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Abstract

Due to the inevitable involvement of multisource uncertainties related to the load, material property and geometry in practical 

engineering designs, robust topology optimization (RTO) has recently attracted increasing attention to account for these uncertain 

effects. However, the majority of the existing RTO works are concerned with single source uncertainty, and very few studies have 

considered the multisource (hybrid) uncertainties simultaneously. To this end, a comparative study on the hybrid uncertainties (HU), 

i.e., material-loading, geometric-loading, material-geometric, and material-geometric-loading uncertainties, for RTO of continuum 

structures is presented in this paper. A truncated Karhunen-Loeve expansion is adopted for uncertainty representation and a sparse 

grid collocation method for uncertainty propagation of the objective function and constraints. Effects of the various HU on the 

compliance and robust design are comprehensively investigated and compared with the RTO models under individual component 

uncertainty using two continuum benchmarks. An important observation from the results is that the hybrid uncertainty model is 

a conservative state, and the resulting RTO designs tend towards those with loading uncertainty only.
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1 Introduction 
Topology optimization (TO) is an iterative numerical pro-
cess to achieve the best material layout under given bound-
ary conditions by optimizing a prescribed objective func-
tion with specific design constraints. The majority of the 
most studies for structural TO are based on the determin-
istic assumption [1]. However, in real applications, uncer-
tainty is inevitably observed due to insufficient knowledge, 
production error, changeable environment, and so on [2, 3]. 
In this regard, the deterministic assumption may result in 
a topologically sensitive and vulnerable design, whose per-
formance is often subject to variations when considering 
various uncertain factors. Therefore, there is a strong need 
to consider the effect of uncertainty on the optimal topol-
ogy in structural design.

To account for different uncertainties in topology opti-
mization TO, two major paradigms, reliability-based topo- 
logy optimization (RBTO) [4–6] and robust topology opti-
mization (RTO) [7], are often used.

RBTO aims to achieve a design with a targeted prob-
ability of failure and ensure that the conditions leading 
to catastrophe are unlikely to happen [8, 9]. RTO tries 
to optimize the objective performance while simultane-
ously minimizing its sensitivity with respect to uncertain 
parameters [10]. This paper is concerned only with the 
RTO under various kinds of uncertainties.

RTO under uncertainty is usually investigated according 
to the types of uncertain variables, e.g., the load, material 
property and geometry, respectively. Most of research in 
this field only considered one source of uncertainty such as 
Elishakoff et al. [11], Dunning et al. [12], Cai et al. [13], Latifi 
Rostami et al. [14], Guest and Igusa [15], Lógó [16, 17], and 
Lógó et al. [18] did research on load uncertainty. For RTO 
under uncertainty in material property, we can referred the 
following works: Tootkaboni et al. [19], da Silva and Cardoso 
[20],  Agrawal et al. [21].  Zhang and Kang [22], Latifi Rostami 
and Ghoddosian [23, 24], Latifi Rostami et al. [25] and inves-
tigated the RTO problems with geometric uncertainties. 
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Since most practical structural designs usually involve 
multisource uncertainties related to the load, material prop-
erty and geometry, the combination of different sources 
of uncertainties, called hybrid uncertainty, has been 
recently introduced into the RTO area. Latifi Rostami and 
Ghoddosian [26] investigated the RTO under hybrid mate-
rial and geometric uncertainties for continuum structures 
using stochastic collocation methods. He et al. [27] pre-
sented an ESO-based method for optimizing the dynamic 
properties including dynamic-compliance and eigenvalue 
of continuum structures with HU in material, geometry 
and boundary condition. Meng et al. [28] formulated a per-
turbation-based RTO model for continuum structures with 
hybrid material and geometric uncertainties represented by 
probabilistic and fuzzy variables. Bai and Kang [29] and 
Cheng et al. [30] proposed the RTO approaches for con-
tinuum and engineering structures under hybrid bounded 
uncertainties in load and material property. 

As stated in the introduction and from the compari-
son of the references stated in the article, it can be seen 
that most of the articles have satisfactorily investigated 
the presence of a type of uncertainty in the optimiza-
tion problem. But in nature, it is possible that there are 
several types of uncertainty in the problem at the same 
time. Therefore, investigating the simultaneous presence 
of several types of uncertainty in the optimization prob-
lem (RTO) can be challenging and interesting. As a result, 
in this article, it has been tried to address this issue as the 
main innovation of this research.

The remainder of this paper is organized as follows. 
The stochastic optimization methodology for RTO is 
detailed in Section 2. A comprehensive study on the effect 
of various HU on compliance and robust design is shown 
in Section 3 with numerical examples. Finally, conclu-
sions are drawn in Section 4.

2 RTO methodology 
2.1 Deterministic TO
A mathematical formulation of the deterministic TO for 
compliance minimization problem is expressed as:
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where K, u and f are the stiffness matrix, displacement and 
applied load vectors, respectively. Ne is the index set of all 
elements, ρi  describes the physical density related to each 
element, vi is the volume of element i, V is the total vol-
ume of the design domain, and V* is the prescribed volume 
fraction. For a minimum compliance design, l = f.

In this research, the design domain is discretized by 
square elements and a density-based method is followed 
to optimize the topology, meaning that each element is 
assigned a density. An improved SIMP method is used to 
express the Young's modulus of the ith element Ei as follows:

E E E Ei i
p� � �� �min 0 min� , (2)

where E0 is the stiffness of the solid phase, Emin is a very 
small stiffness assigned to the void region in order to pre-
vent the stiffness matrix from being singular, and ρ is 
the penalization parameter. Thus, the individual element 
contributions to the stiffness matrix K are calculated as 
Ki = EiK0, in which K0 is the element stiffness matrix for 
unit stiffness.

To eliminate instabilities such as checkered patterns 
and mesh dependency, a mesh-independent density filter-
ing [28] is applied by defining the physical element density 
as a weighted average of the densities in its neighborhood. 
Denoted as ρ̃i, the filtered density for element i is calcu-
lated as
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where Ne,i is the neighborhood set of elements lying within 
the filter domain of radius R for element i. The weighting 
function w(x) is defined as

w Rj j ix x x� � � � � , (4)

where xi and xj contain the central coordinates of the 
design cells i and j, respectively. The derivative of the fil-
tered density ρ̃i with respect to the design variables is cal-
culated as
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Density filtering ensures that mesh-independent 
designs can be achieved. Nevertheless, if the filtered den-
sity is used, a pattern of gray areas will be difficult to inter-
pret, and any practical realization of the resulting design 
requires a black-and-white discrete solution. This issue 
can be resolved by threshold imaging techniques such as 
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the single-step Heaviside Projection method [31]. All val-
ues above the assumed threshold η are projected to 1, and 
the values below it to 0. An expression for the physical 
density utilized here is given as


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where the parameter η changes within the range [0,1] 
and β, a parameter that controls the smoothness of the 
image function, starts from one and gradually increases 
during the optimization process. The derivative of the 
physical density ρi  to the filtered density ρ̃i is calculated as
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The 0/1 projection ρi  is a function of the filtered den-
sity ρ̃i and the sensitivities of the objective function (1) 
(Eq. (1)) with respect to the original design variables are 
calculated using the chain rule as Eq. (8):
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To update the design variables, an optimality criteria 
method [20] is employed using the information obtained 
from the sensitivity analysis of the objective and con-
straint functions.

2.2 Stochastic optimization
When the robust design is considered in the TO, the struc-
tural response u becomes a stochastic field, and the objec-
tive function in Eq. (1) is a random variable. The compli-
ance objective function of the RTO model is usually given 
as follows:
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where [ ]C  is the mean value of the compliance, Var[C] 
is the compliance variance, and κ is a user-defined weight-
ing coefficient. If there is no uncertainty in loading, the 
expected value and variance of the compliance can be 
obtained as:
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The sensitivities of the objective function in Eq. (9) 
with respect to the design variables ρ are found using the 
adjoint method [29]:
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In the following subsections, the representation of the 
uncertainties as a stochastic field is first discussed. Then, 
the solution to the stochastic state problem using the prob-
abilistic collocation method is presented in more detail.

2.2.1 Uncertainty representation
To model the random field (uncertain parameter) Z, a trun-
cated Karhunen-Loeve expansion (KLE) is adopted, 
which can be defined by a square exponential correlation 
function Ryy' as follows [32]:
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where d = |y – y'| is the distance between the centers of 
two elements, and lc is the correlation length. To generate 
the expansion analysis, the following Eq. (13) can be cre-
ated using n eigenvalue-eigenvector pairs of the correla-
tion matrix, i.e., (λi, γi):
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where φi is a random variable. For dimension reduc-
tion, the expansion is truncated up to the first nmode < n 
modes. Stochastic variables are assumed to have a uni-
form distribution with zero mean and unit variance, i.e., 

( ) 3, 3i i Uϕ ζ ζ  = = −  .
Since the quantified random field Z does not have the 

desired value for topology optimization, i.e., [ ]0, 1Z ∉ , an 
operation shall be conducted on this field to transform its 
range to [0,1]. Therefore, the cumulative density function 
(CDF) is applied to the random field Z, and a new random 
field Ẑ(ρ,ζ) is obtained [26]:

Z � � � �, , 0,1� � � � ��� ���� �CDF Ẑ  (14)

2.2.2 Uncertainty propagation 
In this work, the Sparse Grid Collocation (SGC) method is 
used for the propagation of uncertainty. Suppose that Ql

(1)f 
is a family of quadrature rules, and Δl

(1)f is also a quadra-
ture rule [31]:

�l l lf Q Q f Q f( ) ( ) ( ) ( ),1 1 1
0
1 0� �� � ��1 . (15)
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For nested formulae, Δl
(1)f contains the set of nodes 

Ql
(1)f with weights equal to the difference of weights 

between levels l and (l – 0). By introducing the multi-index  
l = (l1,..., lN) ∈ NN, the sparse cubature can be constructed as:

l �
��i

N
il
1
.  (16)

At level l, this multi-index is applied, and the sparse 
cubature formula is represented by:
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where the multi-index expression of the support nodes is 
|l| = l1+ … + ld, and N is the dimension of objective func-
tion f. Using a recursive manner, the interpolant can be 
expressed as:

Q f
d

l d
Q Q fl

d
l l d

l d
k kd

� �
� � � �

� �� �
�

� �
�

�
�

�

�
� � �� �� 1

1
1

1l
k

k
( ) ( ) ( )1 1

 ..  
(18)

Using the Smolyak algorithm [32], the weight wi of the 
ith collocation point ζi is defined as:
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Then, the mean and standard deviation of the objective 
function f can be computed using the SGC method:
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Note that the weight wi and collocation point ζk is cal-
culated by the sparse grid of the Clenshaw-Curtis type 
with non-equidistant nodes in this work.

2.2.3 Uncertainty in material property (UNM)
The UNM such as the Young's modulus is usually repre-
sented by a random field as follows:

E h Z� � ��� ��� �, ,�̂  (21)

where h[] is a derivative function. To model the material 
properties of systems, there are relatively simple and phys-
ically acceptable marginal distributions such as uniform 
distribution, log-normal and beta. In this work, a uniform 
distribution is adopted to model the Young's modulus as 
Eq. (22) for uncertainty:
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where Em is the uniform distribution, and two control 
parameters β1 and β2 are used to confirm the presence of 
the function Ẑ(ρ,ζ) in the range of zero and one.

2.2.4 Uncertainty in Load (UNL)
Two categories of UNL are considered in this work: the 
first one is on the loading angle, and the second one is 
on load amplitude. These uncertainties are determined by 
two independent random variables. The random field of 
the loading angle is represented by a uniform distribution, 
while the uncertainty in the load amplitude is supposed to 
have a Gaussian distribution with a mean of 1 and a stan-
dard deviation (STD) of 0.3. Therefore, these two uncer-
tainties are formulated as:
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where F and A are the amplitude and angle of the applied 
load, respectively.

2.2.5 Uncertainty in Geometry (UNG)
Geometric uncertainty in design topology can be mod-
eled by introducing randomness to the threshold η, mean-
ing that the image threshold is modeled as a random 
variable with a probabilistic distribution. This approach 
models uncertainty in structures that are fabricated via 
etching. The etching process causes errors in the form of 
over- or under-etching which produces structures that are 
either thinner or thicker than intended. On a more realistic 
assumption, the etching can cause a non-uniform variation 
of errors in the design domain. In the present paper, this 
variation is represented by replacing the random variable 
η with the random field such that:

� � � � �x Z x, , ,1 2� � � � � �̂  (24)

where Ẑ(x,ζ) ∈ [0,1] is a random field, α1 and α2 controls 
the mean and range of the process η such that η(x,ζ) ∈ [0,1].

2.2.6 Optimization algorithm
Finally, after the representation of different uncertainties 
is completed, the SGC is applied to propagate the uncer-
tainties. The complete algorithm for robust topology opti-
mization is described as follows:
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1. Problem discretization and initialization
2. Generation of the KLE by Eq. (13);
3. Application of the adaptive sparse grid method for gen-

erating M integration points and the corresponding weights;
4. Optimization process.
Do until convergence:
• For k = 1, …, M, compute Kkuk = fk and kC

ρ
∂
∂ ;

• Estimate [ ]C  and Var[C] from Eq. (20);
• Evaluate the mean and variance of sensitivities with 

respect to the design variable;
• Compute the sensitivity of the stochastic compliance 

from Eq. (11);
• Update ρ.

This process is shown in Fig. 1 as a flowchart.

3 Numerical examples 
MATLAB software has been used in this work for imple-
menting two numerical examples. In Fig. 2, the first 100 
eigenvalues of the correlation matrix R have been illus-
trated, where their fast modal decay is obvious. 

As stated in Section 2.2.1, the expansion should be 
reduced to the first nmode modes for dimension reduction.

 For this purpose, the ratio 
1 1

/moden n
i ii i
λ λ

= =
      
   ∑ ∑  is 

used to determine the first nmode modes for representing 
the random field. According to Fig. 2, nmode = 4 is the best 
choice, i.e., this truncation yields a 96% representation of 
Z which is deemed sufficient.

3.1 Example 1: Two-Dimensional-MBB beam
A 2D-MBB beam, one of the most popular examples for 
RTO, is used as the first example for the comparative study 
on the HU. The design domain, boundary and loading 
conditions of this example are depicted in Fig. 3. The geo-
metric parameters of the MBB beam are considered as 
L = 90 mm and H = 30 mm, and T = 1 mm. The material is 
assumed to have a Young's modulus of 1 MPa for the solid 
phase and a Poisson ratio of 0.3.

To help validate the RTO results in Section 3.3, the 
Deterministic Topology Optimization (DTO) results are 
first presented in Fig. 4 to show the overall treatment of this 
MBB beam under the above loading, material and geomet-
ric conditions. To study the effect of various uncertainties 
on the final topology, it is supposed in this example that the 
loading angle has a uniform distribution in the distance of 

[π/4, 3π/4], and the load magnitude follows the Gaussian 
distribution with an average of 1 and an STD of 0.3. To con-
sider the material uncertainty, it is assumed that the Young's 
modulus is modeled via a 2D marginally uniform random 
field. As explained in Section 2.2.5, the geometric uncer-
tainty is modeled by representing the threshold η as a ran-
dom field with spatially varying manufacturing tolerances.

3.2 Example 2: 2D Cantilever beam
As the second numerical benchmark, a 2D cantilever 
beam is selected to further investigate the effect of HU on 
RTO. The design domain, boundary and loading condi-
tions are delineated in Fig. 5. The geometric parameters of 
the cantilever beam are set as L = 80 mm, H = 30 mm, and 
T = 1 mm. The material properties are the same as those in 
Example 1. Two concentrated unit loads are applied on the 
middle point of the beam end.

Fig. 1 General problem-solving process

Fig. 2 Correlation eigenvalues of random field Z

Fig. 3 Design domain, boundary and loading conditions of a 2D 
MBB beam

Fig. 4 DTO results of a 2D MBB beam (Compliance = 34.63)
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The DTO results of this cantilever beam are given in 
Fig. 6 to illustrate its overall handling under the determin-
istic loading, material and geometric conditions. For RTO 
analysis, the material and geometric uncertainties are the 
same as those in Example 1. It is supposed that the load 
magnitude of F2 follows the same distribution as that of 
load magnitude of F in Example 1, while F1 and the load-
ing angle of F2 are deterministic.

3.3 RTO results and discussion
In this section, the RTO results of the above two examples 
with different types of HU and the individual component 
uncertainties are presented and discussed. For simplicity, 
the abbreviations of RTO models under different uncer-
tainties are listed in Table 1.

Comparisons of the RTO designs under the various HU 
(HUML, HUGL, HUMG & HUMGL) and the individual 
component uncertainties (UNL, UNM & UNG) for two 
benchmarks are given in Table 2 and Fig. 7, and Table 3 
and Fig. 8, respectively. 

3.3.1 RTO model with HU in material property and 
load (HUML)
It is observed from the above results of both examples 
that the robust design under HUML has intermediate val-
ues of mean, STD and compliance compared with those 
under UNL and UNM, and is more stable than that under 
the loading uncertainty due to the smaller STD. In other 
words, the RTO design under this kind of hybrid uncer-
tainty can be considered as a conservative state with 
a mediocre and realistic prediction.

The higher amount of standard deviation for the case 
of UNL is a logical expression. This can be explained by 
the fact that the load, which can be assumed to be a pertur- 

Fig. 5 Design domain, boundary and loading conditions of a 2D 
cantilever beam

Fig. 6 DTO results of a 2D cantilever beam (Compliance = 1.52)

Table 1 Abbreviations of RTO models under different uncertainties

RTO model under uncertainty Abbreviation

Uncertainty in load UNL

Uncertainty in material property UNM

Uncertainty in geometry UNG

Hybrid uncertainties in material property and load HUML

Hybrid uncertainties in geometry and load HUGL

Hybrid uncertainties in material property and 
geometry HUMG

Hybrid uncertainties in material, geometry, and load HUMGL

Table 2 Comparison of RTO designs with different uncertainty models 
for Example 1

RTO model Mean STD Compliance

UNL 19.53 5.59 25.12

UNM 24.81 2.02 26.82

UNG 26.81 2.12 28.93

HUML 21.12 5.02 26.14

HUGL 22.22 4.48 26.70

HUMG 26.37 2.07 28.44

HUMGL 20.82 4.60 25.42

Fig. 7 Optimized topologies obtained with different uncertainty 
models for Example 1

Table 3 Comparison of RTO designs with different uncertainty models 
for Example 2

RTO model Mean STD Compliance

UNL 0.86 0.22 1.09

UNM 1.33 0.10 1.42

UNG 1.40 0.10 1.51

HUML 1.13 0.14 1.28

HUGL 1.19 0.11 1.30

HUMG 1.34 0.10 1.44

HUMGL 1.04 0.12 1.17
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bation, is an external effect on the structure. For further 
consideration, it is assumed that we have a system of one 
degree of freedom. Then, the compliance relation in the 
form of C = uTF and Ku = F can be shown as C = F2/K, 
in which F is the applied load and K is the stiffness. Given 
this relationship, it is clear that the effect of load on the 
compliance is much greater than that of other parameters. 
Therefore, as can be seen from the results of the hybrid 
state, the STD value is closer to that obtained from the 
state of UNL.

3.3.2 RTO model with HU in geometry and load (HUGL)
For RTO model under HUGL, it is found that the hybrid 
model has intermediate values for the RTO designs com-
pared with the two models of component uncertainty. 
Also, it has a smaller standard deviation compared with 
the UNL model, indicating that the achieved RTO design 
is less sensitive to the variations in the hybrid uncertainty 
model. Note that the above phenomena are similar to those 
observed in the previous HUML model.

As explained in Section 3.3.1 for the HUML model, the 
effect of loading uncertainty on the compliance is greater 
than that of material uncertainty. For the HUGL model, 
similar conclusion to that of the HUML model can be 
made, i.e., the effect of loading uncertainty on the compli-
ance is more significant than that of geometric uncertainty. 
As can be seen in Eq. (2) and Eq. (6), the material properties 
(Young's modulus and physical density) can be regarded 
as a function of the parameter η, which not only deter-
mines the structural boundary with geometric uncertainty 

but also indicates the material distribution (e.g., solid or 
empty phases) of the structure. As a result, the geometric 
uncertainty may have a similar effect to that of the material 
uncertainty in the hybrid uncertainty model. 

3.3.3 RTO model with HU in material property and 
geometry (HUMG)
For the third hybrid model of HUMG, it can be seen from 
the preceding results that the values obtained from this 
hybrid model are smaller than those from the UNG and 
larger than those from the UNM. Moreover, it is observed 
that the results of HUMG tend to those of UNG, which is 
also attributed to the relationship between the parameter 
η and the material properties.

3.3.4 RTO model with HU in material property, 
geometry, and load (HUMGL)
The final model considers the HU in material property, 
geometry and load. Similarly, it is noticed that the robust 
design with HUMGL has intermediate values of mean, 
STD and compliance compared to those with the compo-
nent uncertainty models. Also, it can be concluded from 
these results that the loading uncertainty has a greater 
effect on the compliance than the material and geometric 
uncertainties in all the involved hybrid models.

4 Conclusions 
TO methods have been widely used in structural engi-
neering (for example, aerospace, electronics, biomedical, 
automotive, and civil engineering) and have improved the 
quality of final products. However, although currently 
available studies have led to significant improvements in 
structural design, in most cases, these investigations are 
based on deterministic assumptions based on one or more 
items such as nominal material properties and loading 
conditions, as well as geometries. The possible sources 
of uncertainty in TO problems are load conditions and 
material properties, as well as geometric changes due to 
observation errors, incomplete information, manufactur-
ing defects, etc., which makes the combination of these 
matters particularly important.

This paper presents a comparative study on the HU for 
RTO of continuum structures, in which a truncated KLE 
is employed for uncertainty representation and a SGC 
method for uncertainty propagation of the objective func-
tion and constraints. The major findings of this study can 
be summarized as follows: 

Fig. 8 Optimized topologies obtained with different uncertainty 
models for Example 2
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(1) In the presence of HU, the RTO results tend towards 
those with UNL only, which is due to the weight effect of 
load on the compliance as compared with that of material 
property and geometry (C = FTu);

(2) The combination of loading uncertainty with mate-
rial or geometric uncertainty leads to the RTO design with 
a larger standard deviation compared to the cases with sin-
gle source of uncertainties (either material uncertainty or 
geometric uncertainty), which may have a negative effect 
on the stability of the structure;

(3) The hybrid uncertainty model is a relatively conser-
vative state, in which the weakness of a scenario with single 
uncertainty can be avoided. Since the loading uncertainty 

causes a larger standard deviation than the uncertainties of 
other parameters, the final topology may be more sensitive 
to variations in design variables. 

As a result, by combining the loading uncertainty with 
other sources of uncertainties, the main goal of robust 
design to alleviate the standard deviation can be achieved. 
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