
936|https://doi.org/10.3311/PPci.21427
Creative Commons Attribution b

Periodica Polytechnica Civil Engineering, 67(3), pp. 936–944, 2023

Cite this article as: Barkhordari M. S., Tehranizadeh M. "Data-driven Dynamic-classifiers-based Seismic Failure Mode Detection of Deep Steel W-shape 
Columns", Periodica Polytechnica Civil Engineerin, 67(3), pp. 936–944, 2023. https://doi.org/10.3311/PPci.21427

Data-driven Dynamic-classifiers-based Seismic Failure Mode 
Detection of Deep Steel W-shape Columns

Mohammad Sadegh Barkhordari1, Mohsen Tehranizadeh1*

1 Department of Civil & Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic), 
 Tehran 1591634311, Iran
* Corresponding author, e-mail: tehranizadeh@aut.ac.ir

Received: 30 October 2022, Accepted: 11 May 2023, Published online: 22 May 2023

Abstract

It is vital to assess the health of buildings following a major earthquake. New technologies such as deep learning algorithms have grown 

increasingly tempting in such rapid applications because of their increased reliabilities and simplicity to traditional methods. Due to 

the kinematics of steel moment frames, inelastic deformations tend to concentrate within the steel column during an earthquake, 

resulting in local or global buckling. Rapid failure mode detection of the existing deep steel W-shape columns (DSWCs) cannot be 

quickly identified due to a lack of comprehensive empirical and mechanics-based models. This research proposed a machine learning 

(ML) algorithm based on the state-of-the-art techniques of dynamic classifiers for failure mode forecasting of the DSWCs using an 

experimental database and illustrated why the ML model suggests a specific failure mode for a particular sample. The database 

was created by combining 939 instances from various studies that have been published. A total of six machine learning models 

based on Dynamic Selection strategy were implemented. Three metrics, i.e., accuracy, precision, and recall, were used to evaluate 

the performance of models. As a result of the extensive examination, a machine learning model based on the META-DES model was 

proposed. In the training stage, Overall Local Accuracy, A-Priori, and META-DES algorithms, received the highest score (>0.96) across 

all criteria. The META-DES model correctly predicted the failure mode of the DSWCs with an accuracy of 0.907 in the testing phase. 

The META-DES algorithm performed better than previous methods which are employed to identify the failure mode.
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1 Introduction
Steel moment-resisting frames are utilized in earthquake- 
prone areas around the world to keep plastic deformations 
in the beams while the columns remain elastic. Accord-
ingly, some principles and methods are used. For instance, 
steel beams and columns are designed for lower seismic 
loads and a combination of the capacity design as well 
as increased seismic loads, respectively [1]. In some cir-
cumstances, these techniques will not be able to eradi-
cate plastic hinges in first-story columns. For example, the 
first mode of frame buildings is assumed in strong-col-
umn-weak-beam design to establish the column strength 
requirement; however, this is frequently violated, notably 
in midrise to high-rise buildings [2]. In addition, first-story 
columns of steel frame buildings are prone to experiencing 
inelastic rotation demands due to the formation of a full-
frame yield mechanism and force redistributions that occur 
as a component's strength and stiffness deteriorate [3, 4].

In the United States and elsewhere, deep steel W-shape 
columns (DSWC) are commonly utilized in special steel 
moment resisting frames to give ductile behavior during 
an earthquake [5]. For two reasons, the failure mode iden-
tification of columns is a source of worry. First, the plastic 
deformation weakens the column ends, making them vul-
nerable to local and global buckling [6, 7]. This is especially 
concerning because, unlike beams, columns cannot easily 
be braced to prevent buckling. Furthermore, because steel 
columns frequently transport significant axial force and 
are along the vertical load path, their degradation of axial 
load carrying capacity has serious consequences for global 
collapse [6, 7]. Scholars have investigated the behavior of 
the DSWCs experimentally or computationally. The use of 
extensive finite element analysis through parametric stud-
ies is a common method for discovering failure modes of 
DSWCs [8, 9]. Such a deep examination is valuable, but 
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it necessitates a significant amount of computing cost and 
effort, as well as time and resources to complete [4]. In 
practice, it is preferable to detect the failure mode as soon 
as possible following the occurrence of natural hazards in 
order to determine the damage evaluation or retrofitting 
options for the damaged structure. In such cases, the use of 
machine learning (ML) approaches offers a viable alterna-
tive to comprehensive numerical analysis.

In recent years, ML approaches have attracted a lot of 
attention by claiming to be applicable to all engineering 
fields. There is a rising interest in applying ML approaches 
to civil engineering procedures, particularly in the field of 
structural damage assessment. As an example, Mangalathu 
and Jeon [10] investigated several ML algorithms for esti-
mating beam-column joint shear strength and also proposed 
probabilistic models to identify the type of failure mode of 
concrete beam-column joints.  Several researchers investi-
gated various ML models such as adaptive boosting, deci-
sion trees, random forests, and artificial neural network 
(ANN), to name but a few, for failure mode recognition of 
reinforced concrete (RC) columns [11–14]. Gao and Lin [15] 
applied eXtreme Gradient Boosting (XGBoost) to predict 
the RC beam-column joints' failure mode. Zhang et al. [16] 
implemented ML algorithms prediction of failure modes of 
RC shear walls. They reported that XGBoost and gradient 
boosting algorithms accurately predicted the failure modes 
of the RC shear walls. Chaabene and Nehdi [17] hybridized 
the atom search optimization (ASO) algorithm with ANN 
to develop a model for failure mode identification of steel 
fiber-reinforced concrete beams. Kabir et al. [18] proposed 
an algorithm based on the decision tree for identifying the 
failure mode of column base plate connections.

Since the DSWCs are one of the most important struc-
tural elements of steel buildings, and their post-seis-
mic behavior is critical. However, no prior research has 
employed dynamic selection-based models to predict the 
failure mechanism of the DSWCs [19]. Moreover, the pre-
vious models' performance was poor [19]. This study aims 
to propose a model for accurately and reliably predicting 
the failure mode of the DSWCs using dynamic selection 
strategies. A database of 939 DSWCs subjected to axi-
al-lateral loads was used to assess the applicability of ML 
models in detecting the failure modes of the DSWCs.

2 Experimental database 
In this study, a database of DSWCs from the literature is 
used. The database contains a total of 939 DSWCs and is 
gartered by Sediek [19]. Input variables (Tables 1 and 2) 

are considered including web slenderness ratio (h/tw), 
flange slenderness ratio (bf/2tf), global slenderness ratio (L/
ry), torsional slenderness ratio (J/(S × h0)), axial load ratio 
(AxLoad), axial loading protocol (AxPro), boundary con-
ditions (BouCon), and lateral loading protocol (LatPro). 
These variables are selected based on previous research 
(experimental and parametric studies) [9, 19]. The column's 
bottom is presumed to be completely fixed. Boundary 
conditions are recognized for the column top including 
(1) fully fixed in all planes (FF); (2) fixed in-plane rota-
tion with free out-of-plane rotation (FP); (3) free in-plane 
rotation with a fixed out-of-plane rotation (PF); (4) in-plane 
rotation is restrained by a rotational spring or flexible beam 
element with fixed out-of-plane rotation (SF). There are 
five different forms of lateral loading protocols: symmetric 
cyclic (SC), monotonic (M), cyclic-monotonic (CM), cyclic 
ratcheting (CR), and asymmetric cyclic (AC). Axial load-
ing procedures are divided into three categories: constant 
(C), symmetric cyclic (SC), and monotonic (M). In Table 1, 
h is web depth, bf is the flange width, tw is thickness, L is 
the total length, J presents the torsional constant, S pres-
ents the elastic modulus of the section (about the x-axis), 
h0 presents the distance between flanges, and STD is the 
standard deviation of a random variable. Three types of 
failure modes are considered for DSWCs (Fig. 1): (1) local 
buckling near its ends, which is referred to as local failure 
(LF); (2) global failure (GF), a DSWC that fails in a global 
flexural or lateral-torsional mode without considerable 
local buckling; (3) the DSWC has significant local buck-
ling as well as a global flexural or lateral-torsional failure 
(GLF), regardless of which occurs first. The failure modes 
gathered from past studies are matched to these three types 
based on the available information in each study.

Table 1 Range of the input variables

Input variable bf/2tf h/tw L/ry J/(S × h0) AxLoad

Std 1.51 11.73 20.90 0.00342 0.12154

Min 2.43 5.21 7.1 0.0004 0.0

Mean 5.44 34.61 71.24 0.00246 0.32435

Max 9.92 57.5 161.19 0.0383 0.75

Table 2 Distribution of the loading protocol and boundary conditions

Lateral loading protocol SC CR AC M CM

Count 404 313 114 68 40

Boundary conditions FF BF FP PF

Count 349 349 161 80

Axial loading protocol C M SC

Count 694 225 20
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3 ML models
Dynamic Selection (DS) refers to strategies in which 
the basic classifiers are chosen just-in-time for each new 
instance to be classed when making a prediction [20]. 
To forecast the label of a certain test sample, only the most 
skilled basic classifiers, or an ensemble including the most 
competent classifiers, are chosen. The justification for such 
systems is that each basic classifier is an expert in a par-
ticular limited area of the feature space, rather than every 
classifier being an expert in categorizing all unknown data. 
As a result, DS can often outperform any single model. This 
is in contrast to static selections, which involve selecting 
members only once, such as averaging outcomes from all 
basic classifiers in the model. DS offers two selection pro-
cedures, depending on whether a single classifier (known as 
Dynamic Classifier Selection (DCS)) or an ensemble (known 
as Dynamic Ensemble Selection (DES)) is employed. Both 
DCS and DES algorithms use Random Forest (RF) classi-
fier as the basic classifier. RF is a method for supervised 
learning. It has the ability to be utilized for both catego-
rization and regression. It's also the most adaptable and 
user-friendly algorithm. RF generates decision trees from 
randomly selected samples, and each tree yields a forecast. 
Finally, the algorithm uses voting to determine the best 
option. In this study, the number of trees in the forest and 
the maximum depth of the tree are 150 and 15, which are 
determined using Bayesian global optimization [21].

3.1 DCS-A-Priori and DCS-A-Posteriori
A-Priori and A-Posteriori are two algorithms for DCS. 
Consider a set of N classifiers Cj=1,...,N, each of which has 
been trained to address the M-class classification problem. 
For an unknown instance x*, let us take into account the 
nearest neighbor (R(x*) or θj) of the space surrounding x*. 

R(x*) is characterized as the k-nearest neighbors in the 
training data set. The sample is allocated to this class if all 
classifiers (Cj=1,...,N) assign it to the same class. Otherwise, 
local accuracy (LAj,k(x

*)) is computed. DCS-A-Priori 
defines LAj,k(x

*) as the percentage of the correctly classi-
fied sample in the local region R(x*). This algorithm has 
been named "A-Priori" since the class allotted by the clas-
sifier Cj=1,...,N to test the sample x* is not taken into account. 
In the "A-Posteriori" algorithm, the knowledge of the class 
allocated by the classifier Cj=1,...,N to the test instance x* is 
exploited. If the classifier Cj assigns the sample x* to the 
class g1, in this case, LAj,k(x

*) is calculated as [22]:

LA x N

N
j k

CP

iP
i

M,

*( ) �

�
�
1

, (1)

where NCP is the number of neighborhood samples of x* that 
are correctly assigned by Cj to class g1 and NiP

i

M

�
�

1
 is the total 

number of neighborhood samples that are assigned by Cj 
to class g1. In other words, in the "A-Posteriori" algorithm, 
local accuracy is computed after each classifier Cj gener-
ates the output on the test instance x*. It should be noted 
that both methods also weight each neighbor of x* accord-
ing to its Euclidean distance.

3.2 Overall Local Accuracy (OLA) and Local Classifier 
Accuracy (LCA) 
In DCS-OLA, the competence level (δi,j) of a classifier Cj is 
calculated as its categorization accuracy in the area of com-
petence (θj) (Eq. (2)). To forecast the identity of the test sam-
ple,the classifier with the largest competence level is chosen.
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k

K

l k l iK
P w x w c, ( | , )� �

�
�1
1

, (2)

Fig. 1 Failure modes of DSW columns; (a) local failure (LF), (b) local buckling as well as a global flexural/lateral-torsional failure (GFL) and 
(c) global failure (GF)

(a) (b) (c)
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where P(wl|x
* ∊ wl, ci) and wl are posterior probability and 

the class predicted by the classifier Cj for the sample x*, 
respectively. xk is one instance in the area of competence 
θj and K is the number of neighbors. The DCS-LCA tech-
nique is identical to the DCS-OLA, with the exception that 
in the former, the local accuracy is evaluated for the entire 
region of competence in terms of output class (Eq. (3)).
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3.3 Meta-earning
In the meta-learning for the dynamic ensemble selec-
tion (META-DES) framework [23] in order to determine 
whether a base classifier (Cj) is capable enough to iden-
tify a given test sample, a meta-problem employs a variety 
of criteria pertaining to its behavior. The approach goes 
through a meta-training stage, which extracts meta-fea-
tures from each sample in the training phase and dynamic 
selection datasets (Cj=1,...,N). The meta-features retrieved are 
then utilized to train the meta-classifier. The meta-classifier 
is trained to determine whether a base classifier Cj is capa-
ble of classifying a particular input sample. A Multinomial 
Naive Bayes (MNB) classifier usually is used as the 
meta-classifier. Meta-features for Cj in relation to the input 
are determined and supplied to the meta-classifier when an 
unknown instance is submitted to the algorithm. For the 
identification of the query example, the meta-classifier 
evaluates the competence level of the classifier Cj. Base 
classifiers with a skill level over a pre-determined criterion 
(competence level > 0.5) are chosen.

3.4 Dynamic Ensemble Selection performance (DES-P)
The area of competence θj is used to calculate the local 
performance of a base classifier in this method. The com-
petence of the classifier Cj is then computed by the differ-
ence between the accuracy of the Cj and a random classifier 
(RC). The random classifier randomly selects a class with 
equal probabilities. The random classifier's performance 
is determined by the formula RC = 1/NC, where NC is the 
number of classes. As a result, the competence level δi,j in 
the DES-P method [24] is computed using Eq. (4).

� �i j i jP c
L, ( | )� �

 1 , (4)

where P̑ (ci|θj) is the accuracy of Cj in the area of compe-
tence θj. θj (or R(x*) in Section 3.1) is characterized as the 

k-nearest neighbors in the training data set. The size of 
the region of competence (parameter k) is 5 for all models.

4 Results and discussion
In this study, accuracy (Eq. (5)), precision (Eq. (6)), and 
recall (Eq. (7)) are utilized as score indicators.

Accuracy TP TN
TP FP FN TN

�
�

� � �
, (5)

Precision TP
TP FP

�
�

, (6)

Recall TP
TP FN

�
�

, (7)

where TP is the true positive, TN is the true negative, FP is 
the false positive, and FN is the false negative.

Six models, namely 'A-Priori', 'A-Posteriori', 'OLA', 
'LCA', 'DES-P', and 'META-DES' are developed utilizing 
the python package DESlib to the failure modes of the 
DSWCs. The entire 939 data points are divided into two 
parts: 80% for the training phase and 20% for the testing 
phase. The prediction performance of the six ML models on 
the training set is shown in Fig. 2, considering all classes. 
As can be seen in Fig. 2, A-Priori, OLA, and META-DES 
models achieve the highest accuracy score. What stands out 
in Fig. 2 is the general pattern of the highest precision and 
recall scores of the A-Priori, OLA, and META-DES mod-
els. In contrast, the LCA and DES-P model presents the 
lowest accuracy, precision, and recall among the six ML 
models. It should be noted that precision and recall metrics 
are computed for each label, and their means are reported.

A confusion matrix (Fig. 3) is used to examine the per-
formance of the different models on the testing data set. 
The confusion matrix is a square matrix of order n, where 
n is the number of categories (i.e., failure modes) analyzed 
in this paper; hence, n equals three. The confusion matrix's 
rows and columns correspond to the three true and fore-
casted classes. The number of successfully identified exam-
ples is shown by the diagonal members of the confusion 
matrix. The off-diagonal areas, on the other hand, represent 
the wrong cases, or the number of instances in a class that 
is misclassified. The overall accuracy, precision, and recall 
metrics are shown in the lowest cell on the right side, the 
column on the far right, and the row at the bottom of the 
confusion matrix, respectively. It is seen (Fig. 3(e)) that the 
META-DES model achieves the highest accuracy (90.78%) 
in the testing datasets. In Fig. 3(e), by observing the GLF 
mode, in which 2.8% is misclassified as the LF mode. Overall 
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Fig. 2 Performance of different models - training dataset; (a) Accuracy score of models, (b) Precision score of models, (c) Recall score of models
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Fig. 3 Confusion matrix of the models; (a) A-Posteriori, (b) A-Priori, (c) DES-P, (d) LCA, (e) META-DES, (f) OLA
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accuracies of the various models are A-Posteriori = 80.14%, 
A-Priori = 81.56%, DES-P = 87.94% LCA = 75.18% and 
OLA = 75.89%. What can be clearly seen is that recog-
nizing the GLF mode is often challenging for most of the 
models since the OLA, LCA, A-Priori, and DES-P models 
have 54.17%, 64.71%, 65.22%, and 78.26% precision in 
identifying the GF mode in the testing phase, respectively. 
The largest amount of error in classification is related to 
the LCA model (Fig. 3(d)), in which 7.8% of samples with 
the GLF mode are misclassified as the LF mode. As can be 
seen from Fig. 3, the best performance (>85%) in terms of 
the precision score for the GLF mode is obtained using the 
META-DES and DES-P classifiers.

4.1 Partial dependence plot feature importance
Because standard ML models are "black box" models, it is 
also critical to decipher or explain the model prediction pro-
cedure. In this section, the impact of the input parameters 
on the failure mode prediction is investigated. As a result, 
the relative relevance of the META-DES model's input 
variable is derived using a partial dependence-based 
feature importance measure. As an example, the effect of 
h/tw - bf/2tf and L/ry - J/(S × h0) on each output (type of fail-
ure mode) is also shown in Fig. 4. Fig. 4(a) shows that the 
flange slenderness ratio of the section (bf/2tf) has a greater 
effect and as the value of bf/2tf increases, their impact also 
increases and the model is more likely to predict the LF 
mode, which corresponds to a larger probability of flange 
buckling and yielding. Changes in the partial dependence 
(PD) values of the web slenderness ratio (h/tw) are not nota-
ble signifying that h/tw is less effective compared to bf/2tf. 
In other words, in the case of the LF mode, the web slen-
derness ratio has the most impact. Also, Fig. 4(a) shows 
the correlation value of two inputs (the figure placed on 
the right). The maximum correlation value is 0.61. The PD 
values obtained from the META-DES model for the global 
slenderness ratio (L/ry) and the torsional slenderness ratio 
(J/(S × h0)) are plotted in Fig. 4(b). For L/ry and J/(S × h0), 
the PD value changes are about (0.47–0.1) = 0.37 and 
(0.27–0.18) = 0.09 for the GF mode class, respectively, 
which means that the feature L/ry can influence predicting 
the GF mode more than J/(S × h0) and high values of L/ry 
increase the likelihood of the GF mode. The figure placed 
on the right show the maximum correlation value, which is 
0.42. Moreover, the interaction between the target output 
and an input attribute of interest (e.g., linear, non-linear) is 
shown in Fig. 4. For instance, there is a definite non-linear 
link between J/(S × h0) and the LF mode.

4.2 The influence of the region of competence
The purpose of this section is to investigate the effect of 
competence size on the performance of different models. 
The parameter (k) is varied from 3 to 15, and the perfor-
mance of various techniques is evaluated using the test 
set. In Fig. 5, changes in accuracy vs. competence size are 
graphically presented. It is obvious that the parameter has 
an impact on the performance of some approaches. As an 
example, the accuracy score of the A-Priori model fluc-
tuates between 0.78 and 0.88. Also, the accuracy of the 
A-Priori model reaches around 0.84 at the end, outnum-
bering the OLA, A-Posteriori, and LCA models. In addi-
tion, the LCA model, for almost all k values, performs the 
worst performance.
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Fig. 4 Partial dependence graphs; a) LF mode, b) GF mode
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Moreover, the performance of the DES-P and META-
DES models doesn't change significantly when the compe-
tence size is changed.

5 Comparative study
In this section, the performance of the META-DES model 
is compared with ML algorithms that have previously been 
developed using the same database. Also, the effectiveness 
of the proposed classification criteria by Ozkula et al. [25] 
is contrasted with the effectiveness of the trained META-
DES model. Sediek [19] utilized Linear discriminant anal-
ysis (LDA), naïve Bayes (NB), and K-nearest neighbor 
(KNN) algorithms to predict the failure mode of DSW col-
umns DSWCs using the same database. Moreover, Ozkula 
et al. [25] suggested equations (Eqs. (8)–(9)) for determin-
ing the DSWCs' failure mechanism based on their geomet-
ric characteristics (i.e., web and flange dimensions).
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where ξ is the relative flexural stiffness ratio between the 
flange and the web, h is the web height, tf is the flange 
thickness, tw is the web thickness, and bf is the flange 
width. The failure modes are determined based on the 
boundary values of ξ. A summary of the models' accuracy 
performance is shown in Table 3. The following is deduced 
from Table 3:1) Two of the three ML methods (LDA and 
KNN,) have acceptable accuracy (i.e., more than 80%), 2) 
The accuracy of the KNN algorithm is slightly better than 
the LDA algorithm, which can be due to the fact that the 
KNN algorithm can consider inherent nonlinear deci-
sion boundaries to some extent [26], 3) Ozkula et al. [25] 

method has the lowest accuracy value. This issue can be 
caused by the fact that in their method other crucial char-
acteristics like the boundary conditions and loading pro-
tocols were not considered, and 4) The META-DES algo-
rithm performs better than other models.

6 Conclusions
Deep steel W-shape columns (DSWC) can fail in local, 
global, or coupled modes, based on geometric features, 
boundary conditions, and so on. Producing new DSWCs 
or selecting suitable retrofit solutions for existing DSWCs 
necessitates determining the failure mode. This study 
used different dynamic-selection-based machine learn-
ing methods to identify the failure mode of the DSWCs, 
including 'A-Priori', 'A-Posteriori', 'OLA', 'LCA', 'DES-P', 
and 'META-DES'. The performance of various models is 
examined based on accuracy, precision, and recall met-
rics. The following conclusions can be drawn:

1. Among all the trained models, the META-DES model 
outperformed other models and obtained the highest 
accuracy (90.78%) in the testing phase. 

2. The results showed that identification of the global 
flexural or lateral-torsional failure mode was often 
challenging for most of the models.

3. The partial dependence plot is used to analyze the 
influence of input variables on the failure mode pre-
diction. The flange slenderness ratio of the section 
(bf/2tf) has a greater effect and as the value of bf/2tf 

increases, their impact also increases, and the model 
is more likely to predict the LF mode.

4. The effect of the competence size on the perfor-
mance of different models was evaluated. Changing 
the competence size did not have a significant effect 
on the performance of the DES-P and META-DES 
models. 

5. The effectiveness of the trained META-DES model 
was evaluated against the effectiveness of previously 
developed ML models and classification criteria pro-
vided by other researchers. The results showed the 
META-DES model outperformed existing ML mod-
els and classification criteria. 

6. When creating a model to determine the failure 
mode, crucial factors such the boundary conditions 
and loading protocols should be taken into account.

The META-DES model can also be employed as a gen-
eral tool for determining DSWC failure modes. However, 
there is still room for improvement in this subject, such as 

Table 3 Comparison of previous methods and the META-DES 
algorithm

ML method Test accuracy (%)

LDA 83.7

NB 75.5

KNN 85.1

Ozkula et al. [25] 71.3

META-DES 90.78
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using active learning to improve computation efficiency, 
developing a mechanics-guided failure mode detection 
framework based on machine learning for improved appli-
cation, and so on.
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methodology, M.S.B., M.T; software, M.S.B.; formal anal-
ysis, M.S.B.; writing – original draft preparation, M.S.B.; 
writing – review and editing, M.S.B.; supervision, M.T.  
All authors have read and agreed to the published version 
of the manuscript.

Funding: This study receives no external funding for this 
research. 
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Some or all data, models, 
or code that support the findings of this study are available 
from the corresponding author upon reasonable request.
Conflicts of Interest: The authors declare no conflict of 
interest.

References
[1] Barkhordari, M. S., Muntasir Billah, A. H. M. "Efficiency of Data-

Driven Hybrid Algorithms for Steel-Column Base Connection 
Failure Mode Detection", Practice Periodical on Structural Design 
and Construction, 28(1), 04022061, 2023.

 https://doi.org/10.1061/(ASCE)SC.1943-5576.0000741
[2] Elkady, A., Lignos, D. G. "Analytical investigation of the cyclic 

behavior and plastic hinge formation in deep wide-flange steel 
beam-columns", Bulletin of Earthquake Engineering, 13(4), pp. 
1097–1118, 2015.

 https://doi.org/10.1007/s10518-014-9640-y
[3] Stoakes, C. D., Fahnestock, L. A. "Strong-axis stability of wide 

flange steel columns in the presence of weak-axis flexure", Journal 
of Structural Engineering, 142(5), 04016004, 2016.

 https://doi.org/10.1061/(ASCE)ST.1943-541X.0001448
[4] Cravero, J., Elkady, A., Lignos, D. G. "Experimental evaluation 

and numerical modeling of wide-flange steel columns subjected 
to constant and variable axial load coupled with lateral drift 
demands", Journal of Structural Engineering, 146(3), 04019222, 
2020.

 https://doi.org/10.1061/(ASCE)ST.1943-541X.0002499
[5] Gutiérrez-Urzúa, F., Freddi, F., Di Sarno, L. "Comparative anal-

ysis of code-based approaches for seismic assessment of existing 
steel moment resisting frames", Journal of Constructional Steel 
Research, 181, 106589, 2021.

 https://doi.org/10.1016/j.jcsr.2021.106589
[6] Lignos, D. G., Hartloper, A. R. "Steel column stability and impli-

cations in the seismic assessment of steel structures according to 
Eurocode 8 Part 3", Stahlbau, 89(1), pp. 16–27, 2020.

 https://doi.org/10.1002/stab.201900108
[7] Islam, A., Imanpour, A. "Stability of wide-flange columns in steel 

moment-resisting frames: evaluation of the Canadian seismic 
design requirements", Bulletin of Earthquake Engineering, 20, pp. 
1591–1617, 2022.

 https://doi.org/10.1007/s10518-021-01313-8
[8] Selvaraj, S., Madhavan, M. "Geometric imperfection measure-

ments and validations on cold-formed steel channels using 3D non-
contact laser scanner", Journal of Structural Engineering, 144(3), 
04018010, 2018.

 https://doi.org/10.1061/(ASCE)ST.1943-541X.0001993

[9] Sediek, O. A., Wu, T.-Y., Chang, T.-H., McCormick, J., El-Tawil, 
S. "Measurement, characterization, and modeling of initial geo-
metric imperfections in wide-flange steel members subjected to 
combined axial and cyclic lateral loading", Journal of Structural 
Engineering, 147(9), 04021120, 2021.

 https://doi.org/10.1061/(ASCE)ST.1943-541X.0003086
[10] Mangalathu, S., Jeon, J.-S. "Classification of failure mode and 

prediction of shear strength for reinforced concrete beam-col-
umn joints using machine learning techniques", Engineering 
Structures, 160, pp. 85–94, 2018.

 https://doi.org/10.1016/j.engstruct.2018.01.008
[11] Mangalathu, S., Jeon, J.-S. "Machine learning–based failure 

mode recognition of circular reinforced concrete bridge columns: 
Comparative study", Journal of Structural Engineering, 145(10), 
04019104, 2019.

 https://doi.org/10.1061/(ASCE)ST.1943-541X.0002402
[12] Feng, D.-C., Liu, Z.-T., Wang, X.-D., Jiang, Z.-M., Liang, S.-X. 

"Failure mode classification and bearing capacity prediction for 
reinforced concrete columns based on ensemble machine learning 
algorithm", Advanced Engineering Informatics, 45, 101126, 2020.

 https://doi.org/10.1016/j.aei.2020.101126
[13] Naderpour, H., Mirrashid, M., Parsa, P. "Failure mode prediction 

of reinforced concrete columns using machine learning methods", 
Engineering Structures, 248, 113263, 2021.

 https://doi.org/10.1016/j.engstruct.2021.113263
[14] Edward, C., Balu, A. S. "Failure Mode Recognition of Columns 

Using Artificial Neural Network", IOP Conference Series: 
Materials Science and Engineering. 936(1), 012044, 2020.

 https://doi.org/10.1088/1757-899x/936/1/012044
[15] Gao, X., Lin, C. "Prediction model of the failure mode of beam-col-

umn joints using machine learning methods", Engineering Failure 
Analysis, 120, 105072, 2021.

 https://doi.org/10.1016/j.engfailanal.2020.105072
[16] Zhang, H., Cheng, X., Li, Y., Du, X. "Prediction of failure modes, 

strength, and deformation capacity of RC shear walls through ma- 
chine learning", Journal of Building Engineering, 50, 104145, 2022.

 https://doi.org/10.1016/j.jobe.2022.104145
[17] Chaabene, W. B., Nehdi, M. L. "Novel soft computing hybrid 

model for predicting shear strength and failure mode of SFRC 
beams with superior accuracy", Composites Part C: Open Access, 
3, 100070, 2020.

 https://doi.org/10.1016/j.jcomc.2020.100070

https://doi.org/10.1061/(ASCE)SC.1943-5576.0000741 
https://doi.org/10.1007/s10518-014-9640-y
https://doi.org/10.1061/(ASCE)ST.1943-541X.0001448 
https://doi.org/10.1061/(ASCE)ST.1943-541X.0002499 
https://doi.org/10.1016/j.jcsr.2021.106589 
https://doi.org/10.1002/stab.201900108
https://doi.org/10.1007/s10518-021-01313-8
https://doi.org/10.1061/(ASCE)ST.1943-541X.0001993
https://doi.org/10.1061/(ASCE)ST.1943-541X.0003086
https://doi.org/10.1016/j.engstruct.2018.01.008 
https://doi.org/10.1061/(ASCE)ST.1943-541X.0002402 
https://doi.org/10.1016/j.aei.2020.101126 
https://doi.org/10.1016/j.engstruct.2021.113263 
https://doi.org/10.1088/1757-899x/936/1/012044 
https://doi.org/10.1016/j.engfailanal.2020.105072
https://doi.org/10.1016/j.jobe.2022.104145 
https://doi.org/10.1016/j.jcomc.2020.100070 


944|Barkhordari and Tehranizadeh
Period. Polytech. Civ. Eng., 67(3), pp. 936–944, 2023

[18] Kabir, M. A. B., Hasan, A. S., Muntasir Billah, A. H. M. "Failure 
mode identification of column base plate connection using data-
driven machine learning techniques", Engineering Structures, 
240, 112389, 2021.

 https://doi.org/10.1016/j.engstruct.2021.112389
[19] Sediek, O. A. "Multiscale Simulation and Assessment of the 

Seismic Resilience of Communities, in Civil Engineering and 
Scientific Computing", PhD Thesis, University of Michigan, 2021.

 https://doi.org/10.7302/1337
[20] Cruz, R. M. O., Sabourin, R., Cavalcanti, G. D. C. "Dynamic clas-

sifier selection: Recent advances and perspectives", Information 
Fusion, 41, pp. 195-216, 2018.

 https://doi.org/10.1016/j.inffus.2017.09.010
[21] Nogueira, F. "Bayesian Optimization: Open source constrained 

global optimization tool for Python. 2014", [online] Available at: 
https://github. com/fmfn/BayesianOptimization

[22] Didaci, L., Giacinto, G., Roli, F., Marcialis, G. L. "A study on the 
performances of dynamic classifier selection based on local accu-
racy estimation", Pattern Recognition, 38(11), pp. 2188-2191, 2005.

 https://doi.org/10.1016/j.patcog.2005.02.010

[23] Cruz, R. M. O., Sabourin, R., Cavalcanti, G. D. C., Ren, T. I. 
"META-DES: A dynamic ensemble selection framework using 
meta-learning", Pattern Recognition, 48(5), pp. 1925-1935, 2015.

 https://doi.org/10.1016/j.patcog.2014.12.003
[24] Woloszynski, T., Kurzynski, M., Podsiadlo, P., Stachowiak, G. 

W. "A measure of competence based on random classification for 
dynamic ensemble selection", Information Fusion, 13(3), pp. 207-
213, 2012.

 https://doi.org/10.1016/j.inffus.2011.03.007
[25] Ozkula, G., Harris, J., Uang, C.-M. "Classifying cyclic buckling 

modes of steel wide-flange columns under cyclic loading", In: 
Structures Congress 2017, Denver, CO, USA, 2017, pp. 155-167. 
ISBN: 9780784480410

 https://doi.org/10.1061/9780784480410.014
[26] Barkhordari, M. S., Massone, L. M. "Failure Mode Detection of 

Reinforced Concrete Shear Walls Using Ensemble Deep Neural 
Networks", International Journal of Concrete Structures and 
Materials, 16(1), 33, 2022.

 https://doi.org/10.1186/s40069-022-00522-y

https://doi.org/10.1016/j.engstruct.2021.112389 
https://doi.org/10.7302/1337
https://doi.org/10.1016/j.inffus.2017.09.010
https://github. com/fmfn/BayesianOptimization
https://doi.org/10.1016/j.patcog.2005.02.010 
https://doi.org/10.1016/j.patcog.2014.12.003 
https://doi.org/10.1016/j.inffus.2011.03.007 
https://doi.org/10.1061/9780784480410.014 
https://doi.org/10.1186/s40069-022-00522-y

	1 Introduction 
	2 Experimental database
	3 ML models
	3.1 DCS-A-Priori and DCS-A-Posteriori 
	3.2 Overall Local Accuracy (OLA) and Local Classifier Accuracy (LCA)
	3.3 Meta-earning 
	3.4 Dynamic Ensemble Selection performance (DES-P) 

	4 Results and discussion 
	4.1 Partial dependence plot feature importance
	4.2 The influence of the region of competence 

	5 Comparative study 

