(a)
(a)

(b)

(c)

(d)
Fig. 3 Damage identification results for assumed damage cases of 

the clamped-clamped FG beam; (a) Scenario A, (b) Scenario B, 
(c) Scenario C, (d) Scenario D
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damaged element 1 when three cases of damage severi-
ties (10%, 20%, and 30%) for this element are considered. 
As shown in the figure, the COV decreases due to increas-
ing the severity of damage. This means that structural ele-
ment locations with a high damage level would be iden-
tified with high confidence. This can be attributed to the 
fact that the mode shapes change for large damage size is 
more significant than that for small damage size, which 
alleviates the adverse effects of noise.

In previous cases, the gradient index k is set to be 0.3, 
and now we want to investigate the influence of k on the 
identification results by taking different values of gradient 

index, i.e., k = 0, 1, 5, and 10. Fig. 9 presents damage iden-
tification results and COV values for the identified dam-
age element of the clamped-clamped FG beam with the 
changed gradient index values. Both plots show the same 
results in term of damage localization and damage extent 
assessment. Thus, the gradient index k has almost no effect 
on the damage identification results.

4 Conclusions
This paper presents the extensive applicability of a modal 
flexibility sensitivity-based damage index termed as 
MFBDI for damage identification of FG beams. Numer- 

Fig. 4 Damage identification results for four assumed damage cases of the two-span continuous FG beam; (a) Scenario E, (b) Scenario F, 
(c) Scenario G, (d) Scenario H

(a) (b)

(c) (d)

Fig. 5 COV for identified damage elements in each scenario of the clamped-clamped FG beam under noise levels; (a) Scenario A, (b) Scenario B, 
(c) Scenario C, (d) Scenario D

(a) (b)

(c) (d)
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ical simulations of a clamped-clamped FG beam and a two-
span FG beam are conducted to examine the identification 
capability of the proposed method. Four different damage 
scenarios with various noise levels in simulated incom-
plete modes are studied for each FG beam. Using Monte 

Carlo simulations, 1000 noise-polluted samples are con-
ducted for each noise level to discuss the noise resistance 
capacity of the proposed method. The damage identifica-
tion results obtained in this research work reveal that when 
the noise level added to the mode shape data is below 10%, 
the MFBDI can serve as a good damage index for the FG 
beam structures using only the first three vibration modes. 
In addition to this, the statistical results indicate that the 
quality of the damage identification strongly depends on 
the number and quality of used modes as well as structural 
damage levels, which causes significant difficulties in its 
applications to real-world situations.
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Fig. 6 COV for identified damage elements in each scenario of the two-span continuous FG beam under noise levels; (a) Scenario E, (b) Scenario F, 
(c) Scenario G, (d) Scenario H

(a) (b)

(c) (d)

Fig. 7 (a) Damage identification results for scenario A of the clamped-
clamped FG beam using different vibration modes polluted with 10% 

noise (first 2, 3 and 4 modes) (b) COV values for element 1

(a)

(b)

Fig. 8 COV values for element 1 with three cases of damage severities
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Fig. 9 (a) Damage identification results for scenario A of the clamped-clamped FG beam when gradient index k = 0, 1, 5, 10; (b) COV values for element 1

(a) (b)
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