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Abstract

Output-only structural health monitoring is a highly active research direction because it is a promising methodology for building digital 

twin applications providing near-real-time monitoring results of the structure. However, one of the technical bottlenecks is how to 

work effectively with multiple high-dimensional vibration signals. To address this question, this study develops a two-stage data-driven 

framework based on various advanced techniques, such as time-series feature extractions, self-learning, graph neural network, and 

machine learning algorithms. At first, multiple features in statistical, time, and spectral domains, are extracted from raw vibration 

data; then, they subsequently enter a graph convolution network to account for the spatial correlation of sensor locations. After that, 

the high-performance adaptive boosting machine learning algorithm is leveraged to assess structures' health states. This method 

allows for learning a lower-dimensional yet informative representation of vibration data; thus, the subsequent monitoring tasks could 

be performed with reduced time complexity and economical computational resources. The performance of the proposed method 

is qualitatively and quantitatively demonstrated through two examples involving both numerical and experimental structural data. 

Furthermore, comparison and robustness studies are carried out, showing that the proposed approach outperforms various machine 

learning/deep learning-based methods in terms of accuracy and noise/missing-robustness.
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1 Introduction 
Vibration output-only structural health monitoring 
(SHM) is an appealing method for effectively monitoring 
the operation state of civil structures. This method does 
not require engineers to always be on the field or inter-
rupt the structures' services; thus, it is possible to perform 
SHM continuously and in the long term. However, there 
are two major obstacles that may hinder the applicabil-
ity of this method which are: i) a massive amount of col-
lected vibration signals, ii) unwanted noises, and miss-
ing data. In practice, with dozen accelerometers, one can 
collect gigabytes of acceleration data for a few hours. 
Hence, directly using such data will require huge storage 
devices and complex data analytic models; however, pre-
diction results may be already known information, such 
as a healthy state without damage occurrence. That is 
why using feature extraction to convert high-dimensional 
time series data to low-dimension feature vectors is more 

amenable and economical in terms of budget and effort. 
Gui et al. [1] used sixteen statistical features, such as max-
imum, minimum, mean, skewness, kurtosis, etc., to build 
a rapid detecting damage application, which was success-
fully validated through experimental data from a labo-
ratory three-story frame structure. When working with 
rolling element bearing, Mathew and Alfredson [2] found 
that among more than twenty investigated statistical fea-
tures, kurtosis is a damage-sensitive one that can provide 
a good indication of failure states. Yanez-Borjas et al. [3] 
proposed to combine a set of statistical features, includ-
ing high-order moments (up to 6th) and shape-related fea-
tures, with the Principal Component Analysis algorithm 
and the Mahalanobis distance metric to perform SHM of 
load-bearing cables in a cable-stayed bridge. For  SHM 
of wind turbines, root mean square is widely used as an 
effective parameter in identifying damage existence. 
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Other shape-related statistical parameters, such as shape 
factor, crest factor, range, impulse factor, etc., also have 
significant contributions to SHM results [4]. 

Statistical feature-based methods are practical and fast; 
however, they cannot take into account chronological rela-
tionships, such as autocorrelations, trends, or seasonal 
variations, within time series data. To improve this short-
coming, various authors have proposed to use time-se-
ries modeling techniques to simulate the structures' time 
response histories, then estimate the actual structures' 
states. Autoregressive model (AR) is one of the most popu-
lar time-series fitting techniques with clear and easy-to-un-
derstand theory backgrounds. Figueiredo et al. [5] proved 
that the AR model was successfully applied to real-world 
structures under operational and environmental condi-
tions. For structures under random excitation, Carden 
and Brownjohn  [6] developed a SHM method based on 
the Autoregressive Moving Average model, which was 
successfully validated through a number of examples, 
including a 4-story 3D frame structure, the Z24 bridge 
and the Singapore–Malaysia Second Link bridge. Zheng 
and Mita  [7] also employed ARMA to identify damage 
locations and assess the severities of a five-story building 
structure subjected to various excitations, i.e., earthquake 
and ambient forces. 

Although time-domain features are good damage indi-
cators, however, they are easily altered by environmental 
noise and other unfavorable factors such as device insta-
bility, unequally sampled discrete data, etc. Hence, fre-
quency-domain feature-based methods have been investi-
gated as promising alternatives. Pehlivan et al. [8] utilized 
multiple signal analysis techniques in the frequency 
domain to monitor the behavior of a 240  m high televi-
sion tower. The techniques included low-pass filtering for 
removing low-frequency noise components and a high-
pass filter for separating instantaneous high-frequency 
components. The most common technique to transform 
data from the time domain to the frequency domain is to 
use the Fourier Transformation (FT); particularly, the Fast 
Fourier Transformation algorithm is highly effective when 
working with large time-series data. A detailed descrip-
tion of the SHM method based on the FT was demon-
strated in  [9], which involved computing the FT of out-
put responses, and FT of input excitation, then deriving 
frequency response function (FRF) parameters. The FRF 
data were compared with those of healthy reference struc-
tures to derive the structure’s actual state. Another effec-
tive method in the frequency domain for detecting damage 

existence is to assess the change of power spectral den-
sities (PSD). Examples of methods utilizing PSD are the 
works of Pedram et al. [10] for concrete beam structure.

Furthermore, to combine the advantages of time- and 
frequency-domain features, various time-frequency 
approaches have been developed to investigate the evolu-
tion of frequency features over time. Specifically, the Short-
Time Fourier Transform method (STFT) divides signals 
into shorter segments of equal length; then FT is applied to 
each segment; thus, a 1D time series is converted to a 2D 
image of time-frequency-amplitude representations  [11]. 
However, a shortfall of the STFT technique is only using 
a fixed-width window to extract all frequency contents 
within signals. Meanwhile, for low-range frequency con-
tents, a  long window should be used, whereas for high-
range frequency contents, a shorter window is more con-
venient. Hence, the Wavelet Transform (WT) technique 
is widely adopted  [12], using varying-length windows to 
extract frequency information at different resolutions. 

Other damage-sensitive indicators are modal features, 
including eigenfrequencies and mode shapes that can be 
extracted from vibration signals. These features can then 
be utilized along with meta-heuristic optimization algo-
rithms to assess structures' health, as done in the work of 
Kaveh et al. [13]. For high-order indeterminate truss struc-
tures, Kaveh and Mahdavi [14] proposed a method using 
natural frequencies for identified damaged members. 
Subsequently, the authors demonstrated that using mode 
shapes as input provided better structural damage detec-
tion results [15]. Furthermore, features derived from mode 
shapes also considerably contributed to the model perfor-
mance, for example, the modal assurance criterion  [16] 
and modal strain energy-based indexes  [17]. It is noted 
that to extract modal features, complex theories such as 
modal operation analysis and specialized software, e.g., 
MACEC [18], are needed.

2 Research significance
Although using features from a specialized domain could 
provide promising results for some specific structures in 
some specific conditions, the SHM performance may not 
be generalized and can be lowered for other types of struc-
tures or impeded by unwanted factors. A natural intuition 
is to fuse features from different domains into one single 
input vector to leverage the advantages of different strate-
gies. Therefore, this study develops a multi-modal feature 
fusion framework that first distills features from statisti-
cal, temporal, and spectral domains. Secondly, meaningful 
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information in the spatial domain, e.g., the structure's con-
nectivity, sensor placements  [19, 20], is incorporated into 
data via the graph convolution network. Third, the interac-
tion between features could be hallucinated via a self-su-
pervised learning (SSL) technique. Finally, an adaptive 
boosting machine learning model is leveraged to assess 
the corresponding structure's health states. Concretely, the 
main contributions of this study are summarized as follows:

•	 A novel framework for structural health monitoring is 
proposed that can convert high-dimension multivar-
iate signals to significantly lower-dimension feature 
vectors while still providing accurate SHM results.

•	 The viability of the mFF-SHM method is quanti-
tatively and qualitatively highlighted via two case 
studies, including a numerical 2D asymmetric semi-
rigid frame structure and an experimental database 
of a 3D steel frame structure. The comparison results 
show that the proposed method outperforms various 
ML/DL-based counterparts.

•	 Thanks to the domain diversity and self-supervised 
learning, mFF-SHM is robust against noisy or incom-
plete data, i.e., providing reliable SHM results with 
contaminated vibration signals.

The rest of the paper is organized as follows: Section  2 pres-
ents the key components of the proposed framework involv-
ing multi-modal feature extraction, graph convolution net-
work, self-supervised learning with triplet loss function, and 

adaptive boosting machine learning. In  Section 3, the via-
bility of the proposed approach is demonstrated through 
two examples. Finally, in Section 4, one draws conclusions 
and proposes perspectives for future work.

3 Multi-modal feature fusion structural health 
monitoring framework 
In this section, one describes the proposed multi-modal 
feature fusion structural health monitoring framework, 
which consists of two main stages, as shown in Fig. 1. 
The first stage is self-supervised learning, and the second 
stage is supervised classification. The first stage aims to 
learn low-dimensional, informative feature-based repre-
sentations from raw vibration data which involve infor-
mation from statistical, temporal, spectral, and spatial 
domains. The second stage will leverage learned repre-
sentation from the first stage to assess actual structural 
states. The details of each component in the working flow 
will be presented in the following.

3.1 Vibration signal feature extraction
Feature extraction aims to transform high-dimensional 
vibration data into lower-dimensional vectors that still 
preserve as much as possible underlying characteristics 
helpful in detecting the structures' actual state. Towards 
a generalized SHM framework, one will consider features 
in multiple domains, including statistical, temporal, and 
spectral domains, rather than relying on only one domain 

Fig. 1 Working flow of the proposed mFF-SHM framework



Dang and Nguyen
Period. Polytech. Civ. Eng., 67(2), pp. 416–430, 2023|419

that may work well with a specific class of structures but 
is unsuitable for others. Before describing in detail the 
adopted features, some notations are introduced. Let's 
denote a time-series data, L is its length, t is the time 
instant, fs stands for sampling frequency, and s' represent 
the discrete derivative of s with respect to t.

Statistical features are the most common and rela-
tively simpler features, which can be derived using some 
straightforward mathematical equations and based on only 
data amplitude values but not time instants. The first fea-
tures of interest are maximum, minimum, and mean val-
ues. The  mean value is known as the first-order moment 
of data; in addition, one also considers higher moments 
such as the second moment (variance), third moment 
(skewness), and fourth moment (kurtosis). Furthermore, 
features showing information about the probability dis-
tribution of data values, such as third, second, and third 
quartile values, are also accounted for. These three val-
ues signify that 25%, 50%, and 75% of the number of val-
ues are less than them, respectively. Other features used 
by various authors for statistically characterizing the sig-
nal amplitude are also taken into account, such as mean 
absolute deviation, root mean square, and entropy. Hence, 
there are, in total, 12 statistical features of . Besides, one 
also calculates these features for the time derivative of sig-
nals and appends them to the feature vector.

The second group of features is the temporal features, 
which describe some underlying patterns over time within 
time-series data. Unlike statistical features, in order to com-
pute temporal features, one needs to account for both ampli-
tude values and corresponding time instants. For example, 
the centroid is calculated by:
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The area under the curve is given by: 

AUC t t
s s

i

L
i i

i i� �� �� �
� �

��
1

1

1

2

	 (3)

Some temporal features for which programming algo-
rithms are needed are the number of peaks, zero crossing 
rate, and autocorrelation. 

The third feature group is the spectral features, which 
require conducting some transformation in advances, 
such as Fourier transformation or wavelet transformation. 
The Fourier transformation will result in vectors of fre-
quency values and corresponding magnitude values based 
on which spectral features are derived, such as the fun-
damental frequency, FFT mean coefficient, spectral cen-
troid, and maximum power. Furthermore, one can calcu-
late the statistical characteristics of these spectral values 
as done with temporal features such as kurtosis, skew-
ness, variance, and entropy. Another way to extract spec-
tral features is to use the wavelet transformation, resulting 
in a set of wavelet coefficients. Similar to Fourier transfor-
mation, some statistical characteristics of wavelet coeffi-
cients are derived, such as wavelet absolute mean, wavelet 
variance, wavelet energy, and wavelet entropy. These fea-
tures are extracted with the help of a number library such 
as Tsfel [21], Sktime [22], and Tsfresh [23]. To sum up, the 
list of extracted features is enumerated in Table 1.

3.2 Graph convolution network 
Conventionally, a graph is a type of data consisting of nodes 
and edges between them, which could present the relation-
ship between nodes in an explicit way. Let's denote a graph 
by G = (N, E), with N, E being its set of nodes and edges, 
respectively. The relationship between nodes can be mathe-
matically described via a binary adjacency matrix A whose 
component Ai,j = 1 if there is an edge connecting node i 
with j; in contrast, Ai,j = 0. The group of nodes j with Ai,j = 1 
is called the neighbor of node i and is denoted by ne(i). For 
a civil structure, nodes are usually joints or connections, 
and edges are structural members. Each node is character-
ized by a vector of features extracted from vibration sig-
nals, as described above. In order to effectively incorporate 
the structure's spatial information into the structural data-
base, on top of statistical, temporal, and spectral features, 
the graph convolution network [24] is resorted to. This is 
a  special type of neural network that perform neighbor- 
hood aggregation operations written as follows:
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where hi is hidden states of node i, Wg and Bg are trainable 
weights and biases. σ is a non-linear activation function. 
It is noteworthy that the equation involves only ne(i), not 
the entire graph; thus, the operation is highly computation-
ally efficient, especially with sparse adjacency matrices.
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3.3 Self-supervised learning using triplet loss
The triplet loss technique is a convenient way to perform 
SSL that has been successfully applied in various domains 
since its first introduction [25]. The key idea of this tech-
nique follows a natural intuition that samples belonging to 
the same class will exhibit similar characteristics. Thus, 
if one introduces a metric for measuring the similarity 
distance, distances between similar samples should be 
small; otherwise, those between dissimilar samples should 
be significantly large. As described in the previous sub-
section, each data sample is characterized by a vector of 

multi-modal features. Thus, some commonly used similar-
ity distances for real-valued feature vectors are Euclidean 
distance, a.k.a L2 norm, or cosine distance. Cosine dis-
tance is more utilized when the magnitude of the vectors 
has less significance than their orientation. Meanwhile, for 
vibration, the signal amplitude is also an important indica-
tor; hence, the Euclidean distance is adopted.

Next, the formula of triplet loss can be written as follows:
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Table 1 List of extracted features used in the mFF-SHM framework

No Feature description Abbreviation No Feature description Abbreviation

1 Entropy of the signal entropy 25 Area under the curve of the signal AUC

2 Root mean square of the signal rms 26 Sentroid along the time axis Centroid

3 Skewness of the signal skewness 27 Total energy of the signal Energy

4 Kurtosis of the signal kurtosis 28 Autocorrelation of the signal Autocorr

5 Mean value of the signal mean 29 Zero-crossing rate of the signal zero-cross

6 Standard deviation of the signal std 30 Number of peaks from a defined 
neighbourhood of the signal. Peaks

7 Maximum value of the signal max 31 Maximum power spectrum density 
of the signal max_PS

8 Minimum value of the signal min 32 Fundamental frequency of the signal 1st-freq

9 First quartile value of the signal Q1 33 Centroid of the signal spectrum centroid-S

10 Median value of the signal median 34 Entropy of the signal spectrum entropy-S

11 Third quartile value of the signal Q3 35 Skewness of the signal spectrum skewness-S

12 Mean absolute deviation value of the signal MAD 36 Kurtosis of the signal spectrum kurtosis-S

13 Entropy of the time derivative of the signal entropy-diff 37 Variation of the signal spectrum variation-S

14 Root mean square of the time derivative  
of the signal rms-diff 38 CWT absolute mean value of the first 

wavelet scale mean-W-lv1

15 Skewness of the time derivative of the signal skewness-diff 39 CWT absolute mean value of the second 
wavelet scale mean-W-lv2

16 Kurtosis of the time derivative of the signal kurtosis-diff 40 CWT absolute mean value of the third 
wavelet scale mean-W-lv3

17 Mean value of the time derivative of the signal mean-diff 41 CWT energy of the first wavelet scale energy-W-lv1

18 Standard deviation of the 
time derivative of the signal std-diff 42 CWT energy of the second wavelet scale energy-W-lv2

19 Maximum value of the time derivative  
of the signal max-diff 43 CWT energy of the third wavelet scale energy-W-lv3

20 Minimum value of the time derivative  
of the signal min-diff 44 CWT entropy of the signal entropy-W

21 First quartile value of the 
time derivative of the signal Q1-diff 45 CWT standard deviation of the first  

wavelet scale std-W-lv1

22 Median value of the time derivative  
of the signal median-diff 46 CWT standard deviation of the second  

wavelet scale std-W-lv2

23 Third quartile value of the 
time derivative of the signal Q3-diff 47 CWT standard deviation of the third  

wavelet scale std-W-lv3

24 Mean absolute deviation value of the 
time derivative of the signal MAD-diff
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where xi
a represents an anchor sample, and xi

p denotes 
a positive sample with the same label as xi

a. A positive 
sample is obtained by applying data augmentation tech-
niques to the original sample. For time series, some com-
monly adopted data augmentation techniques are jitter-
ing (noise injection), scaling, permutation, flipping, and 
zeroing. Representative examples of these techniques are 
illustrated in Fig. 2. On the other hand, xi

n is a negative 
sample that is labeled differently from xi

a, ||∙||2
2  stands for 

Euclidean distance. f(x) is the feature vector of sample x. 
In Eq. (6), the first term signifies the distance between the 
anchor and positive samples that needed to be minimized. 
The second term with a negative sign is the distance 
between the anchor and negative samples that needs to 
be maximized. Moreover, a small value α is introduced as 
a threshold to improve the calculation stability of the loss 
function gradient. Fig. 3 graphically represents the learn-
ing process with the triplet loss function. For example, in 
the beginning, the negative sample is closer to the anchor 
than the positive one. However, after finishing the learn-
ing process, the positive sample approaches the anchor 
more than the negative one by at least a distance of α.

In terms of model hyperparameters, the batch size is 
set to 256, the adopted optimizer is the Adam optimiza-
tion algorithm, and the learning rate is 0.001. Note that 
for a batch of 256 samples, one applies first augmentation 
techniques to form 3 × 256 augmented samples. After that, 

one randomly selects 256 triplets from these 3 × 256 sam-
ples, each triplet consists of 3 samples (xa, xp, xn) where 
xp is an augmented variant of xa, and xn and xa belong to 
different classes. The mFF-SHM framework is developed 
by the authors with the help of the Python programming 
language and machine learning libraries such as Pytorch, 
Pytorch-geometric [26], and PyCaret [27]. Computations 
were conducted on an Intel Xeon CPU E5-2650 server 
equipped with 2 Nvidia 3080 GPUs and 64 Gb RAM.

3.4 Adaptive boosting machine learning algorithm 
Among machine learning algorithms, boosting model is 
one of the highest-performance models that combine mul-
tiple base ML models into a strong one. Each individual 
model focuses on a different set of features and utilizes dif-
ferent strategies to perform prediction, and it has its own 
drawbacks. By using multiple models, one increases the 
model diversity, reducing errors and improving the per-
formance. Specifically, in this study, one uses decision 
tree (DT) models as weak models, each DT using differ-
ent subsets of features, and the final model is obtained as 
a weighted sum of all DTs (Fig. 4). The weights assigned to 
DT models are adaptively updated in a sequential manner. 
Such an approach is known as the adaptive boosting tech-
nique (Adaboost) [28]. On the other hand, one also weights 
data samples to pay more attention to difficult samples that 
the DT models wrongly classified. This idea is graphi-
cally demonstrated in Fig. 5. Given 10 data samples belong 
to two classes, "rectangle" and "triangle". Initially, one 
assigns the same weight for these data samples and puts 
them through the first DT model. The DT will classify 
these data via a horizontal line and misclassify two sam-
ple points on the left. In the second step, the weights of 
the two wrongly classified samples are increased, as  visu-
ally shown by the increased size of these rectangles. Next, 
these updated samples are entered into a second DT, which 
in turn, misclassifies three triangle samples. Hence, their 

Fig. 2 Data augmentation techniques for time-series data Fig. 3 Graphical representation of the triplet loss function
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three weights are adjusted correspondingly. The whole 
updated database then goes through a third DT model. 
Finally, all three models are combined into a strong fourth 
model, which correctly classifies data samples, as shown 
in the subfigure at the bottom. 

Formally, let's denote DTk(Xi) as base models, with 
k = 1, …, Nmodel, Nmodel is the total number of models, αk 
is the weight assigned to DTk(Xi), Xi is a data sample 
with i = 1, …, Ndata, Ndata is the total number of samples. 
Considering model k, error made by DTk on Xi is denoted 
by ei,k. Thus, the total error by DTk is: 

e ek i
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�� 1
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4 Case studies
4.1 Case study 1: Numerical 2D semi-rigid structure 
The first example is a six-story 2D asymmetric semi-rigid 
steel frame structure. The frame has a bay width of 6 m 
and a total height of 25 m, as shown in Fig. 6. The cross- 
sections of the beams and columns are also detailed in 
the figure. The structure is excited by six independent 
time-varying concentrated loads acting on every story 
floor. In reality, steel members such as columns and beams 
are connected through bolt or welded connections with 
finite rotational stiffness and are hence usually considered 
semi-rigid connections. The semi-rigid connection is mod-
eled via a rotational spring. More details about using graph 
theory for the description of semi-rigid skeletal structures 
can be found in  [29,  30]. Other main structural parame-
ters involving Young modulus, damping ratio, and loading 
amplitudes are considered random variables whose val-
ues are described via a predefined probability distribution 
and statistical characteristics as enumerated in Table  2. 
Specifically, the loading amplitudes are sampled from an 
uniform distribution with lower and upper bounds being 
1000 and 2000  N. Young modulus value is drawn from 
a normal distribution with a mean of 200 GPa and a coeffi-
cient of variation (CoV) of 0.1. The dynamic analysis of the 
structure is realized by using the open-source finite element 
software OpenSees developed by the Pacific Earthquake 
Engineering Research Center  [31]. The rotational spring 
is modeled through zero-length elements. For numerically 

Fig. 4 Graphical illustration of the adaptive boosting algorithm

Fig. 5 A representative explanation of the Adaboost algorithm

Fig. 6 Schematic representation of the semi-rigid frame structure

Table 2 Random variables of the numerical 2D semi-rigid structure

Variable E (GPa) ζ (%) F (N)

mean 200 5

CoV 0.1 0.05

Dist. Normal Normal Uniform [1000–2000]
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solving the dynamic equilibrium equations, the Newton-
Raphson algorithm and Newmark numerical integration 
scheme with γ = 0.5 and α = 0.25 are utilized.

In this case study, the damage was introduced by ran-
domly diminishing one or many rotational spring stiff-
nesses (up to 5). The remaining rotational stiffness can be 
in the range of (105, 106, 107, 108,), corresponding to four 
damage levels, i.e., severe, high, moderate, and minor, apart 
from the original intact state. Numerical simulations with 
these damages are carried out in OpenSees, and outputs of 
interest are vibration signals recorded at all the structure's 
column-beam connections with a frequency sampling of 
100 Hz for 30 s. The results of each simulation are stored 
in a matrix of size [38 × 30000]. There are, in total, 5000 
simulations with different structural parameters and dif-
ferent damage scenarios that were performed, resulting in 
vibration-based data of size [5000 × 18 ×30000]. It took 
around 31  s CPU time for each FEM simulation; hence, 
the total computational time required for data generation 
is around 43 hours.

With the structural database in place, the SSL training 
process with the settings detailed above was carried out. 
The resulting learning curve highlighting the evolution 
of the triplet loss versus the number of training epochs 
is shown in Fig. 7. Apparently, the loss function quickly 
decreased for the first 300 epochs; after that, it improved 
with a less noticeable rate and achieved the lowest value 
at epoch around  480. For the subsequent 50 epochs, 
no improvement was observed; hence, the training process 
was terminated per the early stopping criteria.

Once the SSL learning is finished, it is used to assess 
the structure's state with the help of an Adaboost-based 
classifier. Actually, for each semi-rigid connection, one 
train a specific classifier header with corresponding labels. 

Note that a data sample could be labeled in different ways 
depending on the semi-rigid connections of interest. 
It is possible that many damages occur at the same time; 
thus, a data sample could be labeled as severe for connec-
tion i, but can be minor for connection j or even undam-
aged for connection k, with i  ≠  j  ≠  k. Considering con-
nection 6 for example, the SHM results obtained by the 
proposed mSS-SHM are graphically presented in Fig. 8 
via a confusion matrix.

Detailed errors made by the proposed method for every 
damage scenario can be derived from the off-diagonal cells 
of the confusion matrices. For example, the second row of 
the confusion matrix in Fig. 8 reveals that mFF-SHM mis-
classified 4, 1, and 2 samples belonging to minor damage 
cases into intact, high, and severe damages, respectively. 
In total, there are 33 wrongly identified samples, i.e., the 
error is 3.3%. It can be seen that the data are unbalanced 
as the number of samples corresponding to the intact state 
is clearly greater than those of other states. For such unbal-
anced data, the metric F1 is usually used to assess the 
model performance. Precisely, the F1-score for results in 
Fig. 8 is up to 93%, with a large part of wrongly classified 
samples related to the dominated "intact" class.

In order to clarifier the performance of the pro-
posed method, a comparison study is conducted to com-
pare mFF-SHM with a number of popular Machine 
Learning/Deep learning (ML/DL) based methods involv-
ing: Random Forest, Support Vector Machine (SVM), 
K-Nearest Neighbor, Decision Tree, Naïve Bayes, Logistic 
Regression, Ridge classifier, Multiple Layer Perceptron 
(MLP), 1D-Convolution Neural Network (1DCNN), Long 
Short Time Memory (LSTM) and AdaBoost without SSL. 

Fig. 7 Evolution of triplet loss function in function of training epochs
Fig. 8 SHM results via confusion matrix for semi-rigid connection 6 of 

the 2D frame structure
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Comparison results are enumerated in Table 3, including 
F1-score, feature extraction time, self-learning time, train-
ing time for the classifier, and total CPU time. In addition, 
one can derive the percentages of errors as the difference 
between 100% and the accuracy values. Although accu-
racy and error are intuitive metrics, for imbalanced data in 
which a class (e.g., severe damage) may have significantly 
fewer samples than others, wrongly identified samples of 
this class could have more negative impacts on the SHM 
results. Thus, F1-score is a more relevant metric to assess 
the model's performance. Apparently, mFF-SHm achieves 
the highest F1 score (on the testing dataset) though when 
compared to other machine learning methods, mFF-SHM 
requires additional self-learning time of up to 18.2 min, 
thus making it slower than other ML feature-based meth-
ods. However, mFF-SHM is still approximately equal to 
or faster than deep learning models using high-dimen-
sional raw vibration data, e.g., LSTM requires a total CPU 
time of 66.5 min, which is more than two times that of 
mFF-SHM (30.3 min). 

Analogously, one repeats the computation process 
for other semi-rigid connections, including a variant of 
mFF-SHM, relabeling, training and validation. Note that 
all mFF-SHM models have the same architecture except 
for the classifier, whose parameters are determined with 
corresponding labeled data. In total, there are 24 variants 
of mFF-SHM for 24 semi-rigid connections. The perfor-
mances of these models are depicted in Fig. 9, showing 
that F1 scores are slightly higher for connections belong-
ing to edge columns than for those of inside columns. 
For example, F1-score for connections 1, 6, 7, 12, 13, 16, 
17, 21, 22,  23, and 24 are about 95%, whereas, for other 
connections, F1-scores fluctuate around 90%. Such results 
can be partly explained as follows. For each joint inside the 
frame structure, there are two rotational springs; thus, if 
a spring is damaged, the other can still transfer vibrations 
between structural elements. Meanwhile, for joints on the 
edge columns, there is no alternative way for vibration 
propagation; thus, damages have more effect on the struc-
ture's responses. Overall, by combining these mFF-SHM 

Table 3 Comparison results between the mFF-SHM framework with ML/DL counterparts for the 2D frame structure

No Model Accuracy (%) F1 (%) FE time (min) Self-learning time (min) Training time (min) Total time (min)

1 mFF-SHM 0.95 0.94 6.3 18.2 5.8 30.3

2 Ada Boost Classifier 0.93 0.92 6.3 0 5.8 12.1

4 1DCCN 0.91 0.90 0 0 26.6 26.6

5 LSTM 0.89 0.87 0 0 66.5 66.5

6 SVM - Linear Kernel 0.86 0.83 6.3 0 2.2 8.5

7 K Neighbors Classifier 0.86 0.83 6.3 0 3.4 9.7

8 MLP 0.85 0.85 0 0 41.2 41.2

9 Decision Tree Classifier 0.82 0.82 6.3 0 2.1 8.4

10 Naive Bayes 0.73 0.72 6.3 0 0.9 7.2

11 Logistic Regression 0.65 0.62 6.3 0 2.2 8.5

12 Ridge Classifier 0.55 0.56 6.3 0 1.4 7.7

Fig. 9 SHM results for all 24 semi-rigid connections 
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variants, one can obtain reasonably accurate SHM results 
for multi-damage scenarios where different damages occur 
at different locations with different severities.

On the other hand, it is noteworthy to investigate the 
contribution of various features on the model performance, 
which help engineers and researchers understand better the 
structure's behaviors and select appropriate signal process-
ing techniques for achieving the highest accuracy possible. 
One of the most popular techniques for this purpose is the 
permutation feature importance technique. Considering 
a feature, this technique randomly shuffles feature values 
among samples while keeping the other features unchanged. 
After that, the reduction in the model score is calculated; 
if the reduction is large, this feature is important; otherwise, 
it has little contribution to the final performance. The pro-
cess is repeated for all features, score reductions are then 
normalized to derive feature importance scores, and the fea-
tures will be ranked based on their scores.

The results of the feature importance study for the 2D 
frame example are illustrated in Fig. 10. It is interesting that 
the wavelet entropy is very sensitive to damage, whereas 
the contribution of the signal entropy is negligible. That 
is why wavelet transformation is one of the most effective 
techniques for SHM, widely used by various authors [12]. 
Other statistical features about the distributions of signal 
amplitudes, such as Q1, median (Q2), Q3, RMS, max,… are 
also ranked among the top important features.

4.2 Case study 2: Experimental 3D frame structure 
In this example, the proposed feature-fusion approach 
is applied to an experimental three-story frame structure 
realized at Los Alamos National Laboratory [32], as illus-
trated in Fig.  11. The structure has a plan dimension of 
0.868  ×  0.462  (m), a total height of 1.553  m. The floors 
are made from aluminum plates with a thickness of 1.3 cm, 
which are supported by four columns via brackets and bolt 
connections. The structure was horizontally excited through 
a shaker which could generate different excitation levels 
with frequencies in the range [0, 200] Hz. Damages were 
introduced into the structure by varying the bolt connec-
tion tightness at various locations and with different torque 
values. Details of all damage scenarios are enumerated in 
Table 4. There are, in total 10 structural states, denoted by 
D0 to D9, where D0 represents an intact state, and D1 to D9 
denote damaged states. To record the structure's responses, 
24 accelerometers were installed across the structure body, 
8 accelerometers per floor, and two per column-plate joints 
as depicted in Fig. 10 and enumerated in Table 5. The sam-
pling frequency of the sensors is 1600 Hz.

To construct the adjacency matrix A, encoding the spatial 
correlation of the sensors, one considers that two sensors 
are connected if they satisfy one of the following condi-
tions: i) two sensors at the same column-plate connections, 
ii) sensors on the same plate and iii) two sensors at the two 
ends of the same column. The resulting adjacency of the 
investigated structure is highlighted in Fig. 12. For exam-
ple, considering the sensor 2BC (sensor 10), per condition 
i: a9,10 = 1: because sensor 2BC and 2BP (sensor 9) at the 
same location 2B, per condition iii, a2,10 = 1 and a10,18 = 1 
because sensor 3BC (sensor 2) and 1BC (sensor 18) directly 
link with sensor 2BC through column 2B. For other sensors 
which are not connected with sensor 2BC, the associated 
adjacency matrix components ai,10 = 0 with i ≠ 2, 9, 18. Next, 
one divides the experimental database into three non-over-
lapping datasets for training, validation, and testing the 
mFF-SHM model, with a ratio of 70:15:15. Specifically, the 
size of these three datasets are (1160, 24, 1024), (248, 24, 
1024), and (248, 24, 1024), respectively. The first dimen-
sion is the number of samples, the second is the number of 
sensors, and the third stands for the sample length.

Fig. 10 Feature importance results for the 2D semi-rigid frame structure
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For this example, one designs a variant of the mFF-SHM 
model for mapping input data with one of nine structural 
states under investigation. A similar working flow, as shown 
in Fig. 1 and described in the first example, is employed, 
including data augmentation, feature extraction, self-learn-
ing with triplet loss, and an Adaboost-based classifier. 

It is natural to investigate the accuracy of the model in 
the first place. Because there are up to 9 structural states, 
thus the problem can be viewed as a multi-output classifica-
tion; hence, the confusion matrix and F1-score are adopted 
to assess the model performance. Fig. 13 illustrates the 
obtained confusion matrix via a heat map where the color 
intensity emphasizes the number of samples. In the matrix, 
the diagonal cells indicate samples that are correctly pre-
dicted by the proposed model, whereas the off-diagonal 
cells refer to misclassified ones. It can be seen that most of 
the samples lie on the diagonal, except for 7 out of 241 sam-
ples; this corresponds to an accuracy of 97.1% and an aver-
age F1-score of 97%. In addition, F1 scores for every class 
are also calculated and listed at the bottom of the figure.

Besides, a feature importance study based on the permu-
tation technique for the experimental database is carried out, 
whose results are reported in Fig. 14. Unlike the first exam-
ple, 4 out of 5 top features are related to the time derivative 
of the vibration signals, including, Rms-diff, Q3-diff, min-
diff, Q1-diff. Meanwhile, the top features in the first exam-
ple, such as entropy-W, Q1, Q2, and Q3-quartile values, are 

Fig. 11 Image of the experimental steel structure [32]

Table 4 List of damage scenarios 

State Location Damage description

D0 No damage

D1 1C and 3A No bolt between plate and bracket

D2 1C and 3A Bracket being completely removed

D3 1C Remaining torque of 5 ft

D4 1C Remaining torque of 10 ft

D5 1C No bolt between plate and bracket

D6 1C Bracket is completely removed

D7 1C hand tight torque

D8 3A No bolt between plate and bracket

D9 3A Bracket being completely removed

Table 5 List of accelerometer sensors

No. 1 2 3 4 5 6

Sensor 3BP 3BC 3AP 3AC 3CP 3CC

No. 7 8 9 10 11 12

Sensor 3DP 3DC 2BP 2BC 2AP 2AC

No. 13 14 15 16 17 18

Sensor 2CP 2CC 2DP 2DC 1BP 1BC

No. 19 20 21 22 23 24

Sensor 1AP 1AC 1CP 1CC 1DP 1BP

Fig. 12 Adjacency matrix of the sensors installed on the steel frame 
structure
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ranked at the bottom half. These results demonstrate that no 
unique feature can be effectively applied to all SHM prob-
lems; however, fusing features in different domains could 
be useful for different structures.

Next, the mFF-SHM model is compared with other DL/
ML-based counterparts in terms of both performance and 
efficiency. ML-based models directly use extracted fea-
tures as inputs, whereas mFF-SHM utilizes latent repre-
sentations of extracted features obtained by self-learning. 
On  the other hand, the DL-based methods take original 
vibration signals as input. The implementation details of 
DL models can be found in  [33], and those of ML mod-
els are set to default values recommended in the machine 
learning libraries Pycaret and Sci-kit learn. The com-
parison results are presented in detail in Table  6. It  can 
be seen that the DL-based method can provide relatively 
good SHM results without using any signal preprocessing; 
however, their models and computational complexities 
are significantly higher than feature-based methods, e.g., 
the training time of the LSTM method is nearly 9  times 
higher than that of the Decision Tree classifier (36.9 min 
vs. 4.3 min). The mFF-SHM model has the best balance 
between the performance and the computational time, as it 
achieves higher F1-score and accuracy than ML-based 
methods, with less total CPU time than DL-based meth-
ods. It is noted that the total time already includes all time 
required for feature extraction, self-learning, and training 
time of the classifier head.

One of the initial motivations for the incorporation 
of self-learning into SHM applications is to improve the 
robustness against unfavorable random noise and missing 
data. To demonstrate this intuition, a robustness study is 
carried out in which the testing dataset is contaminated by 
different noise levels. The noise level is characterized by 
a Noise-to-signal ratio (NSR), being a ratio between the 
noise amplitude and the root mean square value of origi-
nal clean signals. On the other aspect, to simulate missing 
data, a random part of the vibration signal will be zeroed 
out. The degree of missing data is characterized by the 
ratio between the number of values being zeroed out with 
the signal length. After that, the mFF-SHM model and 
an Adaboost-classifier model without SSL will be tested 
with contaminated data. The robustness study results are 
demonstrated in Figs.  15(a) and  (b), showing the evolu-
tion curves of F1-score against different of NSR and miss-
ing ratio values. In the figures, the solid and dashed lines 
denote results obtained by the models with and without 
SSL, respectively. To obtain these results, one repeated the 

Fig. 13 SHM results for the experimental frame structure obtained by 
the mFF-SHM method

Fig. 14 Feature importance results for the experimental frame structure
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calculations 100 times and reported the mean and standard 
deviation values. It can be seen that SSL clearly improves 
the robustness of the SHM applications, as the gap between 
the two lines is noticeable. Specifically, SSL helps main-
tain the F1-score over 90% for NSR and missing ratio ≤ 0.1. 
The effect of SSL is even more obvious for incomplete 
data, where, without SSL, the F1-score quickly reduces to 
about 60% for a missing ratio of 0.1. Besides the discrim-
inative capability of triplet loss, the authors postulate that 
graph learning is also an important factor for robustness 
improvement. If a sensor signal is contaminated, adverse 
effects can be mitigated by information from its neighbor-
ing sensors via appropriate aggregation operations.

5 Conclusions
In this study, one has developed a novel multi-modal 
data-fusion framework for structural health monitoring 
able to accurately assess the actual structural operational 
state using only-vibration signals. The main idea of the 

proposed approach is to extract features from multiple 
domains, including statistical, temporal, spectral, and spa-
tial domains. Moreover, the interactions between features 
are also learned via self-supervised learning with a triplet 
loss function to synthesize latent data representation that 
better describes the structures' states. After that, the adap-
tive boosting machine learning algorithm is leveraged to 
perform SHM tasks using learned data representations. 

The credibility and applicability of the mFF-SHM 
method are consistently demonstrated through two exam-
ples with both numerical and experimental databases. 
The results show that the mFF-SHM method consistently 
provides SHM results with higher accuracy than various 
ML/DL-based counterparts while requiring less CPU time 
than DL models. Moreover, feature extraction reduces 
the size of a lengthy vibration signal to a 47-length vec-
tor, thus significantly alleviating the data storage require-
ment, which is clearly advantageous for continuous SHM 
applications working in cloud computing environments. 

(a) (b)

Table 6 Comparison results between the mFF-SHM framework with ML/DL counterparts for the experimental frame structure

No model Accuracy (%) F1 (%) FE time (min) Self-learning time (min) Training time (min) Total time (min)

1 mFF-SHM 0.98 0.97 2.7 11.6 2.39 16.7

3 1DCCN 0.96 0.94 0 0 23.08 23.1

4 Ada Boost Classifier 0.92 0.91 2.7 0 2.42 5.1

5 LSTM 0.94 0.91 0 0 36.85 36.9

6 Decision Tree Classifier 0.92 0.89 2.7 0 1.56 4.3

7 MLP 0.92 0.89 0 0 23.16 23.2

8 SVM - Linear Kernel 0.81 0.81 2.7 0 1.11 3.8

9 K Neighbors Classifier 0.80 0.78 2.7 0 1.57 4.3

10 Logistic Regression 0.73 0.68 2.7 0 1.96 4.7

11 Naive Bayes 0.72 0.77 2.7 0 1.50 4.2

12 Ridge Classifier 0.65 0.58 2.7 0 1.10 3.8

Fig. 15 Robustness study results for the experimental frame structure; (a) F1 score vs. NSR ratio, (b) F1 score vs. missing ratio
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Moreover, the mFF-SHM framework can still provide reli-
able monitoring results with noisy data/data with missing 
values. Specifically, it yields results with more than 90% 
accuracy for NSR/missing ratio going up to 10%. The fea-
ture importance was also performed, pointing out that there 
is no optimal set of features applicable for all SHM prob-
lems, i.e., a feature which is damage-sensitive for a specific 
structure may be less informative for others; thus, multi-
modal feature-fusion is an appealing intuition for improv-
ing the generality and capability of SHM applications.

In the next step of the study, it is desirable to extend the 
proposed method to an end-to-end online framework that 
continuously receives data from measurement devices, 

extracts and stores meaningful features in cloud storage, 
and provides SHM results in a near-real-time fashion via 
an interactive web application. Another exciting research 
direction is to improve the robustness of mFF-SHM when 
working with incomplete data by leveraging advanced 
imputation techniques such as generative adversarial or 
diffusion models. These models first fill in missing values 
and then use imputed data to assess corresponding struc-
tures' states.

Acknowledgement
This research is supported by Hanoi University of Civil 
Engineering (HUCE), Vietnam.

References
[1]	 Gui, G., Pan, H., Lin, Z., Li, Y., Yuan, Z. "Data-driven support 

vector machine with optimization techniques for structural 
health monitoring and damage detection", KSCE Journal of Civil 
Engineering, 21(2), pp. 523–534, 2017. 

	 https://doi.org/10.1007/s12205-017-1518-5
[2]	 Mathew, J., Alfredson, R. J. "The Condition Monitoring of Rolling 

Element Bearings Using Vibration Analysis", Journal of Vibration, 
Acoustics, Stress, and Reliability in Design, 106, pp. 447–453, 1984. 

	 https://doi.org/10.1115/1.3269216
[3]	 Yanez-Borjas, J. J., Machorro-Lopez, J. M., Camarena-Martinez, 

D., Valtierra-Rodriguez, M., Amezquita-Sanchez, J. P., Carrion-
Viramontes, F. J., Quintana-Rodriguez, J. A. "A new damage index 
based on statistical features, PCA, and Mahalanobis distance 
for detecting and locating cables loss in a cable-stayed bridge", 
International Journal of Structural Stability and Dynamics, 21(09), 
2150127, 2021. 

	 https://doi.org/10.1142/S0219455421501273
[4]	 Hu, C., Albertani, R. "Wind turbine event detection by support 

vector machine", Wind Energy, 24(7), pp.672–685, 2021. 
	 https://doi.org/10.1002/we.2596
[5]	 Figueiredo, E., Figueiras, J., Park, G., Farrar, C. R., Worden, K. 

"Influence of the autoregressive model order on damage detection", 
Computer‐Aided Civil and Infrastructure Engineering, 26(3), pp. 
225–238, 2011.

	 https://doi.org/10.1111/j.1467-8667.2010.00685.x
[6]	 Carden, E. P., Brownjohn, J. M. W. "ARMA modelled time-series 

classification for structural health monitoring of civil infrastruc-
ture", Mechanical Systems and Signal Processing, 22(2), pp. 295–
314, 2008. 

	 https://doi.org/10.1016/j.ymssp.2007.07.003
[7]	 Zheng, H., Mita, A. "Damage indicator defined as the distance 

between ARMA models for structural health monitoring", Structural 
Control and Health Monitoring, 15(7), pp. 992–1005, 2008. 

	 https://doi.org/10.1002/stc.235
[8]	 Pehlivan, H., Aydin, Ö., Gülal, E., Bilgili, E. "Determining the 

behaviour of high-rise structures with geodetic hybrid sensors", 
Geomatics, Natural Hazards and Risk, 6(8), pp. 702–717, 2015. 

	 https://doi.org/10.1080/19475705.2013.854280

[9]	 Gordan, M., Ismail, Z., Razak, H. A., Ibrahim, Z. "Vibration-
based structural damage identification using data mining", In: 
24th International Congress on Sound and Vibration (ICSV24), 
London, UK, 2017, pp. 6494–6501. ISBN 978-1-5108-4585-5

	 http://doi.org/10.13140/RG.2.2.35401.03686
[10]	 Pedram, M., Esfandiari, A., Khedmati, M. R. "Damage detection 

by a FE model updating method using power spectral density: 
Numerical and experimental investigation", Journal of Sound and 
Vibration, 397, pp. 51–76, 2017. 

	 https://doi.org/10.1016/j.jsv.2017.02.052
[11]	 Dang, H. V., Tran-Ngoc, H., Nguyen, T. V., Bui-Tien, T., De Roeck, 

G., Nguyen, H. X. "Data-driven structural health monitoring using 
feature fusion and hybrid deep learning", IEEE Transactions on 
Automation Science and Engineering, 18(4), pp. 2087–2103, 2021. 

	 https://doi.org/10.1109/TASE.2020.3034401
[12]	 Kankanamge, Y., Hu, Y., Shao, X. "Application of wavelet trans-

form in structural health monitoring", Earthquake Engineering 
and Engineering Vibration, 19(2), pp. 515–532, 2020. 

	 https://doi.org/10.1007/s11803-020-0576-8
[13]	 Kaveh, A., Hosseini, S. M., Akbari, H. "Efficiency of plasma gen-

eration optimization for structural damage identification of skele-
tal structures based on a hybrid cost function", Iranian Journal of 
Science and Technology, Transactions of Civil Engineering, 45, 
pp. 2069–2090, 2021. 

	 https://doi.org/10.1007/s40996-020-00504-8
[14]	 Kaveh, A., Mahdavi, V. R. "Damage identification of truss struc-

tures using CBO and ECBO algorithms", Asian Journal of Civil 
Engineering, 17(1), pp. 75–89, 2016. [online] Available at: https://
magiran.com/p1437666

[15]	 Kaveh, A., Zolghadr, A. "An improved CSS for damage detection 
of truss structures using changes in natural frequencies and mode 
shapes", Advances in Engineering Software, 80, pp. 93–100, 2015. 

	 https://doi.org/10.1016/j.advengsoft.2014.09.010
[16]	 Kaveh, A., Javadi, S. M., Maniat, M. "Damage assessment via 

modal data with a mixed particle swarm strategy, ray optimizer, 
and harmony search", Asian Journal of Civil Engineering, 15(1), 
pp. 95–106, 2014. 

	 https://www.sid.ir/fileserver/je/103820140107

https://doi.org/10.1007/s12205-017-1518-5
https://doi.org/10.1115/1.3269216
https://doi.org/10.1142/S0219455421501273
https://doi.org/10.1002/we.2596 
https://doi.org/10.1111/j.1467-8667.2010.00685.x 
https://doi.org/10.1016/j.ymssp.2007.07.003 
https://doi.org/10.1002/stc.235 
https://doi.org/10.1080/19475705.2013.854280
http://doi.org/10.13140/RG.2.2.35401.03686
https://doi.org/10.1016/j.jsv.2017.02.052
https://doi.org/10.1109/TASE.2020.3034401
https://doi.org/10.1007/s11803-020-0576-8
https://doi.org/10.1007/s40996-020-00504-8
https://doi.org/10.1016/j.advengsoft.2014.09.010 
https://www.sid.ir/fileserver/je/103820140107


430|Dang and Nguyen
Period. Polytech. Civ. Eng., 67(2), pp. 416–430, 2023

[17]	 Kaveh, A., Zolghadr, A. "Cyclical parthenogenesis algorithm for 
guided modal strain energy based structural damage detection", 
Applied Soft Computing, 57, pp. 250–264, 2017. 

	 https://doi.org/10.1016/j.asoc.2017.04.010
[18]	 Van den Branden, B., Peeters, B., De Roeck, G. "Introduction to 

MACEC v2. 0: Modal analysis on civil engineering construc-
tions", User Guide and Case Studies, Katholieke Universiteit 
Leuven, Leuven, Belgium, 1999.

[19]	 Kaveh, A., Dadras Eslamlou, A. "An efficient two‐stage method 
for optimal sensor placement using graph‐theoretical partition-
ing and evolutionary algorithms", Structural Control and Health 
Monitoring, 26(4), e2325, 2019. 

	 https://doi.org/10.1002/stc.2325 
[20]	 Kaveh, A., Dadras Eslamlou, A., Rahmani, P., Amirsoleimani, 

P. "Optimal sensor placement in large‐scale dome trusses via Q‐
learning‐based water strider algorithm", Structural Control and 
Health Monitoring, 29(7), e2949, 2022. 

	 https://doi.org/10.1002/stc.2949
[21]	 Barandas, M., Folgado, D., Fernandes, L., Santos, S., Abreu, M., 

Bota, P., Liu, H., Schultz, T., Gamboa, H. "TSFEL: Time series 
feature extraction library", SoftwareX, 11, 100456, 2020. 

	 https://doi.org/10.1016/j.softx.2020.100456
[22]	 Löning, M., Bagnall, A., Ganesh, S., Kazakov, V., Lines, J., Király, 

F. J. "sktime: A unified interface for machine learning with time 
series", [preprint] arXiv:1909.07872, 17 Sep. 2019.

	 https://doi.org/10.48550/arXiv.1909.07872
[23]	 Christ, M., Braun, N., Neuffer, J., Kempa-Liehr, A. W. "Time series 

feature extraction on basis of scalable hypothesis tests (tsfresh – a 
python package)", Neurocomputing, 307, pp. 72–77, 2018. 

	 https://doi.org/10.1016/j.neucom.2018.03.067
[24]	 Kipf, T. N., Welling, M. "Semi-supervised classification with 

graph convolutional networks", In: International Conference on 
Learning Representations (ICLR 2017), Toulon, France, arX-
iv:1609.02907v4, 22 Feb. 2017. 

	 https://doi.org/10.48550/arXiv.1609.02907

[25]	 Schroff, F., Kalenichenko, D., Philbin, J. "FaceNet: A unified 
embedding for face recognition and clustering", In: Proceedings of 
the IEEE Conference on Computer Vision and Pattern Recognition, 
Boston, MA, USA, 2015, pp. 815–823. ISBN 978-1-4673-6963-3

	 https://doi.org/10.1109/CVPR.2015.7298682
[26]	 Fey, M., Lenssen, J. E. "Fast graph representation learning with 

PyTorch Geometric", In: International Conference on Learning 
Representations (ICLR 2019), New Orleans, LA, USA, arXiv pre-
print arXiv:1903.02428, 25 Apr. 2019. 

	 https://doi.org/10.48550/arXiv.1903.02428
[27]	 Ali, M., Moreno, P. "PyCaret: An open source, low-code machine 

learning library in Python", [online] Available at: https://www.
pycaret.org

[28]	 Hastie, T., Rosset, S., Zhu, J., Zou, H. "Multi-class AdaBoost", 
Statistics and its Interface, 2, p. 349–360, 2009. 

	 https://doi.org/10.4310/SII.2009.v2.n3.a8
[29]	 Kaveh, A., Moez, H. "Minimal cycle bases for analysis of frames 

with semi-rigid joints", Computers & structures, 86(6), pp. 503–
510, 2008. 

	 https://doi.org/10.1016/j.compstruc.2007.05.024
[30]	 Kaveh, A., Shahryari, L. "Eigenfrequencies of symmetric pla-

nar frames with semi-rigid joints using weighted graphs", Finite 
Elements in Analysis and Design, 43(15), pp. 1135–1154, 2007. 

	 https://doi.org/10.1016/j.finel.2007.08.001
[31]	 McKenna, F. "OpenSees: a framework for earthquake engineer-

ing simulation", Computing in Science & Engineering, 13(4), pp. 
58–66, 2011. 

	 https://doi.org/10.1109/MCSE.2011.66
[32]	 Los Alamos National Laboratory, [online] Available at: https://

www.lanl.gov/
[33]	 Dang, H. V., Raza, M., Nguyen, T. V., Bui-Tien, T., Nguyen, H. 

X. "Deep learning-based detection of structural damage using 
time-series data", Structure and Infrastructure Engineering, 
17(11), pp. 1474–1493, 2021. 

	 https://doi.org/10.1080/15732479.2020.1815225

https://doi.org/10.1016/j.asoc.2017.04.010 
https://doi.org/10.1002/stc.2325
https://doi.org/10.1002/stc.2949 
https://doi.org/10.1016/j.softx.2020.100456
https://doi.org/10.48550/arXiv.1909.07872 
https://doi.org/10.1016/j.neucom.2018.03.067 
https://doi.org/10.48550/arXiv.1609.02907 
https://doi.org/10.1109/CVPR.2015.7298682 
https://doi.org/10.48550/arXiv.1903.02428
https://www.pycaret.org
https://www.pycaret.org
https://doi.org/10.4310/SII.2009.v2.n3.a8 
https://doi.org/10.1016/j.compstruc.2007.05.024
https://doi.org/10.1016/j.finel.2007.08.001 
https://doi.org/10.1109/MCSE.2011.66
https://www.lanl.gov/
https://www.lanl.gov/
https://doi.org/10.1080/15732479.2020.1815225

	1 Introduction
	2 Research significance 
	3 Multi-modal feature fusion structural health monitoring framework 
	3.1 Vibration signal feature extraction 
	3.2 Graph convolution network  
	3.3 Self-supervised learning using triplet loss 
	3.4 Adaptive boosting machine learning algorithm

	4 Case studies 
	4.1 Case study 1: Numerical 2D semi-rigid structure 
	4.2 Case study 2: Experimental 3D frame structure  

	5 Conclusions 

