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Abstract

This study provides a semi-probabilistic approach to durability design of reinforced concrete structures, subjected to carbonation-
induced corrosion. The method was developed from an existing approach and using comprehensive data collated from the literature.
A statistical model for predicting accelerated carbonation coefficient, using as input variables mix proportions and test conditions was
also generated. The performance of the proposed method was assessed and proved appropriate. Besides delivering a more consistent
semi-probabilistic method to design for the avoidance of unforeseen carbonation-induced corrosion problems, the developed statistical

model to estimate the accelerated carbonation coefficient is a useful tool on the mix design, from the standpoint of conforming with the

accelerated carbonation coefficients obtained through the semi-probabilistic method.
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1 Introduction
Atmospheric carbon dioxide reacts with alkaline compounds
present in the cement paste, forming carbonates, which leads
to a decrease in the alkaline nature of concrete [1]. The reduc-
tion in alkalinity leads to depassivation of the reinforce-
ment so that it is no longer protected from corrosion [2].
Significant research has been carried out, comprising exper-
imental investigation on carbonation mechanism [3], the-
oretical models proposed to predict carbonation depth of
concrete based on experimental results [4], its practical
application and life prediction models [5]. Seigneur et al. [6]
used fully coupled two-phase reactive transport modeling
focusing on the hydrated C3S paste and low-pH paste of
the concrete. Taffese et al. [7] employed machine learning
technique while Ta et al. [8] employed semi-empirical tech-
nique to predict carbonation of concrete. Auroy et al. [9],
inferred that accelerated carbonation at 3% CO, could be
the representative of natural carbonation.

In fact, over the last decade, several researchers have
examined the natural carbonation data to estimate the
durability of carbonated concrete structures [10, 11].

Research was carried out on parameters influencing car-
bonation: relative humidity, temperature, and atmospheric
carbon dioxide concentration retrieved through respec-
tive Representative Concentration Pathways (RCPs) from
the Fourth Assessment Report of the Intergovernmental
Panel on Climate Change (IPCC) [12, 13]. However, Jiang
et al. [14] did not agree with the invariant relative humid-
ity hypothesis and did not include relative humidity as
a parameter in carbonation depth prediction under a chang-
ing climate. Due to its potential to lower carbon emissions
and provide durable concrete, accelerated CO, curing for
building materials has recently attracted more and more
interest [15]. Research on CO, uptake after four-year natu-
ral exposure data and ten-year natural exposure data were
reported to assess the CO, exchanges during the life cycle
of structures [16, 17]. Performance-based design concepts
for the durability of reinforced concrete structures against
concrete carbonation have been recently developed [18, 19].

In order to obtain better control of corrosion of rein-
forcing steel, improved procedures for quality control and
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specifications for proper combinations of concrete qual-
ity and reinforcement cover during construction are very
important. Investors began to foresee increased and con-
trolled durability beyond what is still widely practiced,
this means moving from deemed-to-satisfy approaches
towards performance-based design, even with a small
increase in additional costs [20].

In this sense, Neves et al. [21] provided a simple semi-
probabilistic approach to the service life design of rein-
forced concrete structures with respect to carbonation-in-
duced corrosion. They conducted laboratory research on
accelerated carbonation and field studies on natural car-
bonation in an attempt to determine design performance
parameters, such as carbonation rate. Further, they studied
the correlation between accelerated and natural carbon-
ation. This correlation was compared with results from
other studies comprising accelerated and natural carbon-
ation tests, available by then.

However, the remark from Ko6li6 et al. [22], questioning
the non-availability of data from repeated measurements
of natural carbonation of the same concrete at a certain
interval of time in both indoor and outdoor environment,
remains relevant. The objective of this work is to address
this gap and to conduct performance-based durability
design. The developed methodology still incorporates the
interrelation between safety factor and reliability, by means
of updating the approach proposed by Neves et al. [21],
contributing at the same time for a desirable clarification
of the relationship between accelerated and natural car-
bonation. This aspect is of interest within the frame of
international standards and recommendations.

For this purpose, natural carbonation results, from
successive measurements in time, were collected from
the literature. The same was done for accelerated car-
bonation results. As no comprehensive studies compris-
ing both types of carbonation were found and a relation-
ship between natural and accelerated carbonation was still
sought, a statistical model was developed with the aim
of estimating accelerated carbonation coefficients for the
mixes tested under natural carbonation conditions.

2 Natural carbonation results

Huy Vu et al. [23] performed a unique international
inter-laboratory study on the impact of different climates
on resistance of concrete to natural carbonation. Concrete
specimens were cast in France and shipped to four aca-
demic research laboratories in the USA, Canada, India and
China to study the role of local climatic conditions on the

progress of natural carbonation for five years. EN 206-1
establishes four exposure classes for carbonation-induced
corrosion, with XC3 and XC4 representing outdoors shel-
tered and unsheltered circumstances, respectively [24].

For the current investigation, results from mixes with
Ordinary Portland cement (OPC) and w/c ratios 0f 0.45, 0.55
and 0.65, and tested in Chennai (India) were selected. This
was because OPC is considered the reference binder con-
cerning carbonation-induced corrosion [25] and Chennai
was the site with the most complete range of times of expo-
sure (1, 2, 3 and 5 years). Carbonation depth was assessed
using a 0.5% phenolphthalein solution, sprayed over
a freshly broken surface and measuring the depth of the
colorless reaction zone.

From the experimental carbonation depth results, the car-
bonation coefficient is found by using Tuutti's model [26]:

X =+, (1

where X is the carbonation depth (mm), ¢ is the duration of
CO, exposure (year) and K is the carbonation coefficient
(mm/year®).

The mean and standard deviation of the natural car-
bonation coefficient for the sheltered conditions are 2.83
and 0.96 mm/year®3, respectively, while for unsheltered
conditions the mean and standard deviation of the natural
carbonation coefficient of the various cases considered are
2.31 and 0.83 mm/year®?, respectively.

3 Accelerated carbonation results
Cui et al. [27] investigated the relationship between carbon-
ation depth and CO, concentration by subjecting concrete
of different grades to five different CO, concentration levels
(2, 10,20, 50 and 100 % by volume). Details of the concrete
mixes considered in that study are recapped in Table 1.
After 28 days of curing in a controlled environment, con-
crete specimens were exposed to an accelerated carbonation
test according to GB/T50082-2009 [28]. The test conditions
were 20°C, 70% relative humidity and different CO, con-
centration levels (2, 10, 20, 50 and 100% by volume) [27].
Carbonation depth was measured by spraying 1% phenol-
phthalein solution on a freshly broken surface after 7, 14, 28
and 56 days of exposure in the carbonation chamber. From
the experimental carbonation depth results, the accelerated
carbonation coefficient is found by using Eq. (1). As the
duration of CO, exposure at the carbonation chamber is 7,
14, 28 and 56 days, the corresponding carbonation coeffi-
cients were computed and the mean carbonation coefficient,
for each mix and CO, content, is presented in Table 2.
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Table 1 Concrete mix design details from Cui et al. experiments, [27]

Ordinary Portland

Expected compressive

Mix code w/e cement (kg/m’) Fine aggregate (kg/m?®)  Coarse aggregate (kg/m®)  Water (kg/m?) strength (MPa)
G30 0.55 310 739 1203 170 30
G40 0.45 378 715 1158 170 40
G50 0.35 486 670 1100 170 50

Table 2 Mean carbonation coefficient for different mixes and

CO, concentrations

CO, concentration Mean accelerated carbonation

Mix code

(%) coefficient (mm/year ;)
2 12.81
10 38.92
G30 20 66.35
50 78.88
100 79.88
2 5.21
10 33.30
G40 20 51.03
50 59.01
100 59.69
2 2.41
10 15.44
G50 20 30.02
50 36.14
100 38.12

4 Statistical modeling of accelerated carbonation
coefficient

The developed statistical model to estimate the acceler-
ated carbonation coefficient is based on a multiple lin-
ear regression analysis, that is applied to the results from
Cui et al. [27]. A similar approach has already been tried
by Silva et al. [29] to estimate natural carbonation coeffi-
cients. In this multiple linear regression model, the carbon-
ation coefficient is the dependent variable and water-ce-
ment ratio, cement content, expected 28-day compressive
strength and carbon dioxide content are the independent
variables. Statistical Package for the Social Sciences soft-
ware (SPSS) was used to build the model. The Stepwise
method was used here, which enabled only the statistically

significant independent variables to be included in the
model [29]. In the model proposed, it is found that the
variables considered by ranking of relevance are CO, con-
tent and w/c ratio. Table 3 summarizes the coefficients
obtained from the analysis of statistical validity of the
regression models.

From the analysis in SPSS, it is inferred that 91.8% of
the carbonation coefficient variation is explained by the
two variables used and that the model is statistically sig-
nificant. Table 4 shows the analysis of variance (ANOVA)
of the models.

Table 5 presents the linear regression coefficients (B) of
the models, and it is found that the significance value is lower
than the p-value for all independent variables, which infers
that they are able to explain the carbonation coefficient.

Thus, Eq. (2) can be defined to estimate the accelerated
carbonation coefficient.

k, =—49.189+(2,336XC)+(117.012><%), )
where k_ is the accelerated carbonation coefficient (mm/
year®?), C is the CO, content (%) and w/c is the water-
cement ratio (kg/kg).

The model is consistent with the existing concrete car-
bonation knowledge. The increase of CO, content or the
increase of water-cement ratio, cause an increase in con-
crete carbonation (coefficient).

Table 3 Summary of multiple linear regression models

Model R R? R? yuea  Standard error of the estimate
12 0.847 0.717 0.677 12.24545
20 0.969 0.939 0.918 6.16649

a) Predictors: (Constant), CO, concentration
b) Predictors: (Constant), CO, concentration, w/c ratio

Table 4 ANOVA table of the models

Model Sum of squares Degrees of freedom Mean Square Test statistic - F Significance level
Regression 2663.777 1
1# Residual 1049.657 7 2164693'975717 17.764 0.004
Total 3713.434 8 ’
Regression 3485.280 2
20 Residual 228.154 6 1;;2(‘)320 45.828 0.000
Total 3713.434 8 '

a) Predictors: (Constant), CO, concentration; b) Predictors: (Constant), CO, concentration, w/c ratio
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Table 5 Statistics of the models' regression coefficients

Linear regression Standardized L -
Model Terms coefficient B Std. Error Coefficient Beta Test statistic -t Significance level
mn (Constant) 3.466 7.185 0.847 0.482 0.644
CO, concentration 2.336 0.554 ’ 4.215 0.004
(Constant) -49.189 11.892 0.847 -4.136 0.006
2b CO, concentration 2.336 0.279 0'470 8.370 0.000
wi/c ratio 117.012 25.175 ’ 4.648 0.004

a) Predictors: (Constant), CO, concentration; b) Predictors: (Constant), CO,concentration, w/c ratio

5 Relationship between natural and accelerated
carbonation

The accelerated carbonation coefficients, of the mixes
from where the natural carbonation coefficients were
obtained, were estimated through Eq. (2), considering
a content of CO, in accelerated conditions equal to 5% in
volume, as specified in the Portuguese standard for accel-
erated carbonation testing [30] and adopted in different
studies [31, 32], while within +1% difference from other
standards and research works [33, 34].

Figs. 1 and 2 show the relationship between the esti-
mated accelerated carbonation coefficients and natural
carbonation coefficients under sheltered and unsheltered
conditions.
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Assuming a linear relationship between the acceler-
ated carbonation coefficient £ and the natural carbonation
coefficient, a linear regression with residual analysis has
been performed, and the residuals were analyzed for nor-
mality using the Anderson-Darling test and are presented
in Table 6 [35].

The results concerning acceleration factors obtained in
this research are similar to others found in the literature
[34, 36]. As a result, the use of the data in Table 6 in con-
junction with Eq. (1) appears to be a viable strategy for
predicting long-term concrete carbonation in structures
from short term (accelerated) carbonation tests. Within
this frame, K in Eq. (1), is a parameter that accounts for
all factors affecting carbonation. Breaking down those
parameters into environmental factors and concrete intrin-
sic factors, K may be defined as:

K="2, 3)

where k_ is the accelerated carbonation coefficient (mm/
year®?), for tests run under 5% CO, content and k, is
a non-dimensional acceleration factor, depending on the
exposure condition, being 9.41 for sheltered condition and
11.14 for unsheltered condition (Table 6).

6 Design criteria and model

Probabilistic methods incorporate the use of reliability-
based design and the limit state methodology either by
full-probabilistic or semi-probabilistic (partial factor
method) approaches [37, 38]. Because the partial factors
recommended by the deterministic procedures could lead
to expensive repairs, Sykora et al. [39] insisted on real-
istic verification using partial factors based on the semi-

Table 6 Regression analysis results

Acceleration factor Sheltered Unsheltered
Predicted 9.41 11.14
95%confidence interval [7.12; 11.7] [9.55;12.7]
Pearson's r 0.7832 0.8956




probabilistic approach. Following Neves et al. [21], in a
semi-probabilistic design for a limit state of depassivation,
the restriction of failure probability may be defined by:

R xs>0, o)
VR

where R, S are the thickness of reinforcement cover and
the carbonation depth, respectively, and y,, y, are the cor-
responding safety factors.

Concerning cover depth, the approach adopted by
Neves et al. [21] will be followed, i.e., the design value for
cover, instead of dividing the nominal value by the safety
factor, will be the nominal value minus a safety margin:

Cd = Cnom — Ac 5 (5)

where ¢ 4 is the reinforcement cover value considered in

design, ¢, is the nominal reinforcement cover, i.e., the

specified cover for construction, and A_ is the reinforce-
ment cover safety margin, usually 10 mm [21].

Neves et al. [21] quantified the safety factors related
to carbonation depth using the Monte Carlo technique in
which the reinforcement cover was considered a determin-
istic variable and the parameters &k, and &, from Eq. (3)
were assumed to be random variables. Incorporating the
safety factors as per Neves et al. [36], Egs. (1) and (4) can
be re-written as:

K, <ok ©6)

Vslse

where k& is the accelerated carbonation coefficient (mm/
year®?®), concerning tests run under 5% CO, content, c,
the reinforcement cover design value (mm), according to
Eq. (5), k, is the acceleration factor being 9.41 for shel-
tered condition and 11.14 for unsheltered condition (from
Table 6), y, is the safety factor, 1.00 for sheltered and 1.25
for unsheltered condition [21] and 7, is the specified ser-
vice life (year).

The maximum accelerated carbonation coefficients,
allowed to ensure a service life free of carbonation-in-
duced corrosion, obtained by applying the model - Eq. (6)
- for nominal reinforcement cover ranging from 15 mm
to 40 mm and a service life between 10 and 120 years are
presented in Figs. 3 and 4, for sheltered and unsheltered
conditions, respectively.

7 Comparative analysis
The developed model is compared with a similar model,
previously proposed and validated by Neves et al. [21].
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Taking advantage of having also a statistical model that
relates the performance indicator (accelerated carbon-
ation coefficient) with the most popular design parame-
ter of the prescriptive approach (w/c ratio), used in several
standards, as the European standard EN 206-1 [24] and
its national annexes and the ACI 318 [40], the developed
model is compared with a case of prescriptive approach:
the National Annex to EN 206-1 for Portugal [25].
Considering the later, the scenarios presented in Table 7
were adopted for the comparative analysis. The adopted
nominal covers are those required by the National Annex
to EN 206-1 for Portugal [25], for the respective exposure
condition and target service lives.

The maximum allowed k, from Eq. (6) and from
the model proposed by Neves et al. [21], for the differ-
ent scenarios are presented in Table 8. The values are
quite similar for sheltered conditions, but stricter for the
new model, being this trend more evident for the values
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Table 7 Scenarios for the comparative analysis
Scenario Intended service Exposure Nominal cover
life (years) condition (mm)
A 50 Sheltered 35
B 100 Sheltered 45
C 50 Unsheltered 40
D 100 Unsheltered 50
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Table 8 Maximum allowed &, (mm/year®)

Table 9 Maximum allowed w/c

Scenario Eq. (6) Neves et al. [21] Scenario Eq. (6) + Eq. (2) E-464 [25]
A 333 35.0 A 0.60 0.60
B 329 347 B 0.60 0.60
C 37.8 50.9 C 0.64 0.60
D 35.6 48.0 D 0.63 0.60

concerning unsheltered conditions. The now proposed
model may be seen as an update of the model proposed by
Neves et al. [21], to overcome the afore mentioned issues,
incorporating at the same time recent data available in the
literature, through the update of the acceleration factor.
As lower acceleration factors were obtained in the present
investigation, than by Neves et al. [21], it is natural that
stricter accelerated carbonation resistance is required.

Another interesting point is that even though values
from both models are not in accordance with the rat-
ing for the severity of exposure conditions defined by
EN 206-1 [24], which may appear as contradictory, it shall
be noticed the adopted scenarios considered more 5 mm
of cover depth for unsheltered conditions than for shel-
tered conditions, and the service lifetime is a result of not
only the quality of the cover concrete but of both the qual-
ity and depth of reinforcement cover.

Now, considering the values from Eq. (6), presented
in Table 8 and applying Eq. (2), the maximum allowed
wlc ratios are computed. For the sake of coherence, the
CO, content in Eq. (2) was kept 5%, as in the study of
the relationship between natural and accelerated carbon-
ation. These values are presented in Table 9, together with
the values set in E-464, that is the National Annex to EN
206-1 for Portugal [25].

Interestingly, for sheltered exposure conditions the
limit w/c ratios obtained through the models match those
set by E-464 [25], what pays in favor of the validation of
the developed model. Yet, for unsheltered conditions, the
limit w/c ratios obtained through the models are softer than
those set by E-464 [25], which is quite typical of perfor-
mance-based approaches versus prescriptive approaches.
Actually, concerning limits for w/c ratios, E-464 [25]
is lenient when compared with its mother-standard, the
EN 206-1 [24]. Such lenience is grounded on the mean-
while acquired experience-based knowledge. This trend
to allow higher w/c than EN 206-1 [24] is also present in
the Swiss standard, even though only for sheltered condi-
tions [41]. Nevertheless, the applied methodology allows
the consideration of even higher w/c, what pays in favor of
concrete production cost and workability.

It is worth to recap that, even if the proposed method
leads to an equivalent solution to one obtained by a sim-
pler approach, as the prescriptive E-464 [25], like it was
found in this comparative analysis, the proposed method
has a clear advantage of being more flexible, once it is
not bound to a limited number of combinations service
lifetime-nominal cover [42] allowing the designer to
place more emphasis either on the quality or on the thick-
ness of concrete cover to reinforcement. Furthermore,
despite being recognized that w/c may fail to constitute
a reliable concrete durability indicator [43], it still can be
used as a guideline for concrete mix design, to attain the
required k_ [44]. In this sense, Eq. (2) constitutes another
feature of the present investigation.

8 Conclusions

One of the durability problems in reinforced concrete
structures is the natural carbonation of concrete, which
depends on both the materials' characteristics and the sur-
rounding environment. The statistical model proposed to
predict accelerated carbonation depth assumes a linear
relationship between the variables and the carbonation
coefficient. In this relationship, a determination coeffi-
cient of 0.918 was obtained, indicating an excellent abil-
ity of the model to explain the variation of the carbon-
ation coefficient with the water-cement ratio and with the
CO, concentration. Using the modeling results and natu-
ral carbonation results, acceleration factors were obtained
by regression analysis for both sheltered and unsheltered
conditions. The correlation coefficients obtained from the
regression analyses were 0.78 and 0.90 for sheltered and
unsheltered conditions, respectively. These are substan-
tially higher than those found in the literature, establish-
ing a more robust background for the development of the
durability design approach.

Inthe development of the durability design approach, the
acceleration factors were incorporated in the semi-prob-
abilistic method to establish limit accelerated carbon-
ation coefficients, when aiming to attain an intended ser-
vice life. The method is based on Fick's first law and uses
a safety factor, which is related with the target reliability,



as well as with the environmental conditions. The devel-
oped method was validated through comparative analyses.
A comparative analysis with a similar method, formerly
proposed, revealed similar results for sheltered condi-
tions (near 5% differences) and stricter specifications for
unsheltered conditions (25% lower accelerated carbon-
ation coefficients are required). The other comparative
analysis was with a standardized prescriptive approach.
The comparative factor was the limit water-cement ratio
set by both approaches. For sheltered conditions, the val-
ues are equal, while for unsheltered conditions the herein
developed approach allows higher water-cement ratios
(5% higher), confirming the claimed advantage of using
performance-based instead of prescriptive approaches.
It is considered that these comparative analyses prove that
the herein proposed method can be applied to establish
carbonation performance requirements.
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