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Abstract

The Method of Fundamental Solutions is applied to the Laplace equation. Instead of using the traditional approach with external 

source points and boundary collocation points, the original domain decomposed into a lot of smaller, overlapping subdomains, and the 

Method of Fundamental Solutions is used to the individual local subdomains. After eliminating the local source points, local schemes 

are obtained. Instead of constructing a global scheme, the local subproblems are solved sequentially, in an iterative way. This mimics 

a multiplicative Schwarz method with overlapping subdomains, which assures the convergence of the method. Combining the iteration 

with a simple Seidel-type method, the resulting iteration is used as a smoothing procedure of a multi-level method. The points belonging 

to the coarse and fine levels are defined by a quadtree-generated cell system controlled by the boundary of the original domain. 

The multi-level character of the obtained method makes it possible to reduce the necessary number of iterations, that is, the overall 

computational cost can be significantly reduced. Moreover, the solution of large and ill-conditioned systems is completely avoided. 

The method is illustrated through several numerical test examples.
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1 Introduction
Elliptic partial differential equations are still important 
mathematical tools to describe a lot of steady physical 
phenomena and engineering problems. There are tradi-
tional computational techniques to approximately solve 
these partial differential equations such as the well-known 
finite difference methods or the finite element methods. 
However, these methods require complicated computa-
tional grid or mesh structures, the construction of which is 
often difficult and time consuming. In contrast to the above 
mesh-based methods, meshless methods have quickly 
been quite popular since they require neither domain nor 
boundary mesh or grid structure. Instead, a scattered point 
set is required on the boundary and/or in the domain of the 
partial differential equation to be solved.

The Method of Fundamental Solution (MFS, see e.g., 
[1, 2]) is a special meshless method, which can be applied 
to a lot of engineering problems, e.g., potential problems 
or some simple transport problems, Stokes flow problems, 
Helmholtz problems etc. Suppose that the original elliptic 
partial differential equation has the form:

Lu x x� � � �� �0 � , (1)

which is defined in a multidimensional domain (i.e., an 
open and connected set) Ω and is supplied with a usual 
boundary condition (i.e., Dirichlet or Neumann or mixed 
boundary condition). Then the MFS produces the solution 
of the original problem in the following form:

u x x s
j

M

j j� � � �� ��
�
�

1

� � . (2)

Here Φ denotes the fundamental solution of the origi-
nal differential operator L, therefore the function u defined 
by Eq. (2) exactly satisfies the partial differential Eq. (1). 
The numbers α1, …, αM are a priori unknown coefficients, 
s1, …, sM are predefined points in the exterior of the domain 
Ω (source points). The coefficients α1, …, αM are computed 
by enforcing the boundary conditions at some predefined 
x1, …, xN boundary collocation points. This results in a lin-
ear system of equations with M unknowns and N equations. 
If the simplest Dirichlet boundary condition is prescribed, 
this linear system has the form:
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j

M

j k j kx s u x
�
� � �� � � � �

1

� � , (3)

where k =1, 2, … , N. The numbers M and N need not be 
equal. If they differ, a least squares technique or the Singular 
Value Decomposition can be used.

Though the MFS is a simple, truly meshless, and easy- 
to-program method, it has several disadvantages. First, 
the fundamental solution must be explicitly known. 
Some additional problems are as follows: the location of 
the source points is not trivial, no optimal arrangement 
is known; even if the numbers of source and colloca-
tion points are equal, the system Eq. (2) may be severely 
ill-conditioned, especially when the sources are located 
too far from the boundary. On the other hand, if they are 
too close to the boundary, numerical singularities may 
occur, which increases the error of the approximation etc.

To overcome these difficulties, a number of special tech-
niques have been developed. A wide class of these meth-
ods is based on allowing the source points and boundary 
collocation points to coincide. This approach has to han-
dle the appearing singular terms in a proper way (regular-
ization, desingularization, see e.g., [3, 4]); moreover, the 
resulting system remains dense and ill-conditioned. It is 
also possible to use several groups of sources at the same 
time, the spatial densities of which decrease far from the 
boundary. This idea can be embedded in a multi-level con-
text, which significantly reduces the necessary computa-
tional cost. For details, see [5, 6].

In this paper, a combination of the Method of Funda-
mental Solutions and a localization technique is presented. 
The technique provides a global system with sparse matrix. 
This system of equations is solved by a special iterative 
way, which can be embedded in a multi-level context: the 
coarse and fine levels are defined by a quadtree-based sub-
division technique.

For the sake of simplicity, the method is introduced 
through the example of the 2D Laplace equation. The gen-
eralization for higher dimensional problems is straight-
forward. The same technique can be applied also to more 
general elliptic partial differential equations provided that 
the fundamental solution is explicitly known.

2 Localization techniques
A familiar strategy to handle elliptic problems is the use 
of local schemes. The well-known finite difference method 
was the prototype of such techniques, which is tradition-
ally based on the Taylor series expansion using a (Cartesian 

or curvilinear) grid structure. However, local schemes can 
be constructed also in meshless way based on a scattered 
data interpolation technique.

Consider a central point xC
(0) in Ω, the domain of the 

original partial differential equation and some neighbor-
ing points xC

(1), …, xC
(Nc). Denote by uC

(0) (and uC
(1), …, uC

(NC), 
respectively) the values of the approximate solution u at 
these points. Define an interpolation function ũ as follows:

u x x x
j

N

j C
j

C

� � � �� ��
�

� ��
0

� � , (4)

where Ψ is a predefined radial basis function e.g., the 
thin plate spline: Ψ(x) = ||x||2 ∙ log||x|| (here ||∙|| denotes the 
Euclidean norm in the two-dimensional space). The coef- 
ficients α0, …, αNC

 are determined by the interpolation con- 
ditions (Eq. (5)).

j

N

j C C C
k j k

C

x x u
�
� � �� � �
0

� � ( ) ( ) ( )  (5)

(k = 0, … ,NC), which results in a (local) system of equa-
tions. After solving this system, the interpolated values 
of u at a part of a structured grid around xC

(0) can be com-
puted, and familiar finite difference schemes can be con-
structed without any difficulty. For instance, the Laplacian 
of u can be approximated by the usual 5-point scheme as 
illustrated in Fig. 1:

�u
h

u u u u uC N W S E C� � � � � � �� �~ ( )1
4

2

0
    ,

where the fictitious points x̃N, x̃W, x̃S, x̃E are defined to be the 
neighbors of the central point xC

(0) taken in the main coor-
dinate directions at a distance h from the central point. 
The values ũN, ũW, ũS, ũE are computed by interpolation: 
ũN := ũ(x̃N) … etc. See Fig. 1 for illustration.

The technique can easily be combined with a Seidel-type 
iteration in a natural way. For the 2D Laplace equation, this 
result in the following local scheme (for details, see [7]):

Fig. 1 Local points (red) and local interpolation to the fictitious 
neighboring points x̃N, x̃W, x̃S, x̃E
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u u u u uC N W S E
0 1

4

� � � � � � �� �:     . (6)

More recently, a localization strategy based on the 
Method of Fundamental Solutions has been developed [8]. 
Instead applying a local interpolation, for each local sub-
domain, a (small) set of local source points sC

(1), …, sC
(Mc) 

is defined (e.g., along the perimeter of a circle centered 
at xC

(0), see Fig. 2), and the approximate local solution is 
sought in the MFS-form:

u x x s
j

M

j C
j

C

� � � �� ��
�

� ��
1

� � , (7)

where Φ denotes again the fundamental solution of the 
original problem.

The coefficients α1, …, αMC
 are computed by enforcing 

the equalities Eq. (8).

j

M

j C C C
k j k

C

x s u x
�
� � �� � � � �
1

� � ( ) ( ) ( )  (8)

(k = 1, … ,NC), and the central value uC
(0) is updated by:

u u xC C
( ) ( ):0 0� � � . (9)

The system Eq. (8) is solved in the sense of least 
squares. This procedure results in a global system for the 
central values uC

(0), when the central point xC
(0) runs over 

the internal points. It should be pointed out that the matrix 
of the global system is sparse, which makes it possible to 
apply computationally efficient solution algorithms. Note 
however, that the validity of the equalities of the system 
Eq. (8) are not guaranteed theoretically: the collocation 
points xC

(1), …, xC
(NC) cannot be considered boundary collo-

cation points of the subdomain, therefore the prescription 
of the values of the solution here does not result in a well-
posed problem. In spite of this fact, excellent exactness was 
reached. The idea has been applied to various problems, 
such as transient convection-diffusion-reaction equations. 
For details, see [8, 9].

In this paper, another technique is presented. Instead of 
enforcing the equalities Eq. (8) at all neighboring points xC

(k) 
(k = 1, 2, …, NC) they are required along the boundary of 
some small subdomains only. This results in a well-posed 
problem and makes the technique similar to the classical 
alternating method of Schwarz [10]. Later, the approach 
will be embedded in a multi-level context in a natural way.

3 Localization based on overlapping subdomains
First, let us briefly recall the main ideas of the tradi-
tional Schwarz alternating method (also referred to as 

multiplicative Schwarz method). We restrict ourselves to 
the pure Dirichlet problem of the 2D Laplace equation.

Let � � 2  be a bounded, sufficiently smooth domain. 
Assume that Ω has a decomposition Ω = Ω1 ∪ Ω2, where 
Ω1 and Ω2 are non-empty (overlapping) subdomains with 
boundaries ∂Ω1 and ∂Ω2, respectively (see Fig. 3). Here 
� � �1 1 2:� � �  and � � �2 1 2:� � �  (the overbar denotes 
the closure of the set). The overlap is called weak, if the 
distance of Γ1 and Γ2 is equal to 0. If this distance is 
strictly positive, then the overlap is called strong. Consider 
the Dirichlet problem:

� � �U U u� ��0 0in , | . (10)

The Schwarz alternating method approximates the solu-
tion of Eq. (10) by the following sequence of subproblems:

Subproblem 1:

� �Un� �1 2 10/ in  (11)

U u U Un n n� � � �� �1 2 0 1 21 1 1 1 1 1/ \ \ /| | | |,� � � � � �  (12)

Subproblem 2:

� �Un� �1 20 in  (13)

U u U Un n n� � � � �� �1 0 1 1 22 2 2 2 2 2
| | | |,\ \ /� � � � � �  (14)

Fig. 2 Local sources (black points) along a circle

(b)
Fig. 3 Weakly and strongly overlapping subdomains (a) weak overlap 
(Γ1 and Γ2 have common points), (b) strong overlap (the distance of 

Γ1 and Γ2 is positive)

(a)
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Here n = 1, 2, … The iteration starts with an arbitrary 
initial approximation U0 which satisfies the Laplace equa-
tion in Ω2 and the boundary condition u0 along ∂Ω2\Γ2. 

Classical results guarantee that the sequence of the 
approximate solutions defined by the Schwarz alternat-
ing method converges to the exact solution of Eq. (10) (see 
e.g., [10, 11]) In the case of weak overlap, uniform conver-
gence is achieved. Under the assumption of strong overlap, 
the Schwarz sequence converges with respect to the usual 
Sobolev norms. This can be shown by a standard tech-
nique based on Fourier series. For simplicity, assume that: 

�1
2 2

� � �� �� ��
�
�

�
�
��

��h h, , , and

�2
2 2

� � �� �� ��
�
�

�
�
�h h, ,�

� � .

with an overlap 2h, where 0 < h < π/2. Then: 

� �1 2
2 2 2 2

�� �� ��
�
�

�
�
� � �� �� ��

�
�

�
�
�h h� � � �

, ,and .

Denote by en+1/2 := Un+1/2 – U and en+1 := Un+1 – U, the errors 
of the approximations. Clearly:

� � � �e en n� � �� �1 2 1 210 0
1 1/ / \, |in and , (15)

and similarly:

� � � �e en n� � �� �1 120 0
2 2

in and, | \ . (16)

Let us express en|Γ1
 in terms of trigonometric Fourier 

series. Since en vanishes at the endpoints of Γ1, it can be 
expressed as a sum of (shifted) pure sinusoidal terms:

e h y k yn
k

k, sin� � � ��
�
�

�
�
��

�

�

�
1

2
�

� . (17)

The Fourier coefficients γk of course depend on the iter-
ation index n; however, the notation of this dependence is 
omitted for the sake of simplicity. In the subdomain Ω1:

e x y k y
k x h

kn
k

k�
�

�

� ��
�
�

�
�
�

� �� �� �
�

� �
�

��1 2

1
2

/ ( , ) sin
sinh

sinh
�

� �

� ��
, (18)

therefore:

e e h y

k y
k h

n n

k
k

� �

�

�

� �� � �

� ��
�
�

�
�
�

��
� �

�
�

1 2 1 2

1

2

2

2

/ /| ,

sin
sinh

�

�
� � ��� �

� ��sinh
.

k �

 (19)

Thus, in the subdomain Ω2, en + 1 can be expressed as:

e x y

k y
k h
k

n

k
k

�

�

�

�

��
�
�

�
�
�

�� �� �
� �

� �
�

�
��

1

1
2

2

( , )

sin
sinh

sinh

s
�

� �

�

iinh

sinh
,

k x h
k

�

�

� �� �� �
�� �

�

�
 

(20)
therefore:

e e h y

k y
k h

n n

k
k

� �

�

�

� � � �

� ��
�
�

�
�
�

�� �� �
� �

�
�

1 1

1

1

2

2

| ,

sin
sinh

si

�

�
� �

nnh
.

k �� �
�

�
�
�

�

�
�
��

2  (21)

In short:

e h y c k yn
k

k k�
�

�

� � � ��
�
�

�
�
�� ��1

1

2

2
, sin�

� , (22)

where c
k h
kk �

�

�

�� �� �
� �

sinh

sinh

�

�

2
. Standard calculations show that 

0 2� � �c ek
kh , (23)

which means that all Fourier components of the error 
decrease at least by a factor e–4h in each iteration step, 
and the higher frequency components decrease faster and 
faster. Consequently, the usual Sobolev norms of the error 
decrease at least by the above factor.

The method can be generalized for a finite covering of 
the original domain in a natural way. It should be pointed 
out, however, that the more subdomains are used, the 
slower overall convergence rate is achieved.

3.1 Localization and MFS-technique
The proposed method is based on the previously outlined 
Schwarz alternating method, which reduces the original 
problem to a sequence of problems defined on a subdomain 
of the original domain Ω (referred to as local problems 
henceforth). The local problems are solved by a standard 
MFS-based approach. Suppose that some local points are 
scattered in the original domain Ω. For an arbitrary central 
point xC

(0) and a predefined 'radius of influence' R, collect 
the neighboring local points, the distances of which from 
xC

(0) are sufficiently close to R, e.g., between 3R/4 and R; 
denote them by xC

(1), …, xC
(NC). Define some local source 

points sC
(1), …, sC

(MC) along a circle centered at xC
(0) with 

radius greater than R (see Fig. 4). The local sources must 
be located in the exterior of the local subdomains: on the 
other hand, if they are too far from the boundary of the 
local subdomain, the local system of equations becomes 
highly ill-conditioned. As an acceptable compromise, the 
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radius of the circle containing the local sources was set 
to 2R. The local solutions are defined by MFS-form aug-
mented by harmonic polynomials:

u x x s p x
j

M

j C
j

j

M

j j

C

� � � �� � � � �� �
�

� �

�
� �

1 1

� �� , (24)

where Φ denotes again the fundamental solution of the 
original problem, and p1, p2,…,pM are the first M harmonic 
polynomials: p1(x,y) = 1, p2(x,y) = x, p3(x,y) = y, p4(x,y) = xy, 
and so forth.

The coefficients α1,…, αMC
 and β1,…, βM are computed 

by enforcing the equalities:

j

M

j C
k

C
j

j

M

j j C
k

C
k

C

x s p x u x

k
� �
� �� ��� � � � � �
�
1 1

1 2

� �� ( ) ( ) ( ) ( )( ),

( , ,, ),NC and possibly:

 (25)

j

M

j k C
j

C

p s k M
�

� �� � � � � �
1

0 1 2� , ( , , , ) . (26)

Note that only the 'local boundary conditions' are 
enforced, i.e., at the local points, the distances of which 
from xC

(0) are between 3R/4 and R (regarded as 'local 
boundary collocation points'). 

After solving a local subproblem (in the sense of least 
squares), update the value of the approximate solution at 
the central point xC

(0) by:

u x s p xC
j

M

j C C
j

j

M

j j C

C
0

1

0

1

0� �

�

� � � �

�

� �� � ��� � � � �� �: � �� . (27)

This procedure mimics the Schwarz procedure at the 
subdomain (which is actually a circle centered at xC

(0) with 
radius R). It is also possible to update the values at all 
neighboring points located from the central point at a dis-
tance less than 3R/4. For the sake of simplicity, however, 
we have updated the value of the central point only.

The number of local sources can be kept bounded. 
Therefore, the sizes of the local subproblems are small, 
so that the necessary number of arithmetic operations is 
moderate for each subproblem.

Due to the previous considerations, the resulting iter-
ative method is convergent. However, the rate of conver-
gence might be unsatisfactory. As pointed out earlier, the 
more subdomains (i.e., the smaller subdomains) are used, 
the lower the rate of convergence is achieved. This phe-
nomenon is illustrated through the following example.

Example 1: Let Ω be the unit circle and consider the 
model problem

� �u � 0 in , (28)

supplied with Dirichlet boundary condition consistent 
with the test solution:

u x y x y( , ) � �2 2 . (29)

In the interior of the domain, N local points were 
defined in a pseudo-random way. MC := 8 local sources 
were defined in each local subdomain. The number of 
the applied harmonic polynomials was set to M := 3. 
Fig. 5 shows the relative discrete L2-errors of the approx-
imate solution with respect to the number of iterations. 
The total numbers of local points were: N = 300 (blue 
line), N = 1200 (green line) and N = 4800 (red line). (Since 
the model problem is a 2D one, the density of local points 
increases by a factor of 2 between the consecutive exam-
ples.) The corresponding 'radii of influence' were set to 
R := 0.4, R := 0.2, and R := 0.1, respectively. Thus, the 
numbers of neighbors of central points were in the same 

Fig. 4 Local source points (blue) and local collocation points (red). 
The internal black points are non-collocation local points

Fig. 5 Convergence history of the model problem for several numbers 
of local points. The rate of convergence decreases when the number of 

local points increases
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order of magnitude, between cca. 12 and 40. It can clearly 
be seen that the rate of convergence decreases when N 
increases. This phenomenon is not surprising: the tradi-
tional Seidel-type iterations have the same property in 
structured grids. This indicates that the above iterative 
method should be combined with another technique in 
order to create a computationally efficient method.

Remark: The same technique can be applied also to the 
case when the local points are structured, e.g., they form 
a familiar rectangular computational grid. In the classical 
finite difference method, the proper handling of the bound-
ary points is not trivial, since the computational grid does 
not fit a complicated boundary in general. A well-known 
technique is the Shortley-Weller approximation [12], 
which uses different schemes at the near-boundary points. 
This procedure may often be inconvenient; but using the 
proposed method, no such an additional problem arises. 
However, the overall rate of convergence may be low also 
in these structured cases.

The rate of convergence can be significantly increased 
by embedding the method into a multi-level context. 
Without going into deep details, we note that an analy-
sis similar to the investigation of the convergence shows 
that the Schwarz iteration damps the high-frequency 
components of the error much more significantly than 
the low-frequency ones. Consequently, though the over-
all convergence rate is low, the method can serve as an 
efficient smoothing procedure of a multi-level technique. 
This will be outlined in the next section.

4 A quadtree-based multi-level technique
As is well known, every multi-level method requires 
a sequence of nested 'grids' (referred to as 'coarse levels' 
and 'fine levels'). At each level, the original problem is to be 
discretized. Inter-grid transfer operators are also required 
to make it possible the data transfer between the different 
levels. A smoothing procedure is also needed to damp the 
high-frequency error components. For the description of 
the classical multigrid methods, see e.g., [13].

The simplest multi-level technique is the cascade method. 
This is based on the following steps:

• On the coarsest level, solve the discrete problem 
exactly;

• Transfer the approximate solution to the next fine level;
• Apply several smoothing iterations on the actual 

level (the number of iterations can be kept under 
a moderate bound, independently of the actual level);

• Repeat the previous two steps until the finest level 
is reached.

A common advantage of the multi-level methods that the 
required computational cost (the number of the necessary 
arithmetic operations) remains proportional to the first 
power of the introduced unknowns only. This is much bet-
ter than that of the classical solution techniques.

In the proposed method, the levels are defined by the 
quadtree (QT) algorithm controlled by the boundary of 
the original domain. As it is well known, this procedure 
results in a cell system, which is fine in the vicinity of the 
boundary and remains coarse in the middle. Fig. 6 shows 
a quadtree cell system generated by a circle. The local 
points in the applied multi-level method are defined to be 
the centers of the inner cells (completed by boundary collo-
cation points). More precisely, the local points belonging to 
the kth level are defined to be the union of the quadtree cell 
centers belonging to the quadtree subdivision levels start-
ing from a minimal level kmin (set to 4 in the later exam-
ples) until the actual level k. Thus, a monotonic increasing 
sequence of local point sets is obtained, the spatial distri-
butions of which become dense toward the boundary and 
remain coarse in the middle of the domain. This property 
fits well the smoothness properties of harmonic functions, 
which are much smoother in the middle of the domain 
than in the vicinity of the boundary. Consequently, it is 
sufficient to use the above non-uniformly distributed local 
points defined by the QT algorithm.

4.1 Numerical examples
In all of the following examples, the model problem is the 
Laplace equation  supplied with Dirichlet boundary con-
dition consistent with the test solution:

Fig. 6 A quadtree cell system generated by the points of a circle
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u x y x y, . ( . )� � � �� � � �0 5 0 5
2 2 . (30)

The approximate solution method was the cascade 
method in all cases. Since the spatial distribution of the 
local points was highly nonuniform, the 'radius of influ-
ence' was defined to be level-dependent:

R L:=
4

2
, (31)

where L is the subdivision level of the cell, the center of 
which is the actual central point.

Example 2: Here the domain Ω is a circle centered at 
the point (0.5, 0.5) with radius 0.3. The total number of 
the local points is 676. The corresponding coarse and fine 
level points are shown in Fig. 7. Table 1 shows the relative 
L2-errors at the different levels after performing only 15 
iteration steps at each level, independently of the actual 
number of points. The example demonstrates that the 
computational complexity is significantly reduced due to 
the applied multi-level technique.

Example 3: Here Ω is a smooth star-shaped domain 
parametrized by the following pair of functions (see Fig. 8):

x t t� � � � �� �0 5 0 3 1 0 2 5. . . sin cos , (32)

y t t� � � � �� �0 5 0 3 1 0 2 5. . . sin sin . (33)

The total number of the local points is 794. The corre-
sponding coarse and fine level points are shown in Fig. 9. 
Table 2 shows the relative L2-errors at the different levels 
after performing 15 iteration steps at each level.

Example 4: Here Ω is an amoeba-shaped domain para- 
metrized by the following pair of functions (see Fig. 10):

x e t e t tt t� � �
1

6
2 5 2 22 2( . ( sin cos )cos )sin cos , (34)

y e t e t tt t� � �
1

5
2 0 2 22 2( . ( sin cos )sin )sin cos . (35)

The total number of the local points is 758. The corre-
sponding coarse and fine level points are shown in Fig. 11. 
Table 3 shows the relative L2-errors at the different levels 
after performing 15 iteration steps at each level.

Fig. 7 Circle, the local points belonging to the subdivision 
levels 4, 5, 6 and 7

Table 1 Domain: circle. Relative L2-errors of the approximate solution 
at the different levels

Level 4 5 6 7

Rel. L2-errors 0.003294 0.0002276 0.0001176 0.00008035

Table 2 Smooth star-shaped domain. Relative L2-errors of the 
approximate solution at the different levels

Level 4 5 6 7

Rel. L2-errors 0.004872 0.0008633 0.0004057 0.0002364

Fig. 8 Smooth star-shaped domain and quadtree cell system generated 
by the points of the boundary

Fig. 9 Smooth star-shaped domain, the local points belonging to the 
subdivision levels 4, 5, 6 and 7 
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5 Conclusions
A localized version of the Method of Fundamental 
Solutions has been proposed. The localization splits the 
original problem into several subproblems defined on 
some subdomains of the original domain. These subprob-
lems are solved by the Method of Fundamental Solutions 
using small numbers of local source points which are 
defined in the exterior of the subdomains. The subprob-
lems are solved in an iterative way, which mimics the 
familiar Schwarz overlapping method. The rate of conver-
gence has been speeded up by embedding the technique 
into a multi-level context. The coarse and fine levels of the 
multi-level method have been defined by a quadtree-gen-
erated cell system controlled by the boundary of the orig-
inal domain. The method significantly reduces the neces-
sary computational cost. In addition to it, the problem of 
solution of large linear systems with fully populated and 
severely ill-conditioned matrices is completely avoided. 

Fig. 10 Amoeba-shaped domain and quadtree cell system generated by 
the points of the boundary

Fig. 11 Amoeba-shaped domain, the local points belonging to the 
subdivision levels 4, 5, 6 and 7

Table 3 Amoeba-shaped domain. Relative L2-errors of the approximate 
solution at the different levels

Level 4 5 6 7

Rel. L2-errors 0.004817 0.0005986 0.0002861 0.0001695
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