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Abstract

One of the most important steps in the design of new pave-

ments and overlays is the selection of an accurate input value for

the subgrade resilient modulus (Mr). This paper evaluates the

use of regression analysis and artificial neural networks (ANN)

to develop models that can be used to accurately predict the sub-

grade Mr design input value using Falling Weight Deflectome-

ter (FWD) test results. The results of the regression analyses

conducted in this paper indicated that the use of linear elastic

analysis for backcalculation of the FWD modulus yielded better

prediction of laboratory measured resilient modulus compared

to using the AASHTO or Florida Equations. In addition, the ac-

curacy of Mr prediction was significantly enhanced when ANN

based models were used. For models that were based on FWD

modulus backcalculated using different software programs, the

ANN improvement was only noticed when the model included

soil physical properties. Finally, the results of this paper in-

dicated that when using the FWD modulus backcalculated us-

ing the AASHTO or Florida equation to predict Mr design input

value, it’s recommended to use the ANN model with variables

selected using stepwise selection analysis.
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1 Introduction

The resilient modulus (Mr) is a property that describes the

non-linear stress-strain behavior of various soil materials un-

der repeated traffic loading. Different pavement design proce-

dures, including the AASHTO 1993 guide for design of pave-

ment structures and the mechanistic empirical pavement design

guide (MEPGD) [1] have adopted the Mr of subgrade soils as the

main material input parameter property in characterizing pave-

ments for their structural design. Consequently, different state

highway agencies have been focusing their effort on developing

approaches to accurately measure and predict the Mr to ensure

the efficiency and accuracy of their pavement designs.

The Mr should be determined by conducting repeated load

triaxial (RTL) laboratory tests. However, this test requires well-

trained personnel and expensive laboratory equipment. In addi-

tion, it is considered to be relatively time consuming. Therefore,

Mr is estimated using correlations with different in-situ test re-

sults as well as material index properties. The accuracy of the

estimated resilient modulus depends on the precision of the pre-

diction model.

One of the main non-destructive in-situ devices that are com-

monly used to estimate the stiffness properties of subgrade soil

is the Falling Weigh Deflectomter (FWD). The FWD is a trailer-

mounted device, which delivers an impulse load to the pave-

ment. The equipment automatically lifts a weight to a given

height. The weight is dropped onto a 300 mm circular load plate

with a thin rubber pad mounted underneath. A load cell mea-

sures the force or load applied to the pavement under the plate.

While the deflections caused by the impulse load are measured

by sensors placed at different distance from the center of load

plate. Based on the measured load and deflections, the elas-

tic moduli of the tested pavement layers can be backcalculated

using one of the different software programs available, such as

MODULUS, ELMOD and EVERCALC software.

Few models were developed in the past decade to estimate

laboratory measured Mr from FWD backcalculated modulus.

The AASHTO recommends equation (Eq. (1)) to compute the

FWD backcalculated modulus used to predict the resilient mod-

ulus. Furthermore, the AASHTO suggests multiplying the FWD
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backcalculated modulus by an adjustment factor not exceeding

0.33 to determine the Mr value used for the design of overlays.

Choubane and McNamara [2] suggested that the pavement de-

flections measured 36 inches away from the load are appropriate

for the determination of the subgrade moduli. Based on 300 field

FWD tests conducted within the state of Florida, Choubane and

McNamara (2000) proposed equation (Eq. (2)) to backcalculate

the FWD moduli used to estimate the resilient modulus of sub-

grade soils. It is noted that this equation will be referred to as

the Florida equation in this paper.

EFWD =

(
0.24P

drr

)
(1)

EFWD = 0.03764

(
P

d36

)0.898

(2)

Where:

EFWD FWD backcalculated subgrade modulus (psi)

P Applied load (lb)

dr Pavement deflection at radial distance r (inch)

d36 Deflection measured at radial distance of 36 inches

Malla and Joshi [3] also conducted a study to correlate the

laboratory measured Mr values and the FWD backcalculated

modulus based on the LTPP database. The FWD modulus was

backcalculated using MODCOMP 4.2 software. Researchers

noted that the backcalculated modulus values were higher than

the laboratory resilient modulus values conducted at the same

test site. However, no definite relationship exists between the

two values, which were attributed to the difference in years of

FWD testing and laboratory specimen sampling and testing.

Due to the limitation of the regression analyses, there has

been a growing interest during the past decade in the use of new

class of computational intelligence systems, known as artificial

neural networks (ANN), in pavement design and geotechnical

field. An example of that is the adoption and successful use of

ANN modeling techniques in the MEPDG (NCHRP 2004). In

recent years, ANN algorithms have also gained recognition for

rapid and accurate predictions of some of the pavement layer

parameters. Brendenhann and van de Ven [4] used backprop-

agation neural networks to estimate elastic moduli of a flexi-

ble pavement layer. Ceylan et al. [5–7] developed approaches

for predicting HMA dynamic modulus, |E*|, using the ANN

methodology based on the input parameters of the Witczak |E*|

model. Bayrak et al. [8] used their ANNs to evaluate the re-

silient moduli of Iowa flexible pavement materials. Hashash et.

al. [9] developed an ANN model which can learn and predict

soil stress-strain behaviors from finite element data sets. Kisgy-

orgy and Rilett [10] used Modular Neural Networks to forecast

multiple periods of traffic engineering features, such as speed,

occupancy and volume, and then determine the expected travel

times based on these predicted values, using currently applied

methods.

Tarawneh [11] developed ANN model to predicted pipe pile

setup, from field data, and discussed the choice of inputs and in-

ternal network parameters to obtain the optimum ANN model.

The developed ANN model satisfactory predicted pipe pile setup

and significantly outperformed some examined empirical for-

mulas.

Tarawneh and Imam [12] developed ANN and multiple linear

regression models to predicted pile setup for three pile types

(pipe, concrete, and H-pile) using 169 dynamic load tests. It was

concluded that the ANN model outperforms both the multiple

linear regression model and the examined empirical formulae in

predicting the measured pile setup. Static load test data was also

used to further verify the developed models.

This paper evaluates the use of artificial neural network to im-

prove the accuracy of the prediction of subgrade Mr from FWD

test results.

2 Data collection and analysis

The results of Mr tests that were conducted on various types

of subgrade soils from different pavement sections within the

Louisiana State were collected from previous studies [13]. The

test data were reviewed and evaluated to identify any inconsis-

tencies. Tab. 1 presents the ranges of properties of subgrade soils

included in this study. For each of the Mr test results collected,

the average value of the resilient modulus for the last ten cy-

cles of each stress sequence was first calculated; the Mr data of

each test were fit to the generalized Mr constitutive model shown

in Eq. (3) to determine the k1−3 coefficients. The obtained pa-

rameters were then used to compute the resilient modulus at a

deviator stress of 6 psi and a confining pressure of 2 psi, which

is an estimate of the state of stress encountered in the subgrade

layer under traffic loading that was reported in previous stud-

ies (NCHRP 2004). The computed value was used as the field

representative values of Mr.

Mr

Pa

= k1

(
θ

Pa

)k2
(
τoct

Pa

+ 1

)k3

(3)

where Mr is the resilient modulus, θ is the bulk stress, τoct is

octahedral shear stress, Pa is a normalizing stress equals to at-

mospheric stress (Pa = 101.4 kPa), and k1, k2, k3 are coefficients

of the tested material.

3 Development of regression models to predict re-

silient modulus

A comprehensive statistical analysis was conducted to de-

velop regression models that better predict the resilient modu-

lus of subgrade soils from their index properties. A stepwise

linear regression analysis was initially performed to identify the

important independent variables (physical properties) that affect

the prediction of the resilient modulus.

A Stepwise Iteration (SI) procedure was used where the ter-

mination of the independent variables elimination process is
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Tab. 1. Summary of Variables Investigated in this Study

Property Range of A-4 soils
Range for A-6

soils

Range for A-7-5

soils

Range for A-7-6

soils

Lab. Mr (ksi) 6-8 2-14 2-14 1-11

PI (%) <6 11-23 27-61 15-66

γd (pcf) 100-107 94-115 77-103 62-112

γd max (pcf) 101.3 105-119 76-115 94.2-107.3

W (%) 21-25 9-29 21-37 18-65

LL (%) 28 27-40 46-98 41-93

Sand (%) 7 11-35 4-28 2-32

Silt (%) 70 30-72 9-62 14-58

Clay (%) 23 8-32 27-86 32-84

Passing sieve #200

(%)
93 65-89 72-96 68-98

based on the t-test and F-test outcomes. The stepwise regres-

sion analysis combines the forward and backward stepwise re-

gression methods. It fits all possible simple linear models and

chooses the best one with largest F-test statistic value. The sig-

nificance of each variable included is rechecked at each step

along the way and removed if it falls below the significance

threshold. The process is completed when no more variables

outside the model have the significance level to enter. However,

at each stage of the procedure the deletion of early selected in-

dependent variables is permitted.

The analysis included the following independent variables

and their interactions: Mr which is backcalculated from FWD

using different methods, liquid limit (LL), plasticity index (PI),

% passing sieve No.200, % clay, % silt, optimum moisture con-

tent, maximum dry unit weight, in situ moisture content, and in

situ dry unit weight.

Based on the results of the stepwise iteration procedure, mul-

tiple regression models were developed that predict the Mr

based on the physical properties of tested soils. Tab. 2 sum-

marizes the results of the linear regression analyses. Eleven

(11) models were developed using three backcalculation soft-

ware packages to interpret the FWD data, namely ELMOD

5.1.69, MODULUS 6.0, and EVERCALC 5.0. In addition, the

AASHTO and Florida backcalculation equations were also used

for comparison.

The adequacy of the developed models was assessed in this

study using the coefficient of determination, R2, and the mean

standard square error of estimate (MSE). The R2 represents the

proportion of variation in the dependent variable that is ac-

counted for by the regression model and has values from zero

to one. If it is equal to one, the entire observed points lie on the

suggested least square line, which means a perfect correlation

exists. In addition, the mean standard square error of estimate

measures the accuracy in the predicted values.

The results showed that the coefficient of determination, R2

values for the developed models were between 0.35 and 0.79.

While the adjusted R2 values were between 0.34 and 0.78. Three

models have R2 values equal to or more than 0.77. Five models

have R2 values between 0.5 and 0.7. However, three models

have R2 value less than 0.5.

The regression outcomes showed that Models 1, 2, and 3

which used ELMOD software as backcalculation software to

interpret the FWD have the highest R2 and least MSE values.

Mr ELMOD, γdmax, and Clay (%) were the significant independent

variables in the three models. The resulting and adjusted R2 val-

ues were 0.78, 079, 0.77 and 0.77, 0.78, 0.76, respectively. The

MSE values were 1.35, 1.3, and 1.42 respectively.

Model 5 used the Florida backcalculation equation to interpret

the FWD has a resulting and adjusted R2 values of 0.53 and 0.52,

respectively and MSE value of 2.87 Mr Florida Eq and γdmax were

the significant independent variable in this model.

Model 6 used the AASHTO backcalculation equation to in-

terpret the FWD has a resulting and adjusted R2 values were 0.5

and 0.49, respectively and MSE value of 2.99

Mr AAS HTO Eq was the only significant independent variable in

this model.

Correlations between the predicted resilient modulus from the

regression models and the lab estimated resilient modulus for

models 1,2,3,5 and 6 are presented in Fig. 1 through Fig. 5.

It is noted that soil properties such as clay content (clay (%)),

the dry density (γd), and liquid limit LL (%), was found to be

significant independent variables in several models as shown in

Tab. 2. This indicates that those properties have considerable

impact on the resilient modulus values of tested soils.

Fig. 1. Lab Estimated Mr versus Predicted using Regression Model-1
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Tab. 2. Summary of Developed Regression Models

Un-standardized

Coefficients

Model Variables an

Std.

Error

Standar-

dized

Coeffi-

cient

an

MSE

(mean

square

error)

R2 R2
A justed

Model-1
Constant

(a0)
11.724 2.342

1.35 0.78 0.77ELMOD Mr ELMOD 0.458 0.030 0.968

(7 Sensors, γdmax -0.100 0.021 -0.431

No Seed) Clay (%) -0.040 0.011 -0.308

Model-2
Constant

(a0)
12.559 2.321

1.3 0.79 0.78ELMOD Mr ELMOD 0.447 0.028 0.975

(9 Sensors, γdmax -0.105 0.021 -0.452

No Seed) Clay (%) -0.045 0.011 -0.348

Model-3
Constant

(a0)
12.454 2.417

1.42 0.77 0.76ELMOD Mr ELMOD 0.448 0.030 0.965

(9 Sensors, γdmax -0.105 0.021 -0.449

Seed) Clay (%) -0.045 0.011 -0.348

Model-4
Constant

(a0)
5.325 1.979

2.8 0.54 0.53
EVER- Mr EVERCALC 0.318 0.036 0.809

CALC 5.0 γdmax -0.049 0.021 -0.209

Model-5
Constant

(a0)
4.495 1.984

2.87 0.53 0.52
Florida Mr Florida Eq 0.296 0.034 0.790

Equation γdmax -0.043 0.021 -0.184

Model-6 AASHTO
Constant

(a0)
1.120 0.514

2.99 0.5 0.49

Equation Mr AAS HTO Eq 0.303 0.036 0.708

Model-7
Constant

(a0)
10.703 2.900

2.07 0.67MODULUS 6.0 Mr Modulus 6 0.458 0.040 0.888

Cal = 2. γdmax -0.086 0.026 -0.368 0.65

(9 Sensors) Clay (%) -0.033 0.13 -0.253

Model-8 MODULUS 6.0
Constant

(a0)
0.525 0.562

2.89 0.52 0.51

Semi Inf. (7 Sensors) Mr Modulus 6 0.292 0.033 0.720

Model-9 MODULUS 6.0
Constant

(a0)
1.308 0.664

3.92 0.35 0.34

E4 = 100 (7 Sensors) Mr Modulus 6 0.376 0.061 0.588

Model-10 MODULUS 6.0
Constant

(a0)
0.852 0.643

3.53 0.41 0.4

E4 = 5 (7 Sensors) Mr Modulus 6 0.372 0.053 0.642

Model-11 MODULUS 6.0
Constant

(a0)
0.739 0.632

3.4 0.43 0.42

E4 = 3 (7 Sensors) Mr Modulus 6 0.355 0.048 0.658
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Fig. 2. Lab Estimated Mr versus Predicted using Regression Model-2

Fig. 3. Lab Estimated Mr versus Predicted using Regression Model-3

Fig. 4. Lab Estimated Mr versus Predicted using Regression Model-5

(Florida Equation)

4 Artificial neural network

Over the past two decades, artificial neural networks (ANN)

have emerged as powerful and versatile computational tools for

organizing and correlating information in ways that have proved

useful for solving certain types of problems that are difficult to

tackle using traditional numerical and statistical methods [14].

ANNs consists of a group of artificial neurons that are in-

terconnected in a way similar to the architecture of the human

brain. This computational technique has the ability to recog-

nize, capture and map features known as patterns contained in

a set of data mainly due to the high interconnections of neurons

that process information in parallel [14]. A network that has

learned the patterns defining the relationship between the input

Fig. 5. Lab Estimated Mr versus Predicted using Regression Model-6

(AASHTO Equation)

and output of a certain test or process can later be used to predict

new conditions for which the output are not known. An ANN

system consists of three or more layers. The first layer has the

input neurons (parameters) while the last layer contains the out-

put. In addition, one or more layers can be between the input

and output layers, which are known as the hidden layers. Those

layers form the network’s means of delineating and learning the

patterns governing the data that the network is presented with.

There are many ways a neural network can be trained. The

backpropagation technique, which was developed by Rumelhart

et. al [15], is the most popular process and has been used in

many fields of science and engineering. With this method, the

weights of the network are adjusted during the training phase

to minimize the error. In each iteration, the error propagates

backward to minimize the error to a desired level.

4.1 Development of artificial neural networks models to

predict resilient modulus

Backpropagation neural network algorithms were adopted in

this study to develop ANN models that can accurately predict

the resilient modulus. 70% of the data points were selected ran-

domly for training, 15% were selected for cross validation, and

15% were used for testing the network. The training data points

were used to train the network and compute the weights of the

inputs. The test data points were used to measure the perfor-

mance of the selected ANN model. The cross validation com-

putes the error in a test set at the same time that the network is

being trained with the training set. Several network structures

with different number of nodes in the hidden layer were trained

and tested. This strategy was chosen to find the best performing

network architecture among different models.

Neuro-Solutions 6.0 software was used in creating the neu-

ral network models. This software combines a modular design

interface with advanced learning procedures, giving the power

and flexibility needed to design the neural network that produces

the best solution. Multilayer perceptron (MLP) with one hid-

den layer and hyperbolic tangent (tanh) as a transfer function

was used in creating the neural networks. The hidden layer has

four processing elements. The (tanh) transfer function was used
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for both the hidden and the output layers. Levenberg rule was

selected as the training rule. Based on running several neural

network models using Neuro-Solutions 6.0 software, the best

performing neural network models were chosen.

Two approaches were used to develop ANN models to predict

the resilient modulus:

1 ANN models were developed using all independent variables,

namely: Mr which is backcalculated from FWD using differ-

ent methods, liquid limit (LL), plasticity index (PI), % passing

sieve No.200, % clay, % silt, optimum moisture content, max-

imum dry unit weight, in situ moisture content, and in situ dry

unit weight. All these variables were used as model predic-

tors for Mr. A total of twelve ANN models were developed.

These models were called all variables models (AVM)

2 ANN models were developed using the same variables that

were used in the aforementioned regression models presented

in Tab. 2. These variables were selected in the development

of ANN models for predicting Mr. A total of twelve ANN

models were developed. These models were called selected

variables models (SVM). This approach was used to compare

the regression result to the ANNs results.

The proceeding sections provide a description of results of

analyses conducted using each of those approaches.

4.1.1 All variables models (AVM):

All variables listed in Tab. 1 were used as model predictors

(independent variables) except the lab Mr which was used as a

model desired (dependant variable). Tab. 3 shows a summary of

the results for the developed ANN models. The table provides

the mean square error (MSE) for the training, cross validation

and testing data. It also provides the R2 for the testing data.

As shown in Fig. 6, the chosen neural network model con-

sisted of an input layer with 10 input variables, one hidden layer

with 4 neurons, and an output layer with 1 output variable pre-

diction.

The results showed that the coefficient of determination, R2

values for the developed AVM were between 0.23 and 0.87. Two

models have R2 values equal to higher than 0.85. Five models

have R2 values between 0.6 and 0.78. However, four models

have R2 value less than 0.5.

The ANNs for the AVM outcomes showed that Models 1, 2,

and 3 which used ELMOD software for the backcalculation of

the FWD modulus, had the highest R2 values and lowest MSE

values. Furthermore, the best model was Model 3 that used the

FWD modulus backcalculated using ELMOD software using 9

sensors with seed values.

Models 7, 9, and 11 had the lowest R2 values and highest MSE

values; thus those models have the least accuracy in the predic-

tion of the Mr design values. It is noted that in those models, the

FWD modulus backcalculated using MODULUS 6.0 software

was used. Furthermore, the regression analysis had showed sim-

ilar results. The results in Tab. 3 also indicate that the prediction

of Mr using the ANN model that was based on using AASHTO

backcalculation equation was significantly enhanced and the R2

increased to 0.6

Fig. 7 thru Fig. 9 illustrate correlations between desired out-

put (lab estimated resilient modulus) and networks predicted

output for AVM 3, 6 and 1 respectively. Each figure shows train-

ing, cross validation, and testing data.

4.1.2 Selected variables models (SVM)

ANN models were developed using the same variables that

were used in the aforementioned regression models presented

in Tab. 2. These variables were selected in the development of

ANN models for predicting Mr. A total of eleven ANN models

were developed. These models were called selected variables

models (SVM). This approach was used to compare the regres-

sion result to the ANNs results. Fig. 10 presents typical structure

of neural network selected variables models (SVM). As shown

in figure, the chosen neural network model consisted of an input

layer with 3 input variables, one hidden layer with 4 neurons,

and an output layer with 1 output variable prediction.

Tab. 4 presents a summary of the results for the developed

ANN models. The table provides the MSE for the training, cross

validation and testing data. It also provides the R2 for the testing

data.

When comparing to regression models, it’s clear that the high-

est improvement is shown in model 5. In this model, the network

inputs were Mr Florida Equation and γdmax, The ANNs increased the

adjusted R2 from 0.52 to 0.72 and reduced the MSE from 2.87 to

1.51 for the testing data. While in model 4, network inputs were

Mr Evercalc and γdmax, ANNs enhanced the adjusted R2 value by

0.12 (from 0. 54 to 0.66). In model 6, Mr AAS HTO was the only

input for the network; ANNs improved the adjusted R2 value by

0.13 (from 0. 49 to 0.62) for this model.

Mr ELMOD, γdmax, Clay (%) were the network inputs for mod-

els 1, 2 and 3. ANNs enhanced the adjusted R2 by 0.04 (from

0.77 to 0.81) for model 1, by 0.11 (from 0.78 to 0.89) for model

2, and by 0.1 (from 0.76 to 0.86) for model 3.

AANs enhanced the adjusted R2 value by 0.05 for model 1

(from 0.4 to 0.45). ANNs didn’t enhance the adjusted R2 values

for Models 8, 9, and 11 for those models the R2 values resulting

from ANNs were less than the one resulting from regression.

Generally, ANNs improved eight of the eleven regression

models by increasing the R2 values and reducing the mean

square error (MSE). The analysis showed that when the net-

work has only one input there will be no improvement to the

adjusted R2 value and regression model is recommended to be

used. However, the only exceptional case was model 6 which

used the Mr AAS HTO as the only input to the network.

Fig. 11 and Fig. 12 illustrate correlations between desired

output (lab estimated resilient modulus) and networks predicted

output for SVM 2 and 6 respectively. Each figure shows train-

ing, cross validation, and testing data. R2 value and a linear

regression line are provided for the testing data.
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Fig. 6. Three-Layer Neural Network Representing AVM

Fig. 7. Lab Estimated Mr versus Predicted using ANN AVM-3

Fig. 8. Lab Estimated Mr versus Predicted using ANN AVM-6 (AASHTO Equation)
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Tab. 3. Summary of ANN for All Variables Models (AVM)

AVM Model Network Inputs
Training

Cross

Validation
Testing

MSE MSE MSE R2

1

Mr ELMOD, (7

Sensors, No

Seed) and all

independent

variables*

0.002 0.008 1.088 0.87

2

Mr ELMOD, (9

Sensors, No

Seed) and all

independent

variables*

0.0015 1.386 4.122 0.78

3

Mr ELMOD, (9

Sensors, Seed)

and all

independent

variables*

0.00007 0.039 1.88 0.85

4

Mr EVERCALC ,

and all

independent

variables*

0.0029 0.046 1.636 0.62

5

Mr Florida Eq.,

and all

independent

variables*

0.0024 1.0198 4.417 0.41

6

Mr AAS HTO Eq.,

and all

independent

variables*

0.0007 0.0614 1.386 0.6

7

Mr Modulus,

(Cal = 2, 9

Sensors) and

all independent

variables*

0.0005 0.0832 3.082 0.26

8

Mr Modulus,

(Semi Inf. 7

Sensors) and

all independent

variables*

0.003 0.146 1.356 0.7

9

Mr Modulus,

(E4 = 100, 7

Sensors) and

all independent

variables*

0.0008 0.205 2.47 0.24

10

Mr Modulus,

(E4 = 5 7

Sensors) and

all independent

variables*

0.0018 0.272 1.757 0.72

11

Mr Modulus

(E4 = 3, 7

Sensors) and

all independent

variables*

0.0025 0.0031 11.442 0.23

* All variables listed in Tab. 1 except Lab Mr
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Fig. 9. Lab Estimated Mr versus Predicted using ANN AVM-10

Fig. 10. Three-Layer Neural Network Representing SVM 1, 2 and 3

Fig. 11. Lab Estimated Mr versus Predicted using ANN SVM-2
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Tab. 4. Summary of ANN for Selected Variables Models (SVM)

ANN Model Network Inputs
Training

Cross

Validation
Testing

MSE MSE MSE R2

1

Mr ELMOD (7

Sensors, No

seed), γd max,

Clay (%)

0.0078 0.0092 0.9175 0.81

2

Mr ELMOD (9

Sensors, No

seed), γd max,

Clay (%)

0.0064 0.0105 1.4405 0.89

3

Mr ELMOD (9

Sensors,

Seed), γd max,

Clay (%)

0.0069 0.0127 1.1672 0.86

4
Mr EVERCALC ,

γd max

0.0076 0.0102 3.5024 0.66

5
Mr Florida Eq.,

γd max

0.0067 0.0205 1.5095 0.72

6 Mr AAS HTO Eq. 0.0296 0.0251 4.2689 0.62

7

Mr Modulus

(Cal=2, 9

Sensors),

γd max Clay (%)

0.005 0.113 1.7257 0.68

8

Mr Modulus

(Semi Inf.,7

Sensors)

0.0219 0.0159 4.9900 0.47

9

Mr Modulus

(E4=100, 7

Sensors)

0.0223 0.0593 3.9878 0.29

10

Mr Modulus

(E4=5, 7

Sensors)

0.0262 0.0955 4.2499 0.45

11

Mr Modulus

(E4=3, 7

Sensors)

0.0252 0.0111 4.2640 0.26

Fig. 12. Lab Estimated Mr versus Predicted using ANN SVM-6 (Florida Equation)
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4.2 Mathematical expression of one of the developed ANN

models

In this section, selected variables model 3 is used as an exam-

ple to show the mathematical expression of the developed ANNs

models. This model consisted of an input layer with three input

variables (Mr ELMOD (9 Sensors, Seed), γd max, and Clay (%)),

one hidden layer with four neurons, and an output layer with

one output variable prediction (lab estimated Mr) as shown in

Fig. 10. Tab. 5, Tab. 6, Tab. 7 and Tab. 8 provide the numerical

values of the ANN amplitude, offset, weights and biases. De-

tailed procedure on ANN calculation procedure can be found in

AlTarawneh 2005 [16].

Tab. 5. Amplitude and Offset for the Input Layer

Number of Nodes 3

Amplitude ain Offset Ofin

0.81 -1.219

0.023 -1.085

0.042 -4.081

Tab. 6. Weight of Inputs to Hidden Layer (winm)* and Bias of hidden node

(bh1, bh2, bh3, and bh4)

wi11 2.076 wi21 2.125 wi31 0.090 bh1 0.249

wi12 -0.896 wi22 -1.444 wi32 0.997 bh2 0.088

wi13 1.561 wi23 1.977 wi33 -0.238 bh3 0.148

wi14 -1.245 wi24 -1.413 wi34 0.034 bh4 0.033

winm represents the weight from input n to hidden node m

Tab. 7. Weights of Hidden layer to Output Layer (wo) and Bias of Output

node (bo)

wo1 3.435

wo2 -2.203

wo3 -5.088

wo4 1.04

bo 0.13

4.3 Comparison between Regression and ANNs models

Tab. 9 provides comparison between R2 values for the ANNs

models, both AVM and SVM, and the regression models. It is

noted that, in general, the use of ANN significantly improved

the accuracy of prediction as indicated by the higher R2 value

It’s clear that model 1, 2, and 3 which used ELMOD software

as backcalculation software

to interpret the FWD have the highest R2 values when using

either linear regression or ANNs. In five models (2, 4, 5, 6,

and 7) R2 values for ANNs SVM were higher than the ones for

the ANNs AVM and the linear regression models. ANNs AVM

have the highest R2 values for models (1, 3, 8, and 1). The linear

regression models have the highest R2 values for model 9 and

11.

Tab. 8. Amplitude and Offset for the Output Layer

Number of Nodes 1

Amplitude ao Offset Ofo

0.148 -1.063

5 Conclusions

This paper presented the results of a study that was conducted

to evaluate the use of regression analysis and ANN to develop

models that can accurately predict the subgrade Mr input value.

Based on the results of this study, the following conclusions can

be drawn:

• Soil properties such as clay (%), γdmax, LL (%), and γd ap-

peared as significant independent variables (model predictors)

to predict Mr in several models as shown in Tab. 2.

• The regression analyses results showed that the use of a lin-

ear elastic software for backcalculation of the FWD modu-

lus yielded better prediction of laboratory measured resilient

modulus compared to using the AASHTO or Florida Equa-

tions. In addition, the models that used FWD modulus back-

calculated using ELMOD 5.1.69 had the highest R2.

• The use of ANNs significantly enhanced accuracy in model

prediction. For FWD backcalculated using linear elastic soft-

ware programs, the ANN improvement was noticed only

when the network has more than one input.

• When using the FWD modulus backcalculated using Florida

equation, it’s recommended to use the ANNs SVM model.

In this model, the network inputs were Mr Florida Equation and

γdmax,

• When using the AASHTO backcalculation equation to inter-

pret the FWD, it’s recommended to use the developed ANN

model 6.
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Tab. 9. Comparison between Linear Regression and ANNs Models

Model

Mr Back- Linear Regression ANNs

Calculation Models SVM* AVM**

Method R2 Adjusted R2 R2

1
ELMOD 5.1.69 (7

Sensors, No seed)
0.77 0.81 0.87

2
ELMOD 5.1.69 (9

Sensors, No seed)
0.78 0.89 0.78

3
ELMOD 5.1.69 (9

Sensors, Seed)
0.76 0.86 0.85

4 EVERCALC 5.0 0.54 0.66 0.62

5 Florida Equation 0.52 0.72 0.41

6 AASHTO Equation 0.49 0.62 0.6

7
MODULUS 6.0.

Cal = 2. (9 Sensors)
0.65 0.69 0.26

8

MODULUS 6.0.

Semi Inf. (7

Sensors)

0.51 0.47 0.7

9

MODULUS 6.0.

E4 = 100 (7

Sensors)

0.34 0.29 0.24

10
MODULUS 6.0.

E4 = 5 (7 Sensors)
0.4 0.45 0.72

11
MODULUS 6.0.

E4 = 3 (7 Sensors)
0.42 0.26 0.23

*Selected variables model, ** All variables model
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