
Ŕ periodica polytechnica

Civil Engineering

57/1 (2013) 21–26

doi: 10.3311/PPci.2138

http://periodicapolytechnica.org/ci

Creative Commons Attribution

RESEARCH ARTICLE

Numeric-Symbolic Solution for Satellite

Trajectory Control by Pole Placement

Béla Paláncz

Received 2012-01-30, revised 2012-05-07, accepted 2013-03-01

Abstract

Control design of satellites based on pole placement method

results in determined or underdetermined multivariable polyno-

mial systems. Since only the real solutions can be considered for

hardware implementation, we are looking for exclusively these

solutions. In this study we suggest a numeric-symbolic approach

to compute only the real solutions directly. Employing computer

algebra (Dixon or reduced Gröbner basis) a condition can be

formulated for the free variables as parameters of the underde-

termined system, which ensures only real solutions. Numerical

example illustrates the procedure and the effectivity of the con-

trol law.
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1 Introduction

Geodesic satellites play an important role in navigation

(Global Navigation Satellite System, GNSS), in environmen-

tal monitoring like global warming, desertification, flooding,

space born meteorology (US based Geostationary Operational

Environmental Satellite, GEOS, Europe owned METEorological

SATellite, METEOSAT) as well as in positioning of any point

on Earth from space, preliminary designed to be used by the US

military (Global Positioning System, GPS), see Awange et al.

(2010) [1] as well as Somodi and Földváry (2011) [16].

The control of the trajectories of such satellites in order to

ensure their proper and reliable operation is an extremely im-

portant task. Attitude control (angular orientation) keeping the

satellite pointed in the right direction as well as orbit control

are needed so, that the optical system covers the programmed

ground area at all times. However, the satellite tends to change

its orientation due to torque produced by environment (drag of

residual atmosphere on solar array, solar radiation pressure, the

gravitational acceleration of the sun and moon and the effect of

the earth not being spherical, etc.) or by itself (due to move-

ment of mechanical parts, etc). Thus the position and motion of

the satellite are continuously controlled by a programmed con-

trol loop consisting of sensors (like rate gyros) measuring the

satellite’s attitude. The on board computer processes these mea-

surements and generates commands according to the control law

of the controller. These commands are carried out by the actu-

ators (like micro-trusters) to ensure correct pointing and orbit.

A detailed description of the design and evaluation such control

systems can be found in Paluszek at al (2009) [13].

In this study the design of a control law via numeric - sym-

bolic techniques is suggested. For control design one basically

needs the dynamical model of the satellite motion. Surprisingly,

relatively simple model can be satisfactory for such task, see

Neokleous (2007) [10].

Now we consider a simple but realistic dynamical model of

the satellite, see Kailath (1980) [7]. Generally polar coordinates

are used for the satellite being in a circular, equatorial orbit. The

goal of the feedback is to keep the satellite in the same orbit

when disturbances such as aerodynamic drag cause it to deviate.

Numeric-Symbolic Solution for Satellite Trajectory Control by Pole Placement 212013 57 1

http://periodicapolytechnica.org/ci
http://creativecommons.org/licenses/by/3.0/


The state vector is x = [rṙθθ̇] with r and θ the deviations from

the reference orbit and the reference attitude, respectively and

the input is u = [ur, ut], with ur and ut respectively the radial and

tangential thrusters. The linearized state-space equations around

the reference orbit are represented by the following matrices,

A =


0 1 0 0

3ω2
0

0 0 2ω0r0

0 0 0 1

0 −2
ω0

r0
0 0

 and B =


0 0
1
v

0

0 0

0 1
vr0

 (1)

where the radius of the orbit r0, angular velocity ω0 and v is the

mass of the satellite. Supposing that the satellite completely

controllable with tangential thruster, Dorf and Bishop (1998)

[5], let

C =

 0 0 1 0

0 0 0 1

 (2)

There are numerous control design techniques developed for lin-

ear dynamic systems. Here we consider the pole placement tech-

nique, Byrnes (1989) [2]. The advantages of this approach are

the simplicity and the robustness, both are very important in case

of satellite control.

2 Pole placement problem

Assuming, we are given a linear system with m inputs u ∈ Rm,

p outputs y ∈ Rp by three matrices: A ∈ Rn×n, B ∈ Rn×m and

C ∈ Rp×n, where n equals the number of internal states stored

by the vector x ∈ (Rn. These three matrices define the system of

linear first order differential equations:

ẋ(t) = Ax(t) + Bu(t) (3)

ẏ(t) = Cx(t). (4)

Our task is to find a control law,

uc(t) = K(t)y(t) (5)

which provides the system input to stabilize the system,

u(t) = r(t) − uc(t) (6)

where r is a reference input vector, see Fig. 1.

r

K H s L

-

+

G H s L = C H s I - A L
-1

B y

Fig. 1. System with output-feedback pole assignment compensator in

frequency-domain representation

The control law can be represented by a linear system, by

tuples of four matrices (F, L,H,M)

uc(t) = Hz(t) + My(t) (7)

ż(t) = Fz(t) + Ly(t) (8)

where z ∈ Rq. The compensator which realizes this control law

is called as qth-order dynamic compensator. The most simple

realization (q = 0) is a single constant matrix M ∈ Cm×p, which

called as a static compensator,

uc(t) = My(t) (9)

There are many different methods to solve this linear control

problem. One of the classical and most simple methods is the

pole placement technique. In this case the compensator realizes

a feedback law, which ensures the prespecified closed-loop sys-

tem’s poles, λ1, λ2, . . . , λn+q.

It means that if the system matrices (A, B,C) are known and

the assigned poles (λi’s are given, then the state space matrices

of the compensator (F, L,H,M) should be computed.

You can find many iterative numerical approaches to imple-

ment this technique like Ackermann’s formula employing con-

trollability matrix and the characteristic polynomial of matrix

A, robust pole assignment method using iteration, recursive al-

gorithm using Hessenberg-form, explicit and implicit QR al-

gorithm employing QR decomposition and Schur method with

Schur decomposition, see Datta et al (2003) [3].

These methods are built in the control design packages of

leading computing systems like Mathematica and MATLAB.

However, most of them suffer from numerical instability re-

sulted by ill-conditioned linear system and in case of multiplied

poles they essentially fail because of singularity, Rosenthal and

Willems (1998) [15].

Pole placement problem leads to a system of multivariate

polynomial system, which can have real as well as complex so-

lutions, although we are interested in only the real solutions,

since only these can be practically implemented in the hardware

elements of the control loop. To find all of the real solutions ex-

clusively is not an easy task, see Dickenstein and Emiris (2005)

[15].

Recently, numerical homotopy method is suggested as a

symbolic-numeric solution of the problem using Pieri homotopy

and implemented in software combining MATLAB and Maple

based PHCpack, see Verschelde and Wang (2004) [17]. This

method computes all of the solutions of the system, then the real

ones can be selected.

In this study we introduce an alternative approach, which

makes it possible to compute only the real solutions, directly.

To illustrate this method, here we consider two basic approaches

for developing the multivariate polynomial system to be solved.

3 Transfer function approach

In this case we use the denominator of the closed loop transfer

function directly. Employing the Laplace transform of Eq. (5)

and (6), the transfer function of the closed loop can be expressed
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as,

Q(s) =
L(y)

L(r)
=

(
Ip + G(s)K(s)

)−1
G(s) (10)

where G(s) is the transfer function of the linear system (open

-loop), with the Laplace transform of Eqs. (3) and (4) we get,

G(s) =
L(y)

L(u)
= C (sIn − A)−1 B (11)

In case of MIMO system (multiple input- multiple output)

Q(s) is a matrix with polynomial entries. These λi values should

be the roots of the denominators of the elements of Q(s). Since

all of the elements have the same denominator, Q(s) can be ex-

pressed as,

Q(s) =
N(s)

P(s)
(12)

Consequently, we get the following polynomial system,

P(λi) = 0, i = 1, 2, . . . , n + q (13)

Designing compensator means to compute the elements of the

tuples of four matrices (F, L,H,M) under this condition. In gen-

eral, we can set n + q poles as condition, and we have (m + q)

(p + q) matrix elements as unknowns, see Fig.2

A
Hn µ n L

B
Hn µ mL

C
Hp µ nL

0
Hp µ mL

→

F
Hq µqL

L
Hq µ pL

H
Hmµ qL

M
Hm ×pL

a) b)

Fig. 2. State space matrices of the control system a) system, b) compensator

Now, in the system Eq.(13), the elements of (F, L,H,M) are

unknown variables, while the elements A, B,C are known and

the λi values are given. Therefore Eq. (13) can be considered as

a multivariate polynomial in terms of the unknown elements of

(F, L,H,M) .

However there is another way to compute the tuples of the

four matrices (F, L,H,M), namely from the characteristic equa-

tion of the closed loop.

4 Characteristic polynomial approach

Let us suppose that (A, B,C) are real matrices, then exist ma-

trices (F, L,H,M), and the following polynomial of degree n×q

which is called as the characteristic polynomial of the closed

loop with negative feedback,

φ(λ) = det Ω (14)

where Ω is a square matrix of (n + q) × (n + q),

Ω =

 λIn − A + BMC BH

−LC λIq − F

 (15)

All of the poles of the closed loop satisfy this polynomial,

namely

φ(λi) = 0, i = 1, 2, . . . , n + q (16)

5 Computation of static compensator

In our case n = 4, m = 2 and p = 2. In addition q = 0

and m × p = n therefore the polynomial system, Eq. (13) is

linear, see Wang (1996) [18]. However this system is frequently

ill-conditioned and in case of multiplied poles is singular. The

transfer function of the system is, see Eq. (11)

G(s) = C (sIn − A)−1 B =

 −
2sω0

vr0(s4+s2ω2
0)

s2−3ω2
0

vr0(s4+s2ω2
0)

−
2s2ω0

vr0(s4+s2ω2
0)

s3−3sω2
0

vr0(s4+s2ω2
0)


The elements of the transfer function of the closed loop system,

see Eq.(10)

Q(s) =
(
Ip + G(s)K(s)

)−1
G(s) =

1

P(s)

 2sω0 s2 − 3ω2
0

2s2ω0 s3 − 3sω2
0


where

P(s) =s4vr0 + s2vr0ω
2
0 − 2sω0m1,1 − 2s2ω0m1,2 + s2m2,1

− 3ω2
0m2,1 + s3m2,2 − 3sω2

0m2,2

(17)

It goes without saying that the characteristic polynomial ap-

proach leads to the same polynomial. Now Eq. (14) reduces

to

φ(λ) = det (λIn − A + BMC) (18)

therefore

φ(λ) =λ4 + λ2ω2
0 −

2λω0m1,1

vr0

−
2λ2ω0m1,2

vr0

+
λ2m2,1

vr0

−
3ω2

0
m2,1

vr0

+
λ3m2,2

vr0

−
3λω2

0
m2,2

vr0

ω2
0m2,1 + s3m2,2 − 3sω2

0m2,2

(19)

Since vr0 , 0, Eq. (17) and Eq. (19) have the same roots.

Now, considering Eq. (9) the compensator gain is K(s) ≡ M

constant matrix, with m × p = 2 × 2 entries,

M =

 m1,1 m1,2

m2,1 m2,2


We can assign n + q = 4 + 0 = 4 poles. Let the desired poles

are {λ1, λ2, λ3, λ4}. All prespecified λi should be the root of the

polynomial P (or φ). Our problem has no free parameters, since

(n + q) = 4 is equal to (m + q)(p + q) = (2 + 0) × (2 + 0) = 4,

consequently the linear system for mi, j is determined,

vr0λ
4
1 + vr0λ

2
1ω

2
0 − 2λ1ω0m1,1 − 2λ2

1ω0m1,2 + λ2
1m2,1

− 3ω2
0m2,1 + λ3

1m2,2 − 3λ1ω
2
0m2,2 = 0

vr0λ
4
2 + vr0λ

2
2ω

2
0 − 2λ2ω0m1,1 − 2λ2

2ω0m1,2 + λ2
2m2,1

− 3ω2
0m2,1 + λ3

2m2,2 − 3λ2ω
2
0m2,2 = 0

vr0λ
4
3 + vr0λ

2
3ω

2
0 − 2λ3ω0m1,1 − 2λ2

3ω0m1,2 + λ2
3m2,1

− 3ω2
0m2,1 + λ3

3m2,2 − 3λ3ω
2
0m2,2 = 0

vr0λ
4
4 + vr0λ

2
4ω

2
0 − 2λ4ω0m1,1 − 2λ2

4ω0m1,2 + λ2
4m2,1

− 3ω2
0m2,1 + λ3

4m2,2 − 3λ4ω
2
0m2,2 = 0

(20)
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The solution can be expressed via Dixon resultant or reduced

Gröbner basis,

m1,1 =
vr0

2ω0

(
λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4 + 3λ1ω

2
0

+3λ2ω
2
0 + 3λ3ω

2
0 + 3λ4ω

2
0

)
m1,2 = −

1

6ω3
0

vr0

(
λ1λ2λ3λ4 + 3λ1λ2ω

2
0 + 3λ1λ3ω

2
0

+3λ2λ3ω
2
0 + 3λ1λ4ω

2
0 + 3λ2λ4ω

2
0 + 3λ3λ4ω

2
0 − 3ω4

0

)
m2,1 = −

vr0λ1λ2λ3λ4

3ω2
0

m2,2 = − vr0 (λ1 + λ2 + λ3 + λ4)

6 6. Computation of a dynamic compensator

Considering the Laplace transform of Eq. (8),

sL(z) = FL(z) +L(y) (21)

Then

L(z)
(
sIq − F

)
= LL(y) (22)

ExpressingL(z) and substituting it into the Laplace transform

of Eq. (7), we obtain,

L(uc) = H
(
sIq − F

)−1
LL(y) + ML(y) (23)

Therefore the transfer function of the dynamical compensator,

is,

K(s) =
L (uc)

L(y)
= H

(
sIq − F

)−1
L + M (24)

Let q = 1, then n + q = 4 + 1 = 5 poles to be assigned,

{λ1, λ2, λ3, λ4, λ5}, and there are (m+q)(p+q) = (2+1)×(2+1) =

9 parameters to be computed. The state matrices of the dynamic

compensator are, see Fig. 2,

F = ( f1,1), L =
(

l1,1 l1,2

)
,

H =

 h1,1

h2,1

 , M =

 m1,1 m1,2

m2,1 m2,2

 (25)

Consequently we have 4 free parameters. Let us compute the

transfer function of the compensator, see Eq. (24),

K = H
(
sIq − F

)−1
L + M =

 h1,1l1,1
s− f1,1

+ m1,1
h1,1l1,2
s− f1,1

+ m1,2
h2,1l1,1
s− f1,1

+ m2,1
h2,1l1,2
s− f1,1

+ m2,2


The transfer function of the closed loop is, see Eq. (10),

Q =

(
s − f1,1

)
P(s)

 −2sω0

(
s2 − 3ω2

0

)
−2s2ω0 s

(
s2 − 3ω2

0

) 
where,

P(s) =s5vr0 + s3vr0ω
2
0 − s4vr0 f1,1 − s2vr0ω

2
0 f1,1 − 2sω0h1,1l1,1

+ s2h2,1l1,1 − 3ω2
0h2,1l1,1 − 2s2ω0h1,1l1,2 + s3h2,1l1,2

− 3sω2
0h2,1l1,2 − 2s2ω0m1,1 + 2sω0 f1,1m1,1 − 2s3ω0m1,2

+ 2s2ω0 f1,1m1,2 + s3m2,1 − 3sω2
0m2,1 − s2 f1,1m2,1

+ 3ω2
0 f1,1m2,1 + s4m2,2 − 3s2ω2

0m2,2 − s3 f1,1m2,2 + 3sω2
0 f

(26)

As the alternative method, let us employ again the character-

istic polynomial approach,

Ω =

 λI4 − A + BMC BH

−LC λI1 − F



=



λ −1 0 0 0

−3ω2
0

λ
m1,1

v
−2r0ω0 +

m1,2

v

h1,1

v

0 0 λ −1 0

0
2ω0

r0

m2,1

vr0
λ +

m2,2

vr0

h2,1

vr0

0 0 −l1,1 −l1,2 λ − f1,1


then again the roots of the polynomials P(s) and φ(λ) = det(Ω)

are the same. Now, we have 5 poles to be assigned and all of

them should satisfy this polynomial. Consequently there are a

polynomial system of five equations to be solved for the coeffi-

cients of matrices F, L,H and M,

P (λi) = 0, i = 1, 2, . . . , 5 (27)

The number of unknowns is 9, see Eq. (25). Therefore

4 of them can be considered as free parameters. For exam-

ple, let us choose f1,1, l1,1, h1,1,m1,1 and m2,2 as unknowns and

l1,2, h2,1,m1,2 and m2,1 as parameters. Now applying Dixon re-

sultant, to the system Eq. (27), we get the following polynomial

for f1,1,

α f 3
1,1 + β f 2

1,1 + γ f1,1 + δ = 0

where

α = −12vr0 (λ1 − λ2) (λ1 − λ3) (λ2 − λ3) (λ1 − λ4) (λ2 − λ4)

· (λ3 − λ4) (λ1 − λ5) (λ2 − λ5) (λ3 − λ5) (λ4 − λ5)ω4
0h2,1l1,2

β = −12 (λ1 − λ2) (λ1 − λ3) (λ2 − λ3) (λ1 − λ4) (λ2 − λ4)

· (λ3 − λ4) (λ1 − λ5) (λ2 − λ5) (λ3 − λ5) (λ4 − λ5)

· (−vr0λ1 − vr0λ2 − vr0λ3 − vr0λ4 − vr0λ5)ω4
0h2,1l1,2

γ = −12 (λ1 − λ2) (λ1 − λ3) (λ2 − λ3) (λ1 − λ4) (λ2 − λ4)

· (λ3 − λ4) (λ1 − λ5) (λ2 − λ5) (λ3 − λ5) (λ4 − λ5)

· ω4
0h2,1l1,2 (vr0 (λ3λ4 + λ3λ5 + λ4λ5 + λ2 (λ3 + λ4 + λ5)

+λ1 (λ2 + λ3 + λ4 + λ5) − ω2
0

)
− h2,1l1,2 + 2ω0m1,2 − m2,1

)
(28)

and

δ = 0

Since q = 1, therefore f1,1 , 0 and the polynomial can be re-

duced to a polynomial of second order,

α f 2
1,1 + β f1,1 + γ = 0

In practice, the compensators can realize only real feedback

law. If the matrices (A, B,C) are real and the condition q(m+p)+

mp > n + q is true, then there exist real matrices (F, L,H,M),

see Rosenthal and Wang (1996) [14]. Since in our case 1 × (2 +

2)+2×2 = 8 > 4+1 = 5, we are looking for only real solutions.

Then the following constrain has to be valid for the parameters,
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Tab. 1. Numerical solution of the pole placement problem

f1,1 l1,1 h1,1 m1,1 m2,2

-7.80999 -473.116 -11.0544 -719.883 8.26297

-8.97886 -503.506 -12.0482 -719.315 7.18729

c = β2 − 4αγ ≥ 0

Considering Eq. (28),

c = 144vr0 (λ1 − λ2) 2 (λ1 − λ3)2 (λ2 − λ3) 2 (λ1 − λ4)2

· (λ2 − λ4)2 (λ3 − λ4)2 (λ1 − λ5)2 (λ2 − λ5)2 (λ3 − λ5)2

· (λ4 − λ5)2 ω8
0h2

2,1l21,2

(
vr0 (λ1 + λ2 + λ3 + λ4 + λ5)2

− 4 (vr0 (λ3λ4 + λ3λ5 + λ4λ5 + λ2 (λ3 + λ4 + λ5)

+λ1 (λ2 + λ3 + λ4 + λ5) − ω2
0

)
− h2,1l1,2 + 2ω0m1,2 − m2,1

))
≥ 0

(29)

A more detailed mathematical analysis of the solutions of this

polynomial system can be found in Paláncz (2013) [12].

7 Numerical example for the dynamic compensator

Now, q = 1, therefore we need n + q = 4 + 1 = 5 poles to

be assigned. The values of poles and the model parameters are

from Verschelde and Wang (2004) [17],

λ1 →
−2 + i
√

5
, λ2 →

−2 − i
√

5
, λ3 → −5, λ4 → −7, λ5 → −3

and

v = 0.74564, ω0 = 0.345354, r0 = 1.2342

Let us select the free parameters as

h2,1 = 1, l1,2 = 1,m1,2 = 1,

7.1 Numerical results

Considering Eq. (29)

m2,1 ≥ 25.6857 (30)

We choose m2,1 = 26. Now substituting these numerical data

into Eq. (27), it leads to a polynomial system for the unknown

matrix coefficients f1,1, l1,1, h1,1,m1,1,m2,2. This system can be

easily solved by the numeric polynomial solver of Mathemat-

ica, NSolve based on numerical Groebner basis. The condition

Eq.(30) ensures real solutions, namely there are two of them, see

Table 1.

Considering strictly equal relation in Eq. (30) the two solu-

tions will be the same. To check our solutions the eigenvalues

of the state space form of the closed loop, see Eq. (15),

S =

 A − BMC −BH

LC F

 (31)

can be computed. The eigenvalues of S are the same as the

assigned values of λi’s.

7.2 Simulation of the dynamic performance of the control

system

In order to compare the dynamic behavior of the system with

and without control, we simulate its dynamic response for a

unitstep disturbance taking one second. Fig.3 shows the per-

formance of open loop without compensator,

r

 q

0 2 4 6 8 10

-25

-20

-15

-10

-5

0

t

r,
q

Fig. 3. System response without compensator

Applying compensator based on the first solution in Table 1,

Fig. 4 shows the performance of the controlled system with this

first order dynamic compensator,

q

r

0 2 4 6 8 10

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

t

r,
q

Fig. 4. System response with dynamic compensator

The symbolic and numeric computations were carried out

with Mathematica. The Dixon resultant package developed and

implemented by Nakos and Williams (1997) [8] and (2002) [9]

was employed. To simulate the dynamical performance of the

controlled satellite system the Control Application package of

Mathematica was used, see Paláncz et al. (2005) [11].

8 Conclusions

In this contribution the application of computer algebra to

determine pole-placement control law for controlling satellite

trajectory was demonstrated. Employing Dixon resultant or re-

duced Groebner basis the matrices of the static controller can be

computed in symbolic form. In case of dynamic controller, a

constrain ensuring only real solutions of the multivariate poly-

nomial system can be given. Consequently, the proper selection
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of the free parameters of the controller matrices provides the real

solutions directly, without computing all solutions of the system

numerically. Example illustrates, that this type of solution of

the control law improves the dynamic performance of the satel-

lite system effectively. Further improvement of this suggested

method can be carried out via utilization of the non-uniqueness

of the pole placement solution, namely defining the values of

the free parameters in optimal way using the minimum possible

fuel consumption via hypothetical loop-decoupling, see Juang

(1997) [6].
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