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Abstract

Selecting proper values for soil parameters is a crucial as-

pect in geotechnical engineering. Geomaterials exhibit an in-

herent, natural variability, which can be assessed by statistical

methods. CPT data lend themselves well for statistical analysis,

given the large amount of data retrieved in a single test. The

aim of this study was to examine the guidelines for statistical

parameter estimation set out in Eurocode 7, as applied to CPT

tip resistances. First, the guidelines and methods for estima-

tion of fractiles and mean value with a given confidence level

were reviewed. Second, a number of 125 CPT datasets were an-

alyzed: the goodness-of-fit tests have shown that the common

assumption of a normal distribution does not hold. Third, dif-

ferent estimation methods for the 5% fractile, the mean and the

median were evaluated with regard to robustness and efficiency.
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1 Introduction

The usual degree of uncertainty in a geotechnical model, in-

volving stratification, soil properties and derived soil mechan-

ical parameters, etc. is considered larger in contrast to uncer-

tainties around geometrical and material properties in structural

engineering. Site investigation methods – be they either field

measurements or laboratory tests on samples - aim to reduce

this uncertainty to a level which is considered acceptable for a

specific task, but the highly variable nature of geomaterials and

the low volume of ground tested – in contrast to the volume

affected - still leave us with a substantial degree of ambiguity.

Consequently, the role of engineering judgement in a geotech-

nical model is more pronounced.

However, engineering judgement, opinion, not to speak of be-

liefs not supported by analysis of available data might alone be

very misleading, as the results of a survey reported by Fellin

show [1]. In that survey, a table containing the results of classi-

fication and ring shear tests on a glacial till from Nothern Ger-

many were sent to the participants. They were then asked to pro-

vide shear parameters (friction angle and cohesion) they would

use in a slope stability analysis, based on the data from the table.

The range of the answers for the friction angle contained even

larger values than the maximum in the dataset.

An overview on the factors that influences people’s and ex-

perts’ judgement is presented in [2]. The short summary about

expert opinions is the following: with sufficient training and

feedback, one can develop a “well calibrated” estimation skill,

but this usually does not apply to other fields and new tasks.

Conducting a statistical analysis of the available data – both

“new” data and “a priori” information – can substantially con-

tribute to dealing with and quantifying some uncertainties in a

geotechnical model. This applies all the more to CPT soundings,

where one important task is estimating recurrence probabilities

from the data plots.

1.1 General guidelines for parameter estimations

Design codes currently regarded as up-to-date try to address

the aforementioned uncertainties with guidelines for selecting

representative values for design; primarily for material strength
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and stiffness, but also for geometrical properties. In this section,

the corresponding rules of Eurocode 7 will be outlined, to set up

the framework for the analysis of the CPT soundings.

The general principles for the selection of characteristic val-

ues for material properties – both engineered materials and ge-

omaterials – are defined in the standards Eurocode 0 and Eu-

rocode 7 themselves, and are explained in depth in numerous

designers’ guides, e.g. [3,4], or [5], and papers, e.g. [6] and [7].

The characteristic value for a main property – which controls the

occurrence of a particular limit state – should be selected such

that the probability for a more unfavourable value must not ex-

ceed 5%. In statistical terms, this means finding the 5% fractile

of a distribution when a low volume of ground is involved in the

limit state, i.e. the loads cannot be redistributed. If the struc-

ture allows for load redistribution, or a large volume of ground

is affected, then the value of the soil property should be selected

“with confidence level of 95%”.

The term “large” or “small” with respect to affected ground

volume is not defined precisely, but rather left to engineering

judgement. Fellin [1] presents a very illustrative and simple

model on this matter: if a group of equally weighted boxes hav-

ing different friction coefficients is pushed, then slip occurs if the

pushing force exceeds the frictional resistance calculated from

the average of the friction coefficients (spatial mean). This refers

to the case with “large” volume involved. If however the boxes

cannot transmit tension among each other, and they are being

pulled, then the friction coefficient of the first box controls the

slip resistance. If the boxes can be in a random order, then the

smallest friction coefficient can be used for a lower bound es-

timate of the pulling force. This again refers to the case with

“small” volume involved, or local failure. If we wish to link the

affected volume with statistical concepts, then the rate of nat-

ural fluctuation (aleatory uncertainty) or periodic trend of the

governing parameters could be used for comparison. Compre-

hensive explanations on this are also given in [3, 4], or [6].

Generally a lower value of a parameter (mainly strength pa-

rameters) will be more unfavourable, so the focus will be on

deriving the (lower) 5% fractile and the lower bound of the 95%

confidence interval for the mean. The statistical methods for the

two above cases are different: the first involves making a point

estimate for a fractile, the latter consists of setting up a confi-

dence interval for a distribution parameter. (In the case where

higher values would be more unfavourable, the methods are the

same, except that the 95% fractile and the upper bound for the

confidence interval are sought).

1.2 CPT and CPTu soundings

In geotechnical site investigation, the CPT (Cone Penetrome-

ter Test), and more increasingly the CPTu (CPT with pore pres-

sure measurement) sounding is becoming a standard tool.

The main concept of the method is pushing a steel rod with

a conical tip into the ground, and recording the cone tip resis-

tance qc, the sleeve friction fs and in CPTu soundings the pore

pressure u around the cone. The reference configuration which

is in widespread use today has an apex angle of 60o, a tip pro-

jection area of 10 cm2, a friction sleeve area of 150 cm2, and

the value of the pore pressure, u2 is measured at the cone shoul-

der. The pushing speed is 20 mm/s +5 mm/s for CPT, but for

CPTu soundings a smaller tolerance is desired. The recording

frequency of the data is usually 20 mm, but also very often 10

mm. A detailed description of the specifications can be found

for example in [8].

The versatility of the testing method is reflected in the mul-

titude of applications of the results. Earlier it was regarded as

an aid alongside drilling in site investigation, but by now it has

gained the rank of a standalone method.

One main field of application is geostratigraphic profiling,

soil classification, and exploration of hydrogeological condi-

tions. For this end, numerous profiling charts have been estab-

lished and are in use. They are based on the cone tip resistance,

the sleeve friction, their ratio R f called friction ratio, or normal-

ized cone resistance and friction ratio. Further details can be

found for example in [9].

Other important fields of use in geotechnical engineering are

the correlations between the cone tip resistance and other soil

mechanical properties. These correlations are mainly based on

regression analysis of CPT and laboratory or in-situ tests, and

include an uncertainty which is expressed by the coefficient of

determination R2 of the regression. If used with proper caution

(verifying the similar geological conditions and soil types of the

site in question and of the ones used for setting up the correla-

tions), as in-situ measurements, they can support and improve

the selection of representative values in a geotechnical model.

Furthermore, there are circumstances when no laboratory test

results are available. In such cases, the geotechnical engineer

has to rely on these correlations. Correlations have been devel-

oped between the CPT readings and a number of soil mechani-

cal parameters: unit weight, friction angle, cohesion, undrained

shear strength, stiffness properties, shear wave velocity, perme-

ability, lateral stress coefficient, liquefaction potential, etc. An

overview of these correlations can be found in [8, 9] and [10].

There are also direct applications for the CPT: design of deep

and shallow foundations, evaluation of ground improvement

measures, etc. [9–12].

It shall be emphasised that – in accordance with the guidelines

in Section 1.1 – the variability of the soil parameters, namely

cone tip resistance, has to be considered when selecting charac-

teristic values during their application. As the correlations be-

tween CPT readings and other soil mechanical properties gen-

erally represent a connection between the expected values on

the two sides, the measure of variability gets lost during such

transformations. (And in turn, another uncertainty is introduced

through the imperfect fit of the transformation, expressed by

R2.) Hence it is important to select the appropriate character-

istic value before the transformation, from the CPT dataset.

In the next sections, the statistical background for selecting
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the characteristic values will be investigated: the current statis-

tical techniques and proposals in Eurocode 7 and the textbooks

will be reviewed, along with some available evidence regarding

CPT profiles. Then the results of statistical tests on CPT data

will be presented. Finally certain options for selecting charac-

teristic values – especially the mean estimated with a confidence

level of 95% – in a setting with different assumptions than those

made in the Eurocodes will be discussed.

2 Review of statistical techniques according to the

Eurocodes

As mentioned in Section 1.1, a number of designers’ guides

and textbooks deal with the application of the principles and

rules given in the Eurocodes. Regarding the statistical deriva-

tion of the characteristic values adopted for design, the standards

themselves (EC 0 and EC 7) do not mention any kind of distri-

bution to be used or preferred. The textbooks, however, state

generally, or assume that the material properties in question are

either normally or lognormally distributed. In the latter case, the

statistical techniques can be applied to the transformed variables

Y=lnX, where X are the original observations in the sample.

2.1 The 5% fractile

If the normality assumption holds, the 5% fractile – defined

as P(x<xk) =0.05, meaning that the probability of a randomly

selected x being smaller than the characteristic value xk is 5% –

can be calculated as follows:

xk = x̄ − t5%
n−1

√
1 +

1

n
sx (1)

where x̄ is the sample mean, sx is the sample standard deviation,

n is the sample size, and t5%
n−1

is the 5% fractile of the Student’s

t distribution with n − 1 degrees of freedom. If the standard

deviation σx is a priori known, then the formula simplifies to

xk = x̄ − 1.645

√
1 +

1

n
σx (2)

where 1.645 is the 5% fractile of the standardized normal dis-

tribution N(0,1) having a mean of 0 and a variance of 1. With

an increasing sample size n, (1) converges to (2) from above.

The difference rises fast for small samples (approx. n<10) [3].

This method is called the prediction method. A formally simi-

lar classical technique is the so-called coverage method, which

takes into account the uncertainty of the parameter estimation.

A more general method for estimating the 5% fractile is the

so-called method of order. It does not make any assumptions

for the type of distribution; it only requires “sufficient” data.

The sample is ordered: x1’<x2’<x3’..<xn’, and the value of the

empirical cumulative distribution function (CDF) is assigned to

the i-th element as i/(n + 1). Then the 5% fractile will be the

greatest element with i/(n + 1)<0.05. In this sense, “sufficient”

means that there should be enough values to properly encompass

the probability 0.05: n>20. For further reference, see [5].

2.2 The mean value with a confidence level of 95%

The estimation of the mean with a certain confidence level

requires the construction of a confidence interval for the distri-

bution parameter (which is the mean in this case). The confi-

dence level 1-ε – in this case 95% – indicates an error probabil-

ity of ε − ε =5%. In this case ε is the probability of the true

mean lying outside the confidence interval. In statistics, the dual

problem to the construction of confidence intervals is hypothesis

testing: an associated hypothesis test can be constructed to each

confidence interval and vice versa (although not always practi-

cable). Consecutively, the associated hypothesis test also has a

significance level of 1-ε. Here, ε is the probability of the Type I

error, falsely accepting the hypothesis H0.

The confidence interval defined as

P
(
µlow ≤ x̄ ≤ µhigh

)
= 95% (3)

has an associated hypothesis test

H0 : µ = x̄ versus H1 : µ , x̄ (4)

with a significance level of 95% [13]. In the expression (3), µlow

and µhigh define an interval for the mean values which may have

generated the sample, and cannot be discredited with a proba-

bility of 95%. Discredited means rejected by the hypothesis test

(4), where the null-hypothesis (H0: the true mean not being sig-

nificantly different from x̄) has an error probability of 5%, and an

acceptance region of
[
µlow, µhigh

]
. This hypothesis test is called

a two-tailed test, because the rejection region has one ε/2 part in

the lower and one ε/2 part in the upper tail of the distribution,

see Fig. 1.

Fig. 1. Two-tailed confidence intervals (in case of a symmetrical and an

asymmetrical distribution) for x

In certain cases one is not interested in the higher bound µhigh,

thus the appropriate hypothesis test will be one-tailed:

H0 : µ = x̄ versus H1 : µ < x̄ (5)

and the 95% confidence interval “simplifies” to a 5% fractile:

P (µlow ≤ x̄) = 5% (6)

Which one should be used for selecting the characteristic value

is not stated exactly in Eurocode 7. In many cases – e.g. strength

properties – (5) will be appropriate. Conversely, if both low and

high values are of importance – e.g. for stiffness properties –,

Statistical analysis of CPT tip resistances 472013 57 1



then the right choice is (3). This can also be seen from equation

(8): if the sample is normally distributed and thus symmetric,

then the t-test – based on the Student t distribution – can be ap-

plied for the hypothesis test. Here, the value 1.645 is the critical

value for both the one-tailed test with 95% significance level

and the two-tailed test with 90% significance for n = ∞. This

argument is also made in [1] with the conclusion of selecting a

two-tailed 90% confidence interval. The statement “with a con-

fidence level of 95%” lacks the definition of the interval being

either one- or two-tailed. From the above, the two-tailed, 90%

(central) confidence interval is evident.

Again, if the normality assumption holds, the mean value can

be estimated at a confidence level of 95% in the case of unknown

standard deviation with

xk = x̄ ± t5%
n−1

√
1

n
sx (7)

or in the case of known standard deviation with

xk = x̄ ± 1.645

√
1

n
σx. (8)

These formulae are quoted for example in [3,4] or [6] and [7].

These sources also mention a similar technique for making esti-

mations of the mean if a linear trend is present in the data, and

[3] contains techniques for dealing with small datasets (there, a

dataset is regarded “small” if n<13 ).

If the data is normally distributed, then the technique for set-

ting up the confidence interval is well established. However, if

the distribution departs from normal, using the formulae (5) and

(8) requires some additional considerations. This issue will be

discussed further in Section 4.

2.3 Statistical considerations and tests

An important point made in EC 7 is the need for incorporation

of previous knowledge, experience and engineering judgement

in the process of selecting characteristic values. One possibility

may be using Bayesian methods, described e.g. in [3, 6] and

[14], but that may be too complicated for use in everyday tasks.

Simple options include comparing the standard deviation with

literature data, selecting the “standard deviation known” case

for the calculations with variation coefficients (νx = σx/x̄) from

literature, or using Schneider’s approximation described in the

designers’ guides mentioned above. Coefficients of variance for

a number of parameters derived from large repetition test series

are given e.g. in [3, 6], and detailed compilations are presented

in [2] and [14].

The assumption of a normal distribution is emphasised in the

designers’ guides above, but unfortunately, neither its verifica-

tion nor the consequences of the deviation from it are addressed.

The underlying reason behind that may be that usually the prac-

ticing geotechnical engineers have neither access to sufficient

measurements, nor in-depth statistical knowledge to carry out

normality or other goodness-of-fit tests. [5] contains a reference

to other standards for normality tests, but they are not presented

in the book itself. The book also deals with the use of the log-

normal distribution (both with the 2-parameter-case, with lower

bound at 0, and the general 3-parameter-case), and shows how

the skewness of the distribution affects the 5% fractile. Gen-

erally, if the skewness is positive, the 5% fractiles estimated

with a normal distribution will be smaller than the actual values

(favourable error), and for a negative skewness the error will be

unfavourable (overpredicted value). It is also suggested that the

normal distribution may be applicable if the skewness is smaller

than ±0.1.

A good example of rigorous testing of the normality assump-

tion in a quantitative way is given in [15]: after a visual ex-

amination (for example on a probability grid, or examining the

histogram – also called wittily “chi-by-eye”), the Anderson-

Darling A2-test is employed to set the confidence level of 95%.

Furthermore, the Shapiro-Wilk test can be applied for small

datasets; or other general – and less powerful – goodness-of-fit

tests, such as the χ 2-test, or the Kolmogorov test, as described

e.g. in [14].

For routine use, the tests for the 3rd and 4th central moments

of the sample (the skewness and kurtosis), described in [16] can

be useful.

The results of goodness-of-fit tests and their Pearson-plot (ex-

plained in Section 3.2) for a number of soil mechanical proper-

ties are given in [14]: the tanϕ and cohesion were found to be

beta-distributed, and other parameters followed beta-, gamma-,

lognormal, normal and uniform distributions. [2] also presents

similar evaluations with similar results. Here, the distribu-

tions derived for ϕ are normal, beta-, uniform and gamma-

distributions. Distributions for raw and detrended data from SPT

and CPT tests are also presented, with a similarly wide range of

results.

3 Analysis of CPT data

As seen above, statistical techniques described in Section 2.1-

2.2 are based on assuming a normal distribution for the property

in question. This may apply more or less well for many soil

properties, but is not well supported for CPT data. For this end,

goodness-of-fit and classification tests were carried out on cone

tip resistances from a total of 125 homogeneous soil layers.

CPT data lend themselves well to statistical analysis: in statis-

tical textbooks, a sample is regarded “large” above 20-30 obser-

vations. With the usual sampling interval of 2cm in CPT testing,

this applies for layers with thicknesses above 40-60cm.

3.1 CPT data, filtering

The CPT soundings analyzed in this study were carried out for

2 projects in Hungary: 6 CPTs and 6 CPTu-s were sunk at an in-

dustrial site, and 34 CPTu soundings were carried out for a road

construction project along an approx. 32km–long route. The

soundings on the industrial site reached depths between 19.5-

25.8m, on the loess-plateau along the Danube with a deep-lying
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water table. The penetration tests for the road project were sunk

to depths between 17.5-30.1m, with variable geological and hy-

drogeological conditions.

The layers were selected for analysis if the soil types from

the CPT and nearby boreholes matched, giving 44 datasets for

the industrial site and 81 for the road route, a total of 125

datasets. The reading intervals in each case were 20mm. The

soil type classification in the CPTs was performed according to

the Robertson 1986 chart [9], with corrected cone resistances:

qt = qc + u2(1 − a) (9)

where qc is the measured cone tip resistance, and a is the cone

area ratio, see [8]. For the industrial site, the qc-values were

used, because either u2 was not recorded, or a was not available.

This correction is of importance predominantly in soft soils un-

der the water table, but this was not the case here.

It is understood that increasing the overburden stress increases

the tip resistances, which may bias the results of CPT-based soil

classification. That is especially true for very thick or deep-lying

layers, and several normalization techniques have been proposed

to account for this effect. They are presented e.g. in [10]. Usu-

ally, normalization requires the knowledge of the bulk density

of the soil, the groundwater level and groundwater regime to

calculate total and effective overburden stresses. Due to uncer-

tainties in the latter, and due to the fact that most profiling charts

were developed for shallow and moderate depths (<30m), [9]

suggests that normalization does not necessarily improve the

accuracy of profiling. In a “homogeneous” soil layer, the ef-

fective overburden stress increases linearly with depth, at a rate

of γ ≈14-21 kN/m3 above the groundwater table. None of the

datasets came from large depths and even for the thickest layer

with a thickness of 13.60m the change in effective overburden

stress should not exceed ≈290 kPa. In contrast, the mean tip

resistance for the vast majority of the datasets ranges between

qt ≈1 500–11 000 kPa, and the change in overburden stress in-

side a layer falls in the range of aleatory fluctuations. However,

this effect could not be neglected in very soft layers.

The soil profile at the industrial site comprises loessy, low

plasticity clay with consistencies ranging from hard to soft (de-

noted A: hard – B: firm – C: soft – D: firm – E: hard with in-

creasing depth).

The soil layers from the road route form a “continuum” be-

tween medium plasticity clays and fine to medium sands. The

layers in each profile are denominated with increasing depth

consecutively as A, B, C... etc, without any further meaning

of the notation.

The soil layers with depth and soil type are given in the Ap-

pendix, Tables 4 and 5.

The proper statistical treatment of the data requires the

screening out of outliers. A general discussion, as well as statis-

tical techniques for this are presented e.g. in [14]. If a physical

justification can be given for a suspect outlier, it may be removed

or corrected. In a CPT test, outliers are produced during the at-

tachment of extension rods to the cone shaft: a steep drop in the

cone resistances is produced at regular intervals (approx. 90cm),

producing a “sawtooth” pattern, see Fig. 2. This error is usually

automatically corrected with newer data logging equipment; for

the present analysis, these readings were dropped. However,

this correction can occasionally lead to gaps in the range of the

measured values (see below, in Section 3.2.3).

Fig. 2. Sawtooth pattern in a CPT diagram, due to attachment of extension

rods

On the other hand, even very “strange” readings may be

traced back physical roots: for example cobbles or gravel in a

clayey deposit may produce outstandingly high tip resistance,

or cavitation of the pore water. [8] Sharp fluctuations in cone

resistance are also typical for sand soils. In addition, the type

of distribution also influences the statistical decision about out-

liers – distributions with heavier tails are more “tolerant” against

outliers. Therefore, to avoid the influence of the goodness-of-fit

tests with more or less subjective rejection of suspect values, no

further screening out of outliers was done.

Also, the values at layer boundaries were left unaffected, even

though there are both experimental and theoretical evidence for

interfaces modifying the “true” cone tip resistance [8].

3.2 Goodness-of-fit tests

In order to verify or reject the normality assumption, and

more broadly, in search for a well-fitting distribution, the

datasets were analyzed in the Pearson coordinate system, and

Kolmogorov tests were carried out for 13 continuous distribu-

tion types. The tested distributions are listed in Table 1, with

their most important details. The notations and names in Ta-

ble 1 follow the expressions used in the program Mathematica

7.0 [17].

A literature research regarding possible distributions also en-

courages a departure from the normality assumption: Mortensen

et al. (reported in [8]) found – after smoothing and thorough fil-

tering – that the lognormal distribution suits their data on clay

tills very well. [2] reports the results for CPT tests in mine tail-

ings, on both raw and detrended data. The distributions passing

the Kolmogorov test “at 5% level” are the beta- and lognormal

distributions for the raw data, and normal, lognormal and beta-

distributions for the residuals after trend removal. In certain

cases, no distribution passed the test at the given significance

level. The lognormal distribution might also be inferred from the
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Tab. 1. Overview of the distributions tested in the analysis (B() is the beta-function, Γ() is the gamma-function, and ζ() is the Riemann zeta-function)

Name Parameters PDF Support Estimation Pearson β1 Pearson β2

Beta a, b, α, β 1
B(α,β)

(x−a)α−1(b−x)β−1

(b−a)α+β−1 [a, b] ML-Eq numerical region

Cauchy a, b
1

bπ
(
1+

(x−a)2

b2

)
(−∞,∞) ML-Eq numerical – –

Extreme Value α, β 1
β e
− x−α

β e−e
− x−α

β (−∞,∞) ML-Eq numerical
864ζ(3)2

π6
5.4

Gamma α, β 1
Γ(α)

xα−1β−αe
− x
β [0,∞) ML-Eq numerical 4

α 3 + 6
α

Gumbel α, β 1
β e

x−α
β e−e

x−α
β (−∞,∞) ML-Eq numerical

864ζ(3)2

π6
5.4

Inverse Gauss µ, λ 1√
2π

√
λ
x3 e
−
λ(x−µ)2

2xµ2 (0,∞) ML-Eq analytical
9µ
λ 3 +

15µ
λ

Laplace µ, β 1
2β e
−

(x−µ)Sign[x−µ]
β (−∞,∞) ML-Eq analytical 0 6

Logistic µ, β
e
−

x−µ
β

β

(
1+e
−

x−µ
β

)2 (−∞,∞) num.max. l
(
θ̂
)

0 4.2

Lognormal µ, σ 1√
2πxσ

e
−

(ln x−µ)2

2σ2 (0,∞)
Y = ln(X),→

Normal
(eσ

2
−1) · (eσ

2
+2)2

e4σ2
+ 2e3σ2

+

3e2σ2
− 3

Maxwell σ
√

2
π

x2e
− x2

2σ2

σ3
[0,∞) ML-Eq analytical

8(16−5π)2

(3π−8)3

−192+π(16+15π)

(8−3π)2

Normal µ, σ 1√
2πσ

e
−

(x−µ)2

2σ2 (−∞,∞) ML-Eq analytical 0 3

Rayleigh σ 1

σ2 xe
− x2

2σ2 [0,∞) ML-Eq analytical
(π−3)2π

2(2−π/2)3
32−3π2

(4−π)2

Weibull α, β α
β

(
x
β

)α−1
e
−
(

x
β

)α
[0,∞) ML-Eq numerical see text

various soil classification charts for CPT: most of them use log-

scale for the tip resistance (e.g. Robertson, Eslami&Fellenius

charts); or layer boundary search methods [18].

Eventual trends with depth were not removed from the data

in the current research, for the following reasons. Sometimes

– e.g. for the calculation of the pile shaft resistance – only the

average value is relevant. If a (linear) trend is present, then the

estimation of the trend itself is of importance, and the distribu-

tion of the residuals is of less concern. A linear trend may be

estimated e.g. with the methods given in [4], and the assump-

tion of normally distributed residuals in regression analysis is a

robust one (small deviations little affect the results). If the resid-

uals are far from normal, a transformation of the variables may

be helpful [19]. Furthermore, as noted in [20], the selection of a

trend is not unique, but not completely arbitrary either: it’s left

to the reasonable judgement of the analyst.

3.2.1 Pearson plot

A preliminary choice for the distribution type can be obtained

from the Pearson coordinate system. The idea behind it is that

most distributions are well described by their first 4 moments or

central moments: mean value µ, variance σ2
x, skewness γ and

kurtosis κ. Their bias corrected estimates are:

x̄ =
1

n

∑n

i=1
xi, s2

x =
1

n − 1

∑n

i=1
(xi − x̄)2 ,

γ =
n
∑n

i=1 (xi − x̄)3

(n − 1) (n − 2)
(
s2

x

)3/2
,

κ =
n
∑n

i=1 (xi − x̄)4

(n − 1) (n − 2)
(
s2

x

)2

(10)

Here, the normal distribution has κ =3. The coordinates in the

Pearson system are β1 = γ2 and β2 = κ. The coordinate system

is divided into 7 regions, which indicate the so-called Pearson-

family of distributions suitable for reproducing the first 4 mo-

ments of a sample [2]. Also, the trace of any distribution can

be plotted by calculating their respective β1 and β2 coordinates:

they evaluate either as points, curves or regions depending on

the parameters of the distribution (see Fig. 3).

The 13 distribution types have been chosen to cover a wide

range of possible distributions; linking the physical background

of the investigated distributions to the CPT measurements was

not a primary concern. Some of them have few and easy-to-

fit parameters, others offer more adaptability. Adaptability can

be tied more or less to the trace in the Pearson coordinate sys-

tem: distributions appearing as points offer the least adaptabil-

ity, while the ones covering a region are more flexible to repro-

duce observations, and those describing a curve lie in between.

From the 13 distributions tested, the normal, logistic, Laplace-,

Rayleigh-, Maxwell-, Gumbel-, and extreme value distributions

evaluate as points; the lognormal, gamma, Weibull-, and inverse

Gaussian distributions evaluate as curves; and the beta distribu-

tion covers the whole region I in the coordinate system. It must

be noted, however, that the trace of the Weibull distribution be-

haves almost as a point with usual values for α.

On the other hand, the flexibility of the distributions strongly

depends on the number of their parameters: more flexibility is

achieved mainly through more parameters, which need to be fit-

ted. The fitting procedure will be explained later, at the discus-

sion of the Kolmogorov tests. The Pearson plots of the datasets

(Fig. 4) show a tendency for the points to be concentrated close

to β1 = 0 (symmetrical distributions), and mainly in the band of

the beta distributions. This is also consistent with the results pre-

sented in [2]. Plotting the skewness γ and the kurtosis κ against

the length n of each dataset (Fig. 5), no strong correlation can
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be found. The γ − κ-plot shows that there is a tendency towards

positive skewness.

Fig. 3. Traces of distributions in the Pearson coordinate system

Fig. 4. Datasets in the Pearson coordinate system

Based on the examination of the Pearson plot, most of the

listed distributions appear suitable, with traces of the Laplace-,

the Weibull-, extreme value-, Gumbel-, and the logistic distribu-

tions lying apart from the bulk of the points.

3.2.2 Kolmogorov tests

The goodness-of-fit is better expressed in quantitative terms,

and for this end, Kolmogorov tests were applied to each dataset.

This test was chosen over the other common test, the χ2-test for

a number of reasons. First, because it requires less logical de-

cisionmaking: in the χ2-test, each bin should contain more than

3 (or 5) observations, this in turn affects the subdivision of the

support of the chosen distribution into bins. Second, the χ2-

test lumps together the information from the observations in a

bin, while the Kolmogorov test considers each observation sep-

arately. (Following this train of thought, the Pearson plot lumps

all observations into the β1 and β2 coordinates.) Third, it is re-

ported to be less rigorous than the χ2-test, which is – in the light

of the results – not a drawback. (Further reference on this shall

be made e.g. to [13] and [14].)

The Kolmogorov test is based on the greatest difference Dn

between the empirical CDF and the hypothesised CDF Fθ:

Dn = max
i

[
max

(∣∣∣∣∣ i − 1

n
− Fθ

(
x
′

i

)∣∣∣∣∣ , ∣∣∣∣∣ i

n
− Fθ

(
x
′

i

)∣∣∣∣∣)] (11)

where x
′

i
is the i-th element in the sequence of the ordered ob-

servations (x
′

1
≤ · · · ≤ x

′

n). The expression

z = Dn

√
n (12)

follows a distribution described by the Kolmogorov function

K (z) =

 0 if z ≤ 0

1 − 2
∑∞

j=1 (−1) j−1 e−2 j2z2

if z > 0
(13)

The value

p = 1 − K (z) (14)

yields the confidence level for the observations stemming from

the distribution Fθ (x). (In other words, it is the significance

level of the hypothesis test H0 : P(X < x) = Fθ (x) vs.

H1 : P(X < x) , Fθ (x)) [13].

At first sight, the concise notation Fθ (x) in (7) hides the fact

that the Kolmogorov test is a so-called parametric test, i.e. the

distribution type Fθ is assumed to be known, and values for the

parameters θ have to be selected prior to the test. This calls

for a “plug-in” parameter estimation procedure. The parameter

estimation procedure adopted in this research is the maximum

likelihood-method, and the estimations θ̂ for the parameters are

called maximum likelihood-estimators (MLEs).

At the core of the maximum likelihood-method lies the like-

lihood function

lθ (xi) = ln
∏n

i=1
fθ (xi) (15)

where fθ (x) is the probability distribution function (PDF) of the

chosen distribution. The aim is to select the values θ̂ which

maximize the joint likelihood of the observations to happen.

The log-form is convenient because the application of loga-

rithmic identities enables considerable simplifications on the

right-hand-side of (15). From this point, the general procedure

is to calculate the partial derivatives ∂
∂θ

l
θ

(xi), and solving the

likelihood-equations

∂

∂θ
lθ (xi) = 0 (16)

either analytically (if practicable), or – more often – numeri-

cally. Table 1 indicates which solution was used for each of the

13 distributions. For the lognormal distribution, the observa-

tions were first transformed with Y = ln X, and then they were

treated as normally distributed. In case of the logistic distri-

bution, the expression (15) was maximized numerically due to

poor convergence during the solution of (16).
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Fig. 5. Skewness and kurtosis plots against n, and against each other

Fig. 6. Examples for a short and a long dataset, and fitted distributions (with goodness-of-fit indicated)

Despite the fact that computing the MLEs requires a consid-

erable effort, they have a very favourable property: they are so-

called minimum variance, asymptotically unbiased estimators

[13]. Practically, this can be interpreted as the MLEs being the

best estimators available.

3.2.3 Evaluation of the results

Each of the 125 datasets was cross-tested with each distri-

bution type. The MLEs for each distribution have been cal-

culated with (15) and (16) for each and every dataset, and the

Kolmogorov-test (11)-(14) for each distribution has been per-

formed using the corresponding MLEs. Although the number of

distribution types was 13 (see Table 1), 14 tests were conducted

for each dataset: for the beta distribution, one case included esti-

mating all 4 parameters through MLE; while in the second case

the lower and upper bounds a and b were fixed close to the ob-

servations, with a = x
′

1
− 0.01 and b = x

′

n + 0.01.

Fig. 6 shows 2 examples of the datasets and fitted distribu-

tions: one for a short dataset, and another for a long one.

Comparing the results among each other is not quite straight-

forward: expression (12) shows that the value of the Kol-

mogorov function (13) increases with the length of the dataset

n. In other words, longer datasets have to fit more smoothly

to the theoretical distribution than short ones to reach the same

significance level. Furthermore, the CPT equipment and testing

procedure bear an intrinsic variability, or “noise”, which leads

to random reading errors with a variation coefficient of ~8-22%.

[2]. Also, some datasets are “gap-graded” (contain jumps in

their CDF), which diminish the achievable level of fit for any

continuous distribution.

To cope with these difficulties, the performance of the tested

distributions was evaluated with 3 scores, given in Table 2.

First, the score allocated to a distribution was the number

of times it proved to be the best-fitting one. (Note: The col-

umn sums up to 127 instead of 125, because in 2 cases the

4-parameter and the 2-parameter beta distributions reached the

same level of fit.)

Tab. 2. Overview of the Kolmogorov tests (* see note above)

Name Times best
Averages

Max norm Sum norm

Beta 4 parameter 42* 0.583 0.231

Beta 2 parameter 6* 0.167 0.059

Cauchy 5 0.112 0.049

Extreme Value 12 0.305 0.099

Gamma 8 0.286 0.069

Gumbel 10 0.143 0.043

Inverse Gaussian 6 0.266 0.069

Laplace 5 0.150 0.049

Logistic 13 0.370 0.105

Lognormal 7 0.310 0.083

Maxwell 3 0.072 0.017

Normal 3 0.237 0.058

Rayleigh 1 0.019 0.004

Weibull 6 0.250 0.065

However, a large amount of information about the perfor-

mance of the distributions is lost in this approach. To consider

all of the Kolmogorov test results, they were normalized with

respect to their maximum value and their sum for each dataset.

The weight or score for a distribution was then calculated as

wmax
j =

p j

max
j

(
p j

) (17)
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Fig. 7. Histograms of the goodness-of-fit (g-o-f) values and their max-norm weights
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Fig. 8. Ratios of xmo
k

method-of-order 5% fractiles to xnorm
k

normal and x
logn

k
lognormal distribution 5% fractiles

wsum
j =

p j∑14
j=1 p j

(18)

Here, p jstands for the result of the Kolmogorov test for the j-

th of the 14 distributions tested ( j = 1 . . . 14). These normal-

izations allow for “evening out” the differences between the

datasets arising from different lengths, gaps, or noise. The

weights calculated with the max norm (17) help to rank the per-

formance of the distributions over all datasets: in each case, the

best fit receives the weight 1, and the others get their weights

according to the ratio of their respective fit probability. The sum

norm (18) is more suitable for the comparison of the distribu-

tions for a given dataset: the closer its value is to unity, the more

dominant it is among those tested. (In other words: a value close

to 1 means that the distribution in question excels, whereas the

others do not; it is a rough measure of certainty to choose the

right one.) Of course, the two normalizations are not indepen-

dent. It must also be stressed that they are only simple aids for

the comparison. Their average values over all datasets are also

listed in Table 2; higher averages indicate a better fit.

Plotting the histograms (Fig. 7) of the Kolmogorov test results

(blue) and the max-normalized results (red) for each distribution

gives the most insight into their performance. The first notable

feature is that very low fit probabilities characterize each distri-

bution, which can be explained by the reasons given above. If

the histogram for the max-normed weights for a distribution is

shifted to the right (upwards), it indicates a good fit, and if the

two histograms overlap (no or very little shift can be observed),

the overall performance of the distribution is not satisfying.

Table 2 and the histograms in Fig. 7 show that the beta distri-

bution with 4 parameters stands out regarding its goodness-of-

fit. It is followed by the logistic distribution, the extreme value-

distribution and the lognormal distribution, ranked 2nd through

4th according to the max- and sum-norms.

Interestingly, the normal distribution performs rather poorly,

taking the 8-9th ranks with the two norms. The inverse Gaussian,

gamma, and Weibull distributions achieve intermediate scores,

while the Cauchy, Laplace, Gumbel, and the 2-parameter beta

distributions lie at the lower end of the list. The simple, one-

parameter distributions, Rayleigh and Maxwell show a poor fit

and thus are not suitable modelling CPT data.

Some considerations should be made regarding the best-

performing distributions. The versatility of the 4-parameter beta

distribution arises from the large number of parameters: the

lower bound a and upper bound b have to be set by parame-

ter estimation, in addition to α and β. This requires a consid-

erable effort, since an analytical procedure does not exist for

this end, they have to be approximated numerically. To in-

vestigate the sensitivity of the fit against their values, the 2-

parameter beta distribution was also tested, where a and b were

fixed close to the observed values. As seen in Fig. 6 and Ta-

ble 2, this reduced the overall performance considerably. Fur-

thermore, the values for a and b in the 4-parameter case occa-

sionally took on improbable values, since they were only subject

to constraints 0 < a < min (xi) and max (xi) < b.

The parameter estimation for the logistic distribution was car-

ried out by maximizing the likelihood-function (15) itself, since

the numerical solution of the likelihood-equations (16) often

showed poor convergence. In turn, maximizing the likelihood-

function resulted many times in computational under- and over-

flow problems, making a rescaling of the dataset necessary.

The extreme value distribution (and also the closely related

Gumbel distribution) needs only the parameter β estimated nu-

merically, α can then be calculated analytically, making the pa-

rameter fitting easier. The method-of-moments estimator for β

is a good initial value for the numerical solution.

Estimating the parameters for the lognormal distribution is

probably the easiest: first, the logarithm of the observations is

taken, and the mean and standard deviation of the transformed

values are calculated. Another advantage of the lognormal over

the logistic and the extreme value distributions is that it can only

yield positive values, which reflect the physical nature of CPT

tip resistances.

Last but not least, the question arises: what values can be ac-

cepted as satisfactory in a goodness-of-fit test? Judged from the

results of the Kolmogorov tests, and as shown in Fig. 6, val-

ues above cca. 0.35-0.40 can be tentatively accepted as sat-

isfactory for CPT data. This holds for “shorter” datasets with
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Fig. 9. Ratios of a) mean and median, b) length of confidence intervals and c) lower interval bounds

n ≈ 50 − 100, but lower values can also be accepted for longer

ones. In such cases, the decision of accepting or rejecting a dis-

tribution (with estimated parameters) can be confirmed by ad-

ditionally inspecting the empirical and fitted CDF, as shown in

Fig. 6.

As seen from the scattering results in Fig. 4, 5 and 7, none

of the tested distribution types may be deemed superior to the

others. The skewness and kurtosis of the datasets covers a wide

range, and the best-fitting distribution type varies strongly. That

leads to the question of how to conduct statistical inference in

such an uncertain setting.

4 Estimation of characteristic values

4.1 Robustness and efficiency

If the underlying distribution for one or more datasets is un-

known, one can make use of so-called nonparametric methods.

The term nonparametric means that the type of distribution does

not need to be known. In such a case, quantitative inference is

still possible, but at the price of lower precision. Nonparamet-

ric estimators are often referred to as robust ones, expected to

perform well for several types of distributions.

One possible measure of robustness is the (asymptotic) break-

down point: it gives the ratio of data points that can be changed

arbitrarily while the estimator remains bounded. (It gives the

ratio of eventually completely erroneous data that the estimator

tolerates.)

The sample mean x̄ has a breakdown point of 0: even one

heavy outlier can spoil the calculated mean, highlighting the

sensitivity of the mean value. Suspected outliers can be ex-

cluded by calculating trimmed sample means: the α% trimmed

mean excludes α% of the data at the low end and another α%

at the high end of the values, 2α% in total. The 50% trimmed

mean is the median m. It is the most robust estimator with an

asymptotic breakdown point of 1/2. The α% trimmed mean has

a breakdown point of α, its trimming fraction, forming a con-

tinuum between the sample mean and the sample median with

respect to the asymptotic breakdown point.

The accuracy can be expressed as the asymptotic variance

σ2
θ associated with the estimator. It is generally not equal to

the population variance. The efficiency of different estimators

can be compared via the ratio of their variances, called asymp-

totic relative efficiency. (ARE = σ2
A/σ

2
B
, where σ2

A
≤ σ2

B
, thus

ARE ≤ 1, higher ARE indicating smaller variance when com-

paring more estimators) However, unlike the breakdown points,

the variances of the estimators depend on the underlying dis-

tribution type (which is unknown), rendering their comparison

difficult. Generally, the more robust an estimator is, the less ef-

fective it is, and vice versa.

A comprehensive summary on the breakdown point and rela-

tive efficiency is given in [21].

In the following sections, a statistical “toolbox” for making

estimations about the 5% fractile, and more importantly, the

mean or median value will be presented. The properties of x̄

Statistical analysis of CPT tip resistances 552013 57 1



and s2
x as unbiased, consistent estimators for µ and σ2

x respec-

tively will be put to use.

4.2 Nonparametric estimation of the 5% fractile

When estimating low and/or high fractiles, the shape of the

distribution has a strong effect on the outcome. This is especially

pronounced for very low probabilities such as failure probabili-

ties, as pointed out by [22]. The influence of the distribution tail

shape is important in case of the 5% fractile, too. If the under-

lying distribution for a dataset is uncertain, one can make use of

the following methods and theorems.

P (|x − µ| ≥ h · σ) ≤
1

h2
(19)

Chebyshev’s inequality (19) can be used for estimating fractiles,

as described in [14]: constructing a two-tailed, 90% confidence

interval by setting P = 0.90 in (19), h =
√

1/p and calculating

the interval bounds with

x̄ ± h · sx (20)

The advantage of this method – besides its simplicity – is

that it works for any continuous distribution but with the draw-

back of providing very wide confidence intervals, i.e. low effi-

ciency. (For P = 0.90, h = 3.162, compared to 1.645
√

1 + 1/n

in Eq.(2).)

Another easy-to-apply method to estimate the 5% fractile is

the method of order, presented in Section 2.1, which works for

any continuous distribution, provided enough data points are

available. As discussed in Section 3, this requirement is usu-

ally fulfilled for CPT data from a single layer. With an increas-

ing number of measurements, the “resolution” around the given

fractile is refined too, ensuring its consistency.

The ratio of the method of order 5% fractiles xmo
k

to the nor-

mal distribution 5% fractiles xnorm
k

from Eq. (1), as well as to the

corresponding lognormal 5% fractiles x
logn

k
are shown in Fig. 8a

and 8b, plotted against the sample skewness γ. Both plots sug-

gest a fairly linear regression curve. The full lines show the lin-

ear trend, while the dashed curves delineate the prediction bands

for the mean.

As expected, both Fig. 8a and 8b show that the 5% fractiles

calculated by the method of order tended to be more and more

favourable than the fractiles calculated by Eq. (1) or by the

lognormal distribution for increasing positive skewness. Both

show an intercept ≈1 (1.05 and 0.93), but in Fig. 8a the coef-

ficient of determination is only R2 =0.236, while in Fig. 8b it

is R2 =0.578. The negative value appearing in Fig. 8a comes

from a negative estimation of xnorm
k

. Such negative predictions

are not possible with the lognormal distribution, but it still fails

to address the systematic deviation with the skewness.

This implies that estimating the 5% fractile for CPT cone re-

sistances should be carried out preferably by the method of or-

der, or by applying Eq. (1) to the logarithm of the data, instead

of its direct application or the use of Chebyshev’s inequality.

4.3 Estimation of the mean and median

As mentioned in Section 4.1, the conflicting issues for select-

ing an estimator for the “central value” are robustness and effi-

ciency. Robustness was dealt with there, and the efficiency of

estimating the mean and median with a given confidence level

will be investigated here.

The median m is another robust measure of a “central value”

of a distribution, it is defined as F (m) = 1/2; the 50% fractile,

or alternatively, the 50% trimmed mean. For symmetrical distri-

butions it equals the mean µ, whereas for skewed distributions

µ , m. (Even in the literature, the mean is sometimes falsely

referred to as the 50% fractile.)

Its point estimator is the sample median m̄, defined as

m̄ =

 x(n+1)/2 for odd n
xn/2+xn/2+1

2
for even n

(21)

The associated hypothesis test is the sign test; it can be used to

construct exact nonparametric confidence intervals for the me-

dian.

The test statistic

T =

n∑
i=1

I (xi − m) where

I (xi − m) = 1 if xi −m > 0 and

I (xi − m) = 0 if xi −m ≤ 0

(22)

follows a binomial distribution with n trials and a success prob-

ability of p = 1/2:

P (T ≤ k) =

k∑
i=0

(
n

i

)
pi (1 − p)i (23)

The n data points divide the real line into n+1 intervals; they are

also the endpoints of the confidence intervals. After arranging

the data points in sorted order (x
′

1
≤ · · · ≤ x

′

n), the confidence

level for the interval encompassed by endpoints lying “k number

of steps inwards” from the outermost data points is

1 − 2 P (T ≤ k) (24)

The confidence levels assume discrete values. The 95% confi-

dence level can be approximated as kmax : 1 − 2 P (T ≤ kmax) ≥

0.90; with kmax being the largest integer for which the relation

holds. (The expression (24) is associated with the two-tailed

confidence interval.) [21]

An important advantage of the sign test is that it allows for

asymmetric confidence intervals if the dataset is skewed.

For estimating the mean, the central limit theorem can be put

to use. It states that the sample mean follows a normal distribu-

tion:

x̄ ∼ N

(
µ,
σ2

x

n

)
(25)

regardless of the distribution of x. The variance of the estimator

x̄ is σ2
x, the population variance, which can be substituted by s2

x.

Per. Pol. Civil Eng.56 Imre Laufer



Similarly, for large n the sample median also follows a nor-

mal distribution (the binomial distribution approaches the nor-

mal distribution):

m̄ ∼ N

(
m,

σ2
m

n

)
(26)

where the variance of the sample median can be calculated from

the PDF of the distribution:

σ2
m =

1

4 f (m)2
(27)

Many of the symmetrical distributions are so-called location-

scale-type distributions, where the mean is defined by one pa-

rameter only and directly. In these cases, the mean can also be

estimated via maximum likelihood. The Cramér-Dugué theo-

rem states that the MLEs θ̂ follow a normal distribution with

mean at the true value θ, and the variance In

(
θ̂
)−1

, the inverse of

the Fisher information associated with the distribution. [13]

θ̂ ∼ N

(
θ, In

(
θ̂
)−1

)
(28)

The Fisher information can be derived – under some regularity

conditions - with the help of the likelihood-function (15). (These

regularity conditions can be found e.g. in [13]. For distribu-

tions with multiple parameters, the Fisher information becomes

a matrix, and the variance of one parameter is the corresponding

element in the trace of the inverted Fisher information matrix.

[23])

Furthermore, the Cramér-Rao inequality gives a lower bound

on the variance of unbiased estimators: it is the inverse of the

Fisher information In (θ) [13]. Together with the Cramér-Dugué

theorem, it follows that under the regularity conditions for the

Fisher information, the MLEs are the most effective estimators.

The variances for σ2
x, σ2

m, and for the MLEs of some location

parameters are given in Table 3 for comparison of the variances.

For symmetrical, location-scale-type distributions, under the

asymptotical normality of both x̄, m̄ and θ̂, the length of their

confidence intervals will be proportional to 1/
√

ARE, with

σ2

θ̂
= σ2

A
(the MLE being the reference estimator). For the nor-

mal distribution, this means that x̄ has also minimum variance

(ARE = 1), and the median has a confidence interval ∼ 1, 25

times bigger than the mean. For the logistic distributions, the

confidence intervals for x̄ and m̄ are ∼ 1, 05 and ∼ 1, 15 times

wider than for θ̂. These points emphasise the good efficiency of

x̄.

The lognormal distribution requires special attention: if the

estimation of the parameters µ and σ is performed by calcu-

lating the sample mean µ ≈ x̄ and sample standard deviation

σ ≈ sx from the logarithm of the observations Y=lnX, then the

mean after the back-transformation will be eµ+σ2/2 instead of eµ,

which is the median. This is the reason why the lognormal dis-

tribution is sometimes criticized for giving too high averages.

Furthermore, since the mean, median and location parameter

µ are not equal, the comparison of their variances via ARE is

pointless (as for the other distributions in Table 3).

To compare the above considerations with the confidence in-

tervals for x̄ and m̄ based on the current datasets, a nonpara-

metric method called bootstrapping was used to calculate the

distribution of both x̄ and m̄ for each dataset. The bootstrap is

essentially a re-sampling plan to create a numerical approxima-

tion for any function of the observations (in this case the mean

and median), without making assumptions about the underly-

ing distribution type [26]. A bootstrap replication (or bootstrap

sample) of the observed data x1 . . . xn is generated by randomly

drawing n elements “with replacement” from the dataset. The

number of possible combinations with repetition is

N =

(
2n − 1

n

)
(29)

with the actual dataset being one of the possible outcomes (as

“drawing n values without replacement”). Even for the shortest

dataset analyzed, with n = 63, N > 1036.

Creating a large number B of replications and subsequently

calculating x̄ and m̄ for each of them enables one to set up an

approximation for the distribution of x̄ and m̄, respectively.

The distribution of x̄ was estimated for each of the 125

datasets from B = 1000 replications. The results clearly show

normal distribution as expected due to the central limit theorem.

The maximal difference between the mean of the dataset and the

expectation of the bootstrap samples was approximately 0.1%.

The latter was calculated as∣∣∣x̄ −∑B
i=1 x̄B,i/B

∣∣∣
x̄

(30)

with x̄ being the mean of the dataset, and x̄B,i being the mean

of the i-th bootstrap sample. The greatest difference in the

calculated standard deviations – calculated in a similar man-

ner – was approx. 2%. The calculated skewness and kurto-

sis for each dataset was in the range γ = −0.104 to 0.304 and

κ = 2.88 to 3.14. Of course, these bounds are subject to slight

changes due to the random selection of the B replications out of

the possible N, but – given the increasing sensitivity of higher

order moments γ and κ against outliers – they nevertheless show

that x̄ follows a normal distribution as predicted by the central

limit theorem.

The procedure was also repeated for m̄, but with unsatisfac-

tory results. For B = 1000, the anticipated binomial distribution

did not emerge in the histograms. An increase to B = 10000

resulted in some improvement, but the results were still not sat-

isfying, indicating a slower convergence rate towards the limit

in Eq. (23).

Finally, the relative positions of the mean and median m̄/x̄, as

well as the lengths of their respective 90% confidence intervals

Lm̄/Lx̄, and the relative positions of the lower bounds of the in-

tervals mlow/xlow were compared. Here, Lm̄ is the length of the

confidence interval for m̄ as in (21)-(24) and Lx̄ is the same for x̄

as in (7). mlow and xlow are the lower bounds of Lm̄ and Lx̄. The

results are shown in Fig. 9a, b, and c respectively.
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Tab. 3. Overview of the mean, median, and associated variances of the

tested distributions (*: not shown) (γ is the Euler-Mascheroni constant, Γ−1
R

() is

inverse of the regularized incomplete gamma function)

Name Parameters Mean Variance Median
Variance of

median
I−1
n Ref.

Beta a, b, α, β a + α
α+β (b − a)

αβ

(α+β)2(1+α+β)
a + I−1

0.5
(α, β) (b− a) *

Cauchy a, b – – a π2b2

4

Extreme Value α, β α + γβ π2β2

6
α − βln [ln(2)]

β2

ln(2)2

Gamma α, β αβ αβ2 βΓ−1
R

(α, 0, 0.5) *

Gumbel α, β α − γβ π2β2

6
α + βln [ln(2)]

β2

ln(2)2

Inverse Gauss µ, λ µ µ3

λ
– πµ3

2λ

Laplace µ, β µ 2β2 µ β2

Logistic µ, β µ π2β2

3
µ 4β2 µ : 3β2/n [24]

Lognormal µ, σ eµ+ σ2

2 (eσ
2
− 1)e2µ+σ2

eµ 1
2

e2µπσ2 µ : e2µσ2/n [25]

Maxwell σ 2

√
2
πσ

(3π−8)σ2

π σ
√

2Γ−1
R

(1.5, 0.5) *

Normal µ, σ µ σ2 µ πσ2

2
µ : σ2/n [13]

Rayleigh σ
√

π
2
σ

(
2 − π

2

)
σ2

√
ln (4)σ σ2

ln(4)

Weibull α, β βΓ
(
1 + 1

α

) β2[Γ(1 + 2
α ) −

Γ(1 + 1
α )

2
]

βln(2)
1
α *

As expected, the value of m̄ decreases against x̄ with increas-

ing skewness. The trend appears to be nearly linear, but some

significant downward deviations are present. The lengths Lm̄ are

generally larger than Lx̄, but no obvious trend is present. How-

ever, the larger confidence interval lengths appear in Fig. 9c

as a larger scatter of the data. (R2 =0.322 in Fig. 9c against

R2 =0.535 in 9a, while the regression lines show only slight dif-

ferences.)

For sample sizes encountered when analyzing CPT data (n

>30-50), the bootstrap re-sampling of the datasets has confirmed

the statement of the central limit theorem, that x̄ is normally

distributed with the true (population) mean µ as the expectation.

In such a case, the x̄ is also the most effective estimator of µ, as

seen from Table 3.

Although exact nonparametric confidence intervals can be

constructed for m, they were found to be generally larger than

those for x̄. The difference was even greater than expected from

Table 3. The larger robustness of the median was not found to be

of particular advantage, since it comes into play in small sample

situations or without outlier screening.

Therefore, using Eq. (7) or (8) is appropriate for the calcula-

tion of confidence intervals for the mean, regardless of the dis-

tribution of the sample.

4.4 Independency of CPT data

An additional consideration should be made when applying

these statistical methods to CPT data. The classical statistical

methods, be they parametric or nonparametric, share the as-

sumption of independent and identically distributed data. It is a

well-known fact that the CPT tip resistances are correlated. For

correlated data, methods based on time-series analysis are more

appropriate, but that involves very different types of tasks to be

solved. A related application of such a random-field analysis to

CPT is presented e.g. in [20].

5 Conclusions

The soil properties adopted for geotechnical design have to

consider both material-related and testing-related uncertainties.

Eurocode 7 defines a statistical principle to select the character-

istic values for soil properties: the probability of a more un-

favourable value of a parameter should not exceed 5%. Eu-

rocode 7 further notes that the 5% fractile is required if local

failure is concerned in the particular limit state; and the spatial

mean value at a confidence level of 95% if a larger ground vol-

ume is affected. However, it is not clearly stated whether one-

or two-tailed confidence intervals should be adopted. Along

with the general perception of two-tailed confidence intervals,

the above principle is obeyed when setting the confidence level

to 90%. In this case, one half of the excluded 10% is favourable

(in the upper tail if low values are unfavourable), which leaves

5% probability to more unfavourable values. Most textbooks

present statistical formulae based on assuming a normal or log-

normal distribution for the quantitative soil property.

The aim of this paper was to investigate the applicability of

those formulae for CPT tip resistances. For this end, statisti-

cal tests were carried out on 125 datasets from homogeneous

soil layers, confirmed by borehole logs. The goodness-of-fit

was tested with the Kolmogorov test against 13 distributions, se-

lected to cover a wide range of choices. The parameters for the

fitting procedure were calculated as maximum likelihood esti-

mators, being the most effective estimators available.

The raw Kolmogorov test results, as well as their normalized

values have shown that the normality assumption clearly does

not hold. The 4-parameter beta, logistic, extreme value, and

lognormal distributions were found to be the best-fitting ones,

and the lognormal seems to be the most suitable for general use,
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due to its relative simplicity and its link to the well-understood

normal distribution. Tentatively, a goodness-of-fit of 0.35-0.40

by the Kolmogorov test may already be convincing for the fit.

A number of methods were examined for the estimation of the

5% fractile, and the so-called method of order is suggested for

use with CPT data. The first reason is that it is a nonparametric

method, i.e. no assumption about the distribution type is neces-

sary. Second, the geological formations which are perceived as

homogeneous, distinct layers in geotechnical engineering bear

enough CPT data to enable a fine resolution of the distribution

around the 5% fractile.

The construction of two-tailed confidence intervals for both

the mean and median were examined, regarding the robustness

of the estimation and its efficiency. The investigations and com-

parisons have shown that the mean is normally distributed – as

stated in the central limit theorem – regardless of the underly-

ing distribution of the data. That enables effective estimation

with small errors, especially compared with the confidence in-

tervals around the median. Although the preliminary considera-

tions about the median promised, along with higher robustness,

only slightly larger confidence intervals, this was not confirmed

by the bootstrap distributions. The latter were found to scatter

strongly, and yielding considerably more unfavourable results in

most cases.

The main results of this paper may add a simple method for

estimating the 5% fractile to the geotechnical engineers’ statis-

tical toolbox, and provide verification for the use of the com-

mon methods for constructing confidence intervals for the mean

value of CPT data. On the other hand, it demonstrates the in-

appropriateness of assuming a normal distribution for CPT tip

resistances in a homogeneous layer.
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Tab. 4. Overview of the analyzed soil layers from the industrial site

CPT profile layer starting depth [m] final depth [m] thickness [m] soil type [borehole, lab.]
soil type

[Robertson, 1986]
data points n

HK 1 A 0.72 3.60 2.88 loessy, low pl. clay - hard 6 145

B 3.62 6.34 2.72 loessy, low pl. clay - firm 5 133

C 6.36 14.72 8.36 loessy, low pl. clay - soft 3 - 4 - 5 118

D 14.88 18.88 4.00 loessy, low pl. clay - firm 3 148

HK 2 A 0.66 3.30 2.64 loessy, low pl. clay - hard (6) - 7 150

B 3.32 6.02 2.70 loessy, low pl. clay - firm 5 - (6) 191

C 6.04 18.16 12.12 loessy, low pl. clay - soft (4) - 5 141

E 18.40 20.56 2.16 loessy, low pl. clay - hard (5) - 11 200

HK 3 A 1.12 3.46 2.34 loessy, low pl. clay - hard 6 172

B 3.48 6.62 3.14 loessy, low pl. clay - firm (4) - 5 198

C 6.64 16.80 10.16 loessy, low pl. clay - soft 3 - (4) - (5) 170

D 16.82 18.32 1.50 loessy, low pl. clay - firm 3 96

HK 4 A 0.82 3.76 2.94 loessy, low pl. clay - hard (6) - 7 137

B 3.78 8.16 4.38 loessy, low pl. clay - firm (5) - 6 136

C 8.18 16.32 8.14 loessy, low pl. clay - soft (4) - 5 - (6) 158

E 16.34 17.40 1.06 loessy, low pl. clay - hard 6 - 7 - 9 220

HK 5 A 1.06 4.04 2.98 loessy, low pl. clay - hard 6 - (7) 283

B 4.06 9.70 5.64 loessy, low pl. clay - firm (4) - (5) - 6 286

C 9.72 16.88 7.16 loessy, low pl. clay - soft (5) - 6 354

D 18.08 25.68 7.60 loessy, low pl. clay - firm (6) - 11 247

E 17.00 18.06 1.06 loessy, low pl. clay - hard (3) - 4 - 5 245

HK 6 A 0.92 4.72 3.80 loessy, low pl. clay - hard (5) - 6 281

B 4.74 10.44 5.70 loessy, low pl. clay - firm (3) - 5 - (6) 309

C 10.46 17.40 6.94 loessy, low pl. clay - soft (3) - 5 330

HK 7 A 1.50 4.30 2.80 loessy, low pl. clay - hard (6) - 7 419

B 4.32 11.38 7.06 loessy, low pl. clay - firm (4) - (5) - 6 607

C 11.40 18.24 6.84 loessy, low pl. clay - soft (4) - 5 - (6) 509

HK 8 A 0.40 4.38 3.98 loessy, low pl. clay - hard 7 408

B 4.40 9.32 4.92 loessy, low pl. clay - firm 5 - 6 359

C 9.34 16.42 7.08 loessy, low pl. clay - soft (4) - 5 - (6) 348

D 17.74 24.86 7.12 loessy, low pl. clay - firm 4 - 5 343

E 16.52 17.72 1.20 loessy, low pl. clay - hard 4 - 5 355

HK 9 A 3.36 6.78 3.42 loessy, low pl. clay - hard 6 - 7 414

B 6.80 11.68 4.88 loessy, low pl. clay - firm (4) - 5 - 6 388

C 11.72 19.98 8.26 loessy, low pl. clay - soft (4) - 5 - (6) 309

HK 10 A 3.38 7.32 3.94 loessy, low pl. clay - hard (5) - 6 407

B 7.40 13.00 5.60 loessy, low pl. clay - firm 3 - 5 201

C 13.18 20.92 7.74 loessy, low pl. clay - soft (4) - 5 - (6) 76

HK 11 A 4.20 7.58 3.38 loessy, low pl. clay - hard 6 - 7 381

B 7.60 13.76 6.16 loessy, low pl. clay - firm 3 - 4 - 5 357

C 13.78 19.94 6.16 loessy, low pl. clay - soft 5 - (6) 109

HK 12 A 3.10 5.00 1.90 loessy, low pl. clay - hard 5 - (6) 54

B 5.02 11.60 6.58 loessy, low pl. clay - firm 3 - 5 54

C 11.62 19.74 8.12 loessy, low pl. clay - soft 3 - 5 - 6 61
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Tab. 5. Overview of the analyzed soil layers at the road construction site (* not reached by borehole, clearly homogeneous in CPT)

CPT profile layer starting depth [m] final depth [m] thickness [m] soil type [borehole, lab.] soil type [Robertson, 1986] data points n

1 A A 1.10 14.70 13.60 clayey silt 5 - (6) 656

B 16.10 20.20 4.10 clayey silt 4 - 5 - 6 189

C 20.30 24.30 4.00 - * 11 - (3) 183

6 A 4.40 9.40 5.00 clayey silt 5 - 6 - 7 237

B 9.42 16.50 7.08 clayey silt 3 - (4) - (5) 335

6 K A 4.82 9.28 4.46 clayey silt 5 - 6 - 7 223

B 9.30 16.66 7.36 clayey silt 3 - (4) - (5) 352

8 A 4.94 8.80 3.86 silty sand (loess) 6 190

B 9.24 12.50 3.26 low plast. clay 5 154

C 14.84 18.80 3.96 low plast. clay 3 - 5 199

8 K A 3.76 8.92 5.16 silty sand (loess) 6 246

B 9.08 12.64 3.56 low plast. clay 5 168

C 12.72 17.64 4.92 low plast. clay 5 226

12 A 1.70 9.60 7.90 silty sand 6 - 7 380

B 17.78 23.00 5.22 silty sand 3 - 6 - 7 235

12 K A 1.86 9.30 7.44 silty sand 6 - 7 355

B 16.40 22.94 6.54 silty sand 3 - 6 - 7 298

15 A 1.06 5.60 4.54 silty sand 5 - 6 - 7 222

B 6.10 9.64 3.54 silty sand 7 171

15 K A 0.80 5.66 4.86 silty sand 5 - 6 - 7 235

B 6.10 9.20 3.10 silty sand 7 149

16 A 1.32 6.80 5.48 medium grained sand 8 268

B 7.10 12.44 5.34 silty sand 5 - 6 254

C 17.62 19.80 2.18 low plast. clay 6 107

18 A 3.04 5.60 2.56 silty sand 6 - 7 - 8 124

B 6.54 8.80 2.26 silty sand 7 104

18 K A 3.20 5.60 2.40 silty sand 8 - 9 115

B 6.40 8.68 2.28 silty sand (5) - 6 - 7 - (8) 111

19 A 1.80 6.40 4.60 silty sand 3 - 4 - 7 223

B 14.00 18.14 4.14 medium plast. clay 6 192

19 K A 1.30 6.40 5.10 silty sand 3 - 4 - 5 242

B 14.80 19.68 4.88 medium plast. clay 5 - 6 234

20 K A 9.06 18.40 9.34 silty sand 7 445

23 A 5.40 18.70 13.30 sandy silt (7) - 8 642

B 17.78 21.40 3.62 sandy silt 8 128

C 25.42 29.72 4.30 sandy, silty clay 6 209

23 K A 10.00 13.10 3.10 silty sand 6 - (7) 151

B 13.12 16.00 2.88 silty sand 7 139

30 A 2.02 9.36 7.34 silty sand 7 - 8 352

B 11.96 16.76 4.80 silty clay 6 232

31 A 6.50 10.00 3.50 sand (w. organic bands) 3 - 5 165

B 18.82 21.86 3.04 - * 6 147

31 K A 6.60 8.68 2.08 sand (w. organic bands) 5 - 6 - 7 100

B 9.20 11.62 2.42 sand (w. organic bands) 5 - 6 120

C 11.74 13.38 1.64 silty clay (w. organic stains) 7 81

485 - 1 A 0.80 2.20 1.40 clayey silt 3 - 5 68

B 2.22 5.60 3.38 silty sand 5 - 6 - 7 159

C 5.62 12.68 7.06 silty sand 6 - 7 - 8 334

D 12.76 18.50 5.74 silty sand 8 - 9 265

485 - 2 A 0.80 2.20 1.40 clayey silt 3 - 5 69

B 2.22 5.60 3.38 silty sand 5 - 6 - 7 163

C 5.62 12.68 7.06 silty sand 6 - 7 - 8 337

D 12.76 19.68 6.92 silty sand 8 - 9 330

D0 A 4.00 10.50 6.50 silty sand 5 - 6 631

B 16.90 22.39 5.49 silty sand (5-6-7-8-11-12) 535

C 22.40 29.94 7.54 silty sand (7) - 11 - (12) 677

D1 A 4.00 10.00 6.00 silty sand 7 - 8 287

B 16.90 21.98 5.08 silty sand 7 - 8 247

C 22.00 29.64 7.64 silty sand 6 - 7 - 8 - 11 378

D2 A 3.20 4.64 1.44 organic silt 2 - 3 73

B 8.70 16.64 7.94 silty sand 7 - 8 - 9 382

C 20.94 24.98 4.04 silty sand 8 - 9 191

D3 A 3.34 4.66 1.32 organic silt 2 - 3 64

B 20.38 25.40 5.02 silty sand 3 - 4 - (5) 240

D4 P A 5.90 8.10 2.20 medium plast. clay 3 213

B 12.40 17.48 5.08 low plast. clay 3 - 11 490

C 18.40 23.20 4.80 medium plast. clay 3 463

D4 A 5.90 8.10 2.20 medium plast. clay 4 104

B 12.40 15.00 2.60 low plast. clay 3 124

C 16.10 17.42 1.32 low plast. clay 3 63

D 18.40 23.40 5.00 medium plast. clay 5 235

D5 A 4.20 6.12 1.92 medium plast. clay 5 - 6 183

B 6.70 10.56 3.86 medium plast. clay 3 378

C 11.91 14.87 2.96 clayey silt 3 288

D 18.75 22.00 3.25 silty sand 4 - 5 305

E 22.01 25.60 3.59 - * 3 - 5 351

KM - 41 A 4.00 7.00 3.00 sandy, clayey silt 6 - 7 143

B 8.00 15.18 7.18 sandy, clayey silt 7 348

KM - 42 A 4.00 7.00 3.00 sandy, clayey silt 7 144

B 8.00 15.18 7.18 sandy, clayey silt 7 346

KM - 101 A 6.50 12.20 5.70 silty sand 7 275
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