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Abstract

A hybridization of the Quasi-Newton with Big Bang-Big

Crunch (QN-BBBC) optimization algorithm is proposed to find

the optimal weight of the structures subjected to multiple natu-

ral frequency constraints. The algorithm is based on hybridizing

a mathematical algorithm (quasi-Newton) for local search and

a meta-heuristic algorithm (Big Bang-Big Crunch) for global

search, and to help to leave the traps. Four examples are pro-

posed for the optimization of trusses and two examples are stud-

ied for the optimization of frames with frequency constraints.

The examples are widely reported and used in the related litera-

ture as benchmarks. The numerical results reveal the robustness

and high performance of the suggested methods for the struc-

tural optimization with frequency constraints.
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1 Introduction

It is well known that the natural frequencies are fundamen-

tal parameters affecting the dynamic behavior of the structures.

Therefore, some limitations should be imposed on the natural

frequency range to reduce the domain of vibration and also

to prevent the resonance phenomenon in dynamic response of

structures [1]. Weight optimization of structures with frequency

constraints is considered to be a challenging problem. Mass re-

duction conflicts with the frequency constraints, especially when

they are lower bounded. Also, frequency constraints are highly

non-linear, non-convex and implicit with respect to the design

variables [2].

Some progress has been made in optimum design of struc-

tures considering natural frequency constraints. This work

started to be developed in 1980s with the paper of Bellagamba

and Yang [3].

McGee and Phan [4] proposed an efficient optimality cri-

teria (OC) method for cross-sectional optimization of two-

dimensional frame structures. The iterative method involves

alternately satisfying the constraints (scaling) and applying the

Kuhn-Tucker (optimality) condition (resizing).

Grandhi and Venkayya [5] utilized an optimality criteria (OC)

method based on uniform Lagrangian density for resizing and

scaling procedure to locate the constraint boundary. Multiple

equality and inequality frequency constraints were considered

on truss structures.

Tong et al. [6] presented a basic theory for determining the

solution existence of frequency optimization problems for truss

structures. This method was based on the fact that the frequen-

cies remain unchanged when the truss is modified uniformly.

Sedaghati [7] developed a new approach using combined

mathematical programming based on the Sequential Quadratic

Programming (SQP) technique, and the finite element technique

based on the Integrated Force Method to optimize both frame

and truss structures with frequency constraints.

Gholizadeh et al. [1] and Salajegheh et al. [8] presented a

study where a Genetic Algorithm (GA) and a neural network

(NN) were utilized to find the optimal weight of structures sub-

jected to multiple natural frequency constraints.
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Gomes [9] used the Particle Swarm Optimization (PSO) al-

gorithm to investigate simultaneous shape and size optimization

of truss structures with multiple frequency constraints.

Kaveh and Zolghadr [2] utilized a hybridization of the

Charged System Search and the Big Bang-Big Crunch algo-

rithms with trap recognition capability to shape and size opti-

mization of truss structures with multiple frequency constraints.

Various methods with different levels of complexity and suc-

cess have been proposed to solve optimal design problems.

These methods can be divided into two general categories: 1.

Mathematical methods such as quasi-Newton (QN) and dy-

namic programming (DP); 2. Meta-heuristic algorithms such as

Genetic algorithms (GA), Particle swarm optimization (PSO),

Ant Colony Optimization (ACO), Big Bang-Big Crunch (BB-

BC), Charged system search (CSS), Magnetic charged system

search (MCSS), and Ray optimization (RO). Some successful

applications of meta-heuristic algorithms can be found in the

work of Refs. [10–13].

Mathematical algorithms are hard to apply and time-

consuming in these optimization problems. Furthermore, a good

starting point is vital for these methods to be executed success-

fully and they may be trapped in local optima. On other hand,

frequency constraints are highly non-linear, non-convex and im-

plicit with respect to the design variables [9]. Simultaneous con-

sideration of sizing and shape variables together with the vibra-

tion mode switching phenomenon which usually occurs while

minimizing the weight, may cause some convergence difficul-

ties. Hence, combining a meta-heuristic algorithm for global

search for solving these difficulties seems to be inevitable.

The Big Bang and Big Crunch theory is introduced by Erol

and Eksin [14] which has a low computational time and high

convergence speed. According to this theory, in the Big Bang

phase energy dissipation produces disorder and randomness is

the main feature of this phase; whereas, in the Big Crunch phase,

randomly distributed particles are drawn into an order. The

Big Bang–Big Crunch (BB–BC) Optimization method similarly

generates random points in the Big Bang phase and shrinks these

points to a single representative point via a center of mass in the

Big Crunch phase. After a number of sequential Big Bangs and

Big Crunches where the distribution of randomness within the

search space during the Big Bang becomes smaller and smaller

about the average point computed during the Big Crunch, the al-

gorithm converges to a solution. The BB–BC method has been

shown to outperform the enhanced classical genetic algorithm

for many benchmark test functions (Erol and Eksin [14]). This

method was successfully applied to size optimization of space

truss structures by Kaveh and Talatahari [15].

The Big Bang-Big Crunch optimization algorithm was hy-

bridized with local directional moves and applied to target mo-

tion analysis problem by Genç et al. [16]. Another hybrid Big

Bang–Big Crunch optimization (HBB–BC) was implemented to

solve the truss optimization problems (Kaveh et al. [17]). The

HBB–BC method consisted of two phases: a big bang phase

where candidate solutions were randomly distributed over the

search space, and a Big Crunch phase working as a convergence

operator where the center of mass was generated. Then new so-

lutions were created by using the center of mass to be used as

the next Big Bang. These successive phases were carried re-

peatedly until a stopping criterion has been met. This algorithm

not only considered the center of mass as the average point in

the beginning of each Big Bang, but also similar to PSO-based

approaches (Kenneday et al. [18]), utilized the best position of

each particle and the best visited position of all particles.

The mathematical method utilized for local search in this

study is the QN method. Similar to other mathematical methods,

this method has one input and one output. On other hand, BB-

BC has many inputs but only one output, which can be named

as the center of ‘mass’. In this paper, this similarity is utilized

for the hybridization of these methods.

The present paper is organized as follows: In Section 2, we

describe the QN and BB-BC. In Section 3, the new method is

presented. Statement of the optimization design problem with

frequency constraints is formulated in Section 4. Six examples

are studied in Section 5. Conclusions are derived in Section 6.

2 Preliminaries

In order to make the paper self-explanatory, before propos-

ing QN-BB-BC for optimal design of structures with frequency

constraints, the characteristics of the QN and BB-BC are briefly

explained in the following two subsections:

2.1 Quasi-Newton Method

Quasi-Newton method is a special case of variable metric

methods for finding local maxima and minima of functions.

Quasi-Newton methods build up curvature information. In New-

ton methods, let H denote the Hessian, c be a constant vector and

b be a constant, then a quadratic model problem formulation can

be constructed as

min
x

(
1

2
xT Hx + cT x + b) (1)

If the partial derivatives of x tends to zero, i.e.∇ f (x∗) = Hx∗ +

c = 0, then the optimal solution for the quadratic problem oc-

curs, and thus x∗ = −Hc.

In quasi-Newton methods, the Hessian matrix of the second

derivatives of the function to be minimized does not need to

be computed. Instead the Hessian matrix is updated by analyz-

ing successive gradient vectors. In this study, the quasi-Newton

method of Matlab [19] is utilized which is called the Broyden-

Fletcher-Goldfarb-Shannon (BFGS) method.

2.2 Big Bang-Big Crunch algorithm

The Big Bang-Big Crunch algorithm is proposed by Erol and

Eksin [11] and it is based on one of the theories of evolution

of the universe with the same name. The algorithm consists of

two phases: a Big Bang phase and a Big Crunch phase. In the
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Big Bang phase, solution candidates are distributed randomly

within the search space. This randomness is regarded as energy

dissipation in nature. Like any other meta-heuristic optimization

technique, the initial population is produced by spreading the

candidates all over the search space in a uniform manner. The

Big Bang phase is followed by the Big Crunch phase.

The Big Crunch is a convergence operator that has many in-

puts but only one output, which is named as the center of ‘mass’,

since the calculations of this output are similar to those of the

center of mass. Here, the term mass refers to the inverse of the

fitness function value. The point representing the center of mass

is calculated according to the following formula:

xc
j =

∑N
i=1

1
f i xi

j∑N
i=1

1
f i

i = 1, 2, . . . ,N (2)

Where xc
j
is the jth component of the center of mass, xi

j
is the jth

component of ith candidate, f i is the fitness of the ith candidate,

and N is the number of candidates in the population. When the

Big Crunch phase is completed, the Big Bang phase is carried

out to produce new candidates for the next iteration. These new

candidates are produced using a normal distribution around the

center of mass of the previous iteration. The standard deviation

of this normal distribution decreases as the optimization process

proceeds:

x
i,new

j
= xc

j + r × c1 ×
(xmax

j
− xmin

j
)

1 + k/c2

(3)

where x
i,new

j
is the new value of the jth component from ith can-

didate, r is a random number with a standard normal distribu-

tion, c1 and c2 are two constants and k is the iteration index.

xmax
j

and xmin
j

are the maximum and minimum values of the jth

component of the variable x, respectively.

3 A hybrid Quasi-Newton and Big Bang-Big Crunch

The hybrid QN and BB-BC algorithm is presented in this sec-

tion. The main algorithm is based on the local search property of

the QN and the global search property of the BB-BC is added to

it. As mention before, one of disadvantages of the QN algorithm

is that it may be trapped in local optima and a good starting point

is vital for this method. Therefore BB-BC is utilized to help the

QN method to leave the local optima and be independent of a

good starting point. Therefore, similar to the other mathemat-

ical methods, QN has one input and output. On other hand,

BB-BC has many inputs but only one output, which is known

as the center of ‘mass’. This similarity is one of the reasons for

choosing the BB-BC for hybridization of these methods.

In the present optimization algorithm the method is divided

into some stage (NS stages), and each stage is continued until

QN method gets trapped in a local optima. Then, the Big Bang

phase is carried out to leave the local optima, and the Big Crunch

phase helps to change all the values of the candidate solutions

to a single value as the input of the quasi-Newton method in

the next stage. Also, with increasing the number of stages, the

search space decreases and the local search increases.

The proposed method is summarized as:

Step 1: Initialization. A point is initialized with a random

position in the search space.

Step 2: Big Bang phase. In this step, for having a good start-

ing point (in the first iteration) and to escape from the trap (in

the subsequent iterations), Big Bang phase is carried out by the

following equation:

x
i,new

j
= xc

j + r × c1 ×
(xmax

j
− xmin

j
)

1 + S N/c2

(4)

Where SN is the stage number that is replaced with k in Eq. (3).

In fact, by performing this change the search space is decreased

and the stage number is increased. The center of mass in Eq. (4)

is the starting point (in the first iteration) or the output of the QN

method (in the subsequent iterations).

Step 3: Big Crunch phase. The center of mass of the gener-

ated points in the previous step is determined by Eq. (3).

Step 4: Local search: In this step, as the local search in the

search space, quasi-Newton method is used. Input point in this

method is the calculated center of mass in the previous step. Dif-

ferent terminating criterion can be applied to this method, such

as the number of iterations, number of function count, tolerance

variable and tolerance function. In this study, the number of

iterations is utilized as the terminating criterion in each stage.

Number of iterations is increased in each stage, e.g. 10*SN.

Step 5: Terminating criterion control. Steps 2-5 are repeated

after some stages. In step 2, the center of mass is the new point

utilized in the QN method.

4 Formulation of the structural optimal design for fre-

quency constraints

In structural optimization problems with frequency con-

straints, the objective is to minimize the weight of the struc-

ture while satisfying multiple constraints on natural frequencies.

Cross-sectional areas of the members along with the coordinates

of some nodes are considered as the design variables and as-

sumed to change continuously. The connectivity information of

the structure is predefined and kept unchanged during the opti-

mization process. A lower and upper bound may also be pre-

scribed for each variable. The optimization problem is formally

stated as follows:

Find X = [x1, x2, x3, . . . , xn]

to minimizes Mer(X) = f(X) × fpenalty(X)

subjected to

gi(X) ≤ 0, i = 1, 2, . . .,m

ximin ≤ xi ≤ ximax

(5)

where X is the vector of design variables with n unknowns, gi

is ith constraint from m inequality constraints, and Mer(X) is
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the merit function; f (X) is the cost function; fpenalty (X) is the

penalty function which results from the violations of the con-

straints corresponding to the response of the structure. Also,

ximin and ximax are the lower and upper bounds of design vari-

able vector, respectively.

Exterior penalty function method is employed to transform

constrained optimization problem into unconstrained one as fol-

lows:

fpenalty(X) = 1 + γp

m∑
i=1

max(0, g j(x))2 (6)

where γp is the penalty multiplier.

5 Numerical examples

In this section, common structural optimization examples, as

benchmark problems, are optimized with the proposed method.

The final results are compared to the solutions of other meth-

ods to demonstrate the efficiency of the present approach. Four

trusses and two frames are optimized in this section.

For the proposed algorithm, five stages are used in the opti-

mization process. As mentioned before, the number of iterations

for the quasi-Newton method in each stage is equal to 10*SN.

Therefore, the number of iterations in each stage is equal to 10,

20, 30, 40 and 50. Thus, the total number of iterations is equal to

150 in the all examples. In the BB-BC method, the population

of the solution candidates is taken as the number of variables;

the value of constants c1 and c2 are set to 1 and 2, respectively.

It should be mentioned that when the natural frequencies are

optimized to the edge, then the structure might be sensitive to

small implementation errors. In order to avoid this problem,

the target frequencies can be considered slightly higher than the

necessary magnitudes.

5.1 A 10-Bar planar truss

The 10-bar truss problem has become a common problem in

the field of structural design with frequency constraints to test

and verify the efficiency of many different optimization meth-

ods. Fig. 1 shows the geometry and support conditions for this

planar truss. Table 1 shows the material properties, variable

bounds, and the frequency constraints for this example. There

are 10 design variables in this example and a set of pseudo vari-

ables larger than 0.645 cm2.

This example was first solved by Grandhi and Venkayya [5]

using the optimality algorithm. Lingyun et al. [20] have used

a niche hybrid genetic algorithm to optimize this truss. Gomes

has analyzed this problem using the particle swarm algorithm

[9]. Kaveh and Zolghadr [2] have investigated the problem uti-

lizing the standard and hybridized CSS-BBBC algorithm with

trap recognition capability.

Table 2 compares the results obtained in this research with

the outcome of the other researches. It can be seen that the re-

sults of the proposed algorithm are better than those of the pre-

viously reported methods and the standard QN. Table 3 shows

the natural frequencies of the optimized structure obtained by

Fig. 1. A 10-bar planar truss.

several authors in the literature and those of the present work.

It is clear that none of the frequency constraints are violated.

Fig. 2 provides a comparison of the convergence rates of the QN

and QN-BBBC in the all iterations and the 20-150 iterations, re-

spectively. As it can be seen, the standard QN is trapped in a

local optimum after the 40th iteration and the function value is

changed slowly. In the QN-BBBC method, the BBBC occurs

in the 10th, 30th, 60th and 100th iterations and the QN method

escapes from the local optima. Also, the function value in each

stage is lower than the previous stage.

5.2 A 52-bar dome-like truss

Fig. 3 shows the initial topology of a 52-bar dome-like space

truss. This example is optimized for shape and configuration

with constraints on the first two natural frequencies. The space

truss has 52 bars, and non-structural masses of m = 50 kg are

added to the free nodes. The material density is 7800kg/m3

and the modulus of elasticity is 2.1 × 1011N/m2. The structural

members of this truss are arranged into eight groups, where all

members in a group share the same material and cross-sectional

properties. Table 4 shows each element group by member num-

bers. The range of the cross-sectional areas varies from 0.0001

to 0.001m2. The shape optimization is performed taking into ac-

count that the symmetry is preserved in the process of design.

Each movable node is allowed to vary ±2m. For the frequency

constraintsω1 ≤ 15.916HZ andω2 ≥ 28.649HZ are considered.

This example is considered to be a truss optimization problem

with two natural frequency constraints and 13 design variables

(five shape variables plus eight size variables).

Table 5 compares the results of this paper with the outcomes

of other researches. It can be seen that the results obtained by

the proposed algorithm are better than those of the previously

reported ones and the standard QN. Table 6 shows the natural

frequencies of optimized structure obtained by different authors

in the literature and the results obtained by the present work.

Here, the 1th natural frequency is closer to the constraint being

considered (equal to 15.916) than other results. Fig. 4 provides a

comparison of the convergence rates of the QN and QN-BBBC.
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(a) all iterations (b) 20-150 iterations

Fig. 2. Comparison of the convergence rates between the two algorithms for the 10-bar planar truss.

Fig. 3. A 52-bar dome-like space truss (initial shape).

Fig. 4. Comparison of the convergence rates between the two algorithms for

the 52-bar planar truss

5.3 A 120-bar dome truss

A 120-bar dome truss, shown in Fig. 5, was first analyzed by

Soh and Yang [21] to obtain the optimal sizing and configura-

tion variables with stress constraint. In this example, similar to

Kaveh and Zolghadr [2], only sizing variables are considered to

minimize the structural weight with frequency constraints. Non-

structural masses are attached to all free nodes as follows: 3000

kg at node one, 500 kg at nodes 2–13 and 100 kg at the remain-

ing nodes. The material density is taken as 7971.810kg/m3 and

the modulus of elasticity is 2.1×1011N/m2. The structural mem-

bers of this truss are arranged into seven groups. Fig. 5 shows

each element group by member numbers. The range of cross-

sectional areas varies from 0.0001 to 0.01293m2. For the fre-

quency constraints, ω1 ≥ 9HZ and ω2 ≤ 11HZ are considered.

Table 7 compares the results obtained in this research with

the outcome of other researches. It can be seen that the results
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of the proposed algorithm are better than those of the previously

reported algorithms and the standard QN. Table 8 shows the nat-

ural frequencies of optimized structure obtained by different au-

thors in literature and the results obtained by the present work.

Fig. 6 provides a comparison of the convergence rates of the QN

and QN-BBBC.

Fig. 5. A 120-bar dome truss.

5.4 A 200-bar planar truss

The 200-bar plane truss, shown in Fig. 7, was analyzed with

static condition by Kaveh et al. [21]. This truss has been inves-

tigated using the standard CSS and CSS-BBBC algorithms as

a frequency constraint weight optimization problem by Kaveh

and Zolghadr [2]. The material density and modulus of elastic-

ity of members are 7860kg/m3 and 2.1×1011N/m2, respectively.

Non-structural masses of 100kg are attached to the upper nodes.

A lower bound of 0.1 cm2 is assumed for the cross-sectional ar-

eas. For the frequency constraints ω1 ≥ 5HZ, ω2 ≥ 10HZ and

ω3 ≥ 15HZ are considered. The elements are divided into 29

groups.

Table 9 compares the results of this research with those of the

other researches. It can be seen that the results obtained by the

Fig. 6. Comparison of the convergence rates between the two algorithms for

the 120-bar planar truss

proposed algorithm are better than those previously reported and

the standard QN. Table 10 shows the nature frequencies of the

optimized structure obtained by several authors in the literature

and the results obtained by the present work. Fig. 8 provides a

comparison of the convergence rates of the QN and QN-BBBC.

Fig. 7. A 200-bar planar truss.

5.5 Member frame (two-story and one-bay) with non-

structural distributed mass

This six-member frame, studied in [4,22] is depicted in Fig. 9.

A uniformly distributed non-structural weight of 178.740 kg/m

is imposed on the horizontal members of the frame. This prob-

Per. Pol. Civil Eng.32 Ali Kaveh / Vahid Reza Mahdavi



Fig. 8. Comparison of the convergence rates between the two algorithms for

the 200-bar planar truss

lem is solved with a weight density of 7830kg/m3and an elastic

modulus 2.07 × 1011N/m2. The range of cross-sectional areas

varies from 51.088 to 569.55cm2. The cross-sectional areas of

the members, A, are considered as design variables and the prin-

cipal moments of inertia, Iz, are expressed in terms of A as fol-

lows (McGee and Phan [4]):

IZ = 4.6248A2 0in2 < A < 44.2in2

IZ = 256A − 2300 44.2in2 < A < 88.28in2
(7)

Two cases for constraints are considered as follows:

Case 1: Single frequency ω1 = 78.5 rad
s

Case 2: Multiple frequencies ω1 = 78.5 rad
s

ω2 ≥ 180 rad
s

Table 11 lists the optimal values of the six size variables ob-

tained by the present algorithm, and compares them with other

results. It can be seen that the results of the proposed algorithm

are slightly lighter than the other results. Fig. 10 compares the

convergence rate of the two algorithms.

Fig. 9. A two-story and one-bay frame with non-structural distributed mass

5.6 A seven-story and one-bay frame

The 21-member frame, shown in Fig. 11, is examined as the

final design problem to demonstrate the efficiency of the al-

gorithm. A uniformly distributed non-structural weight of 10

Fig. 10. Comparison of the convergence rates between the two algorithms

for the two-story and one-bay frame

lb/in is superimposed on the horizontal members of the frame.

This problem is solved with a weight density of 0.283Ib −

sec2 /in3and an elastic modulus of 30×106Psi. The lower value

of the cross-sectional areas is 7.9187 in2. The lowest allowable

natural frequency is taken as 10.2 rad/s.

Table 12 lists the optimal values of the size variables obtained

by the present algorithm and compares them with other results.

It can be seen that the results of the proposed algorithm are

slightly lighter than those of the others. Fig. 12 compares the

convergence rate of the two algorithms.

Fig. 11. A seven-story and one-bay frame with non-structural distributed

mass
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Fig. 12. Comparison of the convergence rates between the two algorithms for the two-story and one-bay frame

Tab. 1. Material properties, variable bounds and frequency constraints for the 10-bar truss structure.

Property/unit Value

E (Modulus of elasticity)/N/m2 6.98 × 1010

ρ (Material density)/kg/m3 2770.0

Added mass/kg 454.0

Design variable lower bound/m2 0.645

L (Main bar’s dimension)/m 9.144

Constraints on first three frequencies/Hz ω1 ≥ 7, ω2 ≥ 15, ω3 ≥ 20

Tab. 2. Optimal design cross-sections (cm2) using different methods for the 10-bar planar truss

Element
Grandhi et al. [5] Lingyun et al. [20] Gomes [9]

Kaveh and Zolghadr [2] Present Work

number
Standard CSS CSS-BB-BC Standard QN

Proposed

algorithm

1 36.584 42.23 37.712 37.831 35.274 38.1483 34.9513

2 24.658 18.555 9.959 9.586 15.463 11.3936 14.3598

3 36.584 38.851 40.265 29.498 32.11 40.796 34.9224

4 24.658 11.222 16.788 16.096 14.065 18.5863 14.3612

5 4.167 4.783 11.576 4.536 0.645 5.1369 0.645

6 2.070 4.451 3.955 4.868 4.88 4.2316 4.5997

7 27.032 21.049 25.308 27.12 24.046 20.9597 24.0205

8 27.032 20.949 21.613 25.066 24.34 19.8113 24.0034

9 10.346 10.257 11.576 18.604 13.343 13.5018 12.4454

10 10.346 14.342 11.186 10.08 13.543 11.2133 12.5438

Weight (kg) 594.0 542.75 537.98 549.09 529.09 534.1966 524.5499

Tab. 3. Natural frequencies (Hz) of the optimized 10-bar planar truss.

Frequency
Grandhi et al. [5] Lingyun et al. [20] Gomes [9]

Kaveh and Zolghadr [2] Present Work

number
Standard CSS CSS-BB-BC Standard QN

Proposed

algorithm

1 7.059 7.008 7.000 7.000 7.000 7.0000 7.0000

2 15.895 18.148 17.786 17.442 16.238 18.1978 16.1633

3 20.425 20.000 20.000 20.031 20.000 20.0687 20.0000

4 21.528 20.508 20.063 20.208 20.361 20.4220 20.0000

5 28.978 27.797 27.776 28.261 28.121 28.5573 28.6501

6 30.189 31.281 30.939 31.139 28.610 31.2076 28.9504

7 54.286 48.304 47.297 47.704 48.390 48.2783 48.3637

8 56.546 53.306 52.420 52.420 52.291 53.3562 50.8435
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Tab. 4. Element grouping

Group number Elements

1 1-4

2 5-8

3 9-16

4 17-20

5 21-28

6 29-36

7 37-44

8 45-52

Tab. 5. Cross-sectional areas and nodal coordinates obtained by different researchers for the 52-bar space truss.

Variable Initial Lingyun et al. [20] Gomes [9]
Kaveh and Zolghadr [2] Present Work

Standard CSS CSS-BB-BC Standard QN
Proposed

algorithm

ZA(m) 6.000 5.8851 5.5344 4.000 5.331 7.0503 5.4785

XB(m) 2.000 1.7623 2.0885 1.955 2.134 2.2246 2.4517

ZB(m) 5.700 4.4091 3.9283 3.742 3.719 4.4334 3.7027

XF (m) 4.000 3.4406 4.0255 3.841 3.935 2.0000 4.1190

ZF (m) 4.500 3.1874 2.4575 2.500 2.500 2.5000 2.5000

A1(cm2) 2.0 1.0000 0.3696 1.0000 1.0000 1.0000 1.0000

A2(cm2) 2.0 2.1417 4.1912 1.0000 1.3056 1.2803 1.3620

A3(cm2) 2.0 1.4858 1.5123 2.3858 1.4230 2.6617 1.2585

A4(cm2) 2.0 1.4018 1.5620 1.0000 1.3851 1.3243 1.3809

A5(cm2) 2.0 1.9110 1.9154 1.4659 1.4226 1.0000 1.3551

A6(cm2) 2.0 1.0109 1.1315 1.0000 1.0000 1.8673 1.0000

A7(cm2) 2.0 1.4693 1.8233 2.9158 1.5562 1.0000 1.3485

A8(cm2) 2.0 2.1411 1.0904 1.0000 1.4485 1.4977 1.5730

Weight (kg) 338.69 236.046 228.381 235.931 197.309 233.6367 193.3183

Tab. 6. Natural frequencies (HZ) of the optimized 52-bar planar truss.

Frequency
Initial Lingyun et al. [20] Gomes [9]

Kaveh and Zolghadr [2] Present Work

number
Standard CSS CSS-BB-BC Standard QN

Proposed

algorithm

1 22.69 12.81 12.751 14.984 12.987 15.9159 15.9154

2 25.17 28.65 28.649 28.649 28.648 28.6490 28.8070

3 25.17 28.65 28.649 28.672 28.679 28.6480 28.8070

4 31.52 29.54 28.803 28.7228 28.713 28.6480 28.8070

5 33.80 30.24 29.230 29.3432 30.262 28.6483 30.0307

Tab. 7. Optimal cross-sectional areas (cm2) for the 120-bar dome truss.

Element Kaveh and Zolghadr [2] Present Work

number
Standard CSS CSS-BB-BC Standard QN

Proposed

algorithm

1 21.710 17.478 19.9686 20.0325

2 40.862 49.076 45.0818 38.2935

3 9.048 12.365 10.8889 11.7403

4 19.673 21.979 18.7818 21.9118

5 8.336 11.190 8.3964 1.02E+01

6 16.120 12.590 9.9785 10.9328

7 18.976 13.585 20.3965 14.6337

Weight (kg) 9204.51 9046.34 9109.5 8789.50
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Tab. 8. Natural frequencies (HZ) of the optimized 120-bar dome truss.

Frequency Kaveh and Zolghadr [2] Present Work

number
Standard CSS CSS-BB-BC Standard QN

Proposed

algorithm

1 9.002 9.000 9.001 9.000

2 11.002 11.007 11.023 11.000

3 11.006 11.018 11.034 11.002

4 11.015 11.026 11.034 11.0210

5 11.045 11.048 11.087 11.0863

Tab. 9. Optimal cross-sectional areas for the 200-bar planar truss (cm2).

Element Members Kaveh and Zolghadr [2] Present Work

number in the group
Standard CSS CSS-BB-BC Standard QN

Proposed

algorithm

1 1, 2, 3, 4 1.2439 0.2934 1.0559 0.5111

2 5, 8, 11, 14, 17 1.1438 0.5561 1.3172 0.4944

3 19, 20, 21, 22, 23, 24 0.3769 0.2952 0.346 0.1043

4 18, 25, 56, 63, 94, 101, 132, 139, 170, 177 0.1494 0.1970 0.2763 0.1099

5 26, 29, 32, 35, 38 0.4835 0.8340 1.4495 0.4649

6
6, 7, 9, 10, 12, 13, 15, 16, 27, 28, 30,

0.8103 0.6455 1.9043 0.8925
31, 33, 34, 36, 37

7 39, 40, 41, 42 0.4364 0.1770 0.1 0.1363

8 43, 46, 49, 52, 55 1.4554 1.4796 1.2411 1.3464

9 57, 58, 59, 60, 61, 62 1.0103 0.4497 0.1 0.1207

10 64, 67, 70, 73, 76 2.1382 1.4556 1.2208 1.5715

11
44, 45, 47, 48, 50, 51, 53, 54, 65, 66,

0.8583 1.2238 1.1829 1.1589
68, 69, 71, 72, 74, 75

12 77, 78, 79, 80 1.2718 0.2739 1.1551 0.1943

13 81, 84, 87, 90, 93 3.0807 1.9174 3.546 2.9144

14 95,96, 97, 98, 99, 100 0.2677 0.1170 0.888 0.1482

15 102, 105, 108, 111, 114 4.2403 3.5535 5.737 3.1653

16
82, 83, 85, 86, 88, 89, 91, 92, 103, 104,

2.0098 1.3360 2.0844 1.5704
106, 107, 109, 110, 112, 113

17 115, 116, 117, 118 1.5956 0.6289 2.8868 0.3248

18 119, 122, 125, 128, 131 6.2338 4.8335 7.283 4.9532

19 133, 134, 135, 136, 137, 138 2.5793 0.6062 0.3799 0.1907

20 140, 143, 146, 149, 152 3.0520 5.4393 8.2783 5.3614

21
120, 121, 123, 124, 126, 127, 129, 130,

1.8121 1.8435 2.0724 2.0871
141, 142, 144, 145, 147, 148, 150, 151

22 153, 154, 155, 156 1.2986 0.8955 0.8176 0.6755

23 157, 160, 163, 166, 169 5.8810 8.1759 12.4391 7.3919

24 171, 172, 173, 174, 175, 176 0.2324 0.3209 0.3288 0.3577

25 178, 181, 184, 187, 190 7.7536 10.98 6.7231 7.8055

26
158, 159, 161, 162, 164, 165, 167, 168,

2.6871 2.9489 2.7784 2.7029
179, 180, 182, 183, 185, 186, 188, 189

27 191, 192, 193, 194 12.5094 10.5243 9.6504 10.1453

28 195, 197, 198, 200 29.5704 20.4271 22.5904 20.918

29 196, 199 8.2910 19.0983 9.631 10.952

Weight (kg) 2559.86 2298.61 2562.17 2140.89
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Tab. 10. Natural frequencies (HZ) of the optimized 200-bar planar truss.

Frequency Kaveh and Zolghadr [2] Present Work

number
Standard CSS CSS-BB-BC Standard QN

Proposed

algorithm

1 5.00 5.010 5.0088 5.0000

2 15.961 12.911 15.9617 13.7774

3 16.407 15.416 17.3448 15.3509

4 20.748 17.033 21.5145 17.3697

5 21.903 21.426 24.7663 21.8335

6 26.995 21.613 29.6299 22.8342

Tab. 11. Final design for the cross-sectional areas (cm2) for different sets of frequency constraints (rad/s) for the 6-member frame

Element Sedaghati [7] Present Work

number Standard QN Proposed algorithm

ω1 = 78.5
ω1 = 78.5

ω2 ≥ 180
ω1 = 78.5

ω1 = 78.5

ω2 ≥ 180
ω1 = 78.5

ω1 = 78.5

ω2 ≥ 180

1 51.088 206.289 135.1755 135.766 214.0794 206.2409

2 215.551 62.746 135.1246 122.9037 51.088 58.4141

3 365.982 138.767 283.8704 251.9183 51.088 142.4868

4 51.088 297.876 284.0923 284.3097 366.9939 291.4753

5 51.088 51.088 51.088 51.088 51.088 51.088

6 253.799 256.361 200.5152 218.7014 252.6131 257.773

Weight (kg) 4272.32 4365.56 4438.1 4427.0 4263.9 4355.6

Tab. 12. Final design for the cross-sectional areas (in2) for the seven-story and one-bay frame

Element Khan and Willmart McGee and Phan Present Work

number [23] [4] Standard QN Proposed algorithm

1 7.9187 7.9187 7.9187 7.9187

2 7.9187 7.9187 7.9187 7.9187

3 7.9187 7.9187 7.9187 7.9187

4 7.9187 7.9187 7.9187 7.9187

5 8.0937 7.9187 7.9187 7.9187

6 8.0937 7.9187 7.9187 7.9187

7 9.3640 8.7612 8.1101 9.5085

8 9.3640 8.7612 7.9187 7.9187

9 10.3130 9.6766 7.9187 7.9187

10 10.3130 9.6766 10.8463 11.2192

11 11.0870 10.2988 9.5177 14.0188

12 11.0870 10.2988 7.9187 7.9187

13 17.5070 25.5192 41.7525 40.9802

14 17.5070 25.5192 7.9187 7.9187

15 7.9187 7.9187 7.9187 7.9187

16 7.9787 7.9187 7.9187 7.9187

17 10.7220 10.4736 12.0382 9.4789

18 12.8020 13.0765 9.2532 12.7474

19 14.9460 14.5608 16.0758 14.3229

20 15.8780 15.7920 16.8055 14.271

21 15.0900 7.9187 7.9187 7.9187

Weight (kg) 16901 16537 16328 16050
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6 Concluding remarks

In this study, a new efficient optimization algorithm, named

as QN-BBBC, is proposed. This algorithm is a hybrid

method which is a combination of mathematical method (Quasi-

Newton) for local search and a recently developed meta-

heuristic algorithm (Big Bang-Big Crunch) for global search.

In the mathematical algorithms, a good starting point is vital

for these methods to be executed successfully and they may be

trapped in local optima. On other hand, frequency constraints

are highly non-linear, non-convex and implicit with respect to

the design variables. Hence, combining a meta-heuristic algo-

rithm for global search and help to escape the trap seems to be

inevitable. In this method, the Big Bang phase is carried out to

leave the local optima and Big Crunch phase helps to obtain a

value for all candidate solutions as an input to the quasi-Newton

method.

The proposed algorithm is applied to the optimization of truss

and frame structures with frequency constraints. Comparison

of the results with those of the other meta-heuristic methods

demonstrates that the proposed approach has a good capability

of determining the approximate optimum solutions.
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