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Abstract

This paper proposes a novel algorithm to optimize the discrete time-cost trade-off problem (DTCTP) in construction projects. As DTCTP 

is assumed NP-hard, the new metaheuristic models are investigated to contribute for decision-making of project managers. DTCTP 

can be modelled as multi-mode to represent real-life problems more practical. According to the model, the project activities have 

at least two or more durations and cost alternative modes. For solving this problem effectively, a novel optimization metaheuristic 

method named Advanced Jaya Algorithm (A-JA) is proposed, which is generated from Jaya Algorithm (JA). The benchmark function tests 

are applied to verify the model with other well-known metaheuristic methods. The key weakness of the base algorithm JA is that, it has 

unstable solution accuracy and low likelihood of escaping local optimums. According to the results, A-JA considerably improves these 

areas. Two case studies of DTCTP are carried out after verification to demonstrate the effectiveness and efficiency of the proposed 

algorithm in comparison with JA and three well-known methods. The results of A-JA are found to be more powerful than the base 

algorithm JA and the benchmark algorithms. The proposed method achieves the Pareto fronts to help decision makers to make trade-

off between the objectives and choose the optimum solution considering on their preference.
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1 Introduction
The level of competition in the construction industry is 
rising as more businesses enter the market and as already 
existing businesses increase their potential. Construction 
business strives to reduce cost and duration by reducing 
idle machinery and labor time in order to obtain a com-
petitive edge over the rival. For this reason, the compa-
nies and their project managers need remarkable planning 
and arrangement of construction projects. Certainly, cost 
and time are the most significant objectives in planning of 
the projects. These concepts depend on each other intri-
cately. Reducing both project cost and time is highly com-
plex and requires selection of appropriate construction 
method for each project activity. The different application 
methods called modes have different time and cost alter-
natives. Accordingly, the project manager who desires to 
compress the total completion time has to accelerate some 
activities. In the view of conventional practice, the proj-
ect manager reduces project time by hiring more work-
ers, supplying extra resources or investing more efficient 

equipment. Subsequently, these methods raise the direct 
cost of the project as inevitable. Shortening the duration 
and adjusting the constraints of a construction project are 
challenging tasks. Crashing project activity durations is 
an effective method which is used to reduce the overall 
project completion time. The goal of crashing is to achieve 
the largest amount of shortening while incurring the least 
amount of additional cost possible [1]. In the time-cost 
trade-off problem (TCTP), the project's cost and comple-
tion time are traded off. The project managers frequently 
use the TCTP methodology to complete projects on sched-
ule while incurring the fewest additional costs [2].

In the construction projects, the lower cost solution usu-
ally takes longer while the crashed solution usually costs 
higher. In order to balance project completion time and 
overall project cost, TCTP seeks to identify the best possi-
ble combination of activity durations and activity costs [3]. 
The different types of functions can be used to simulate the 
time-cost connection, but the most well-known one is the 
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discrete time-cost trade-off problem (DTCTP), in which 
each project activity can only have one of a set of discrete 
time-cost points. DTCTP is useful for modeling general 
time-cost relationship and is commonly used in practice.

DTCTP makes the assumption that all project activi-
ties can be completed in the various cost and time modes. 
The goal of DTCTP is to choose the method of each activ-
ity that meets the deadline for the least amount of cost. 
Due to the objectives' strong incompatibility, DTCTP is 
an NP-hard (Non-deterministic Polynomial-time hard) 
problem [4]. It should be noted that there is not a sin-
gle best solution to the issue since, when two competing 
objective functions are taken into account, it is impossi-
ble to improve one without degrading the other. The deci-
sion-makers frequently lack sufficient knowledge of how 
these competing purposes behave, making it impossible for 
them to express their preferences for the order in which 
these objectives should be pursued. Therefore, an appro-
priate tactic for avoiding these trade-offs is to produce 
non-dominated solutions on the Pareto front. Since DTCTP 
involves two objectives, when there is no other shorter time 
under a particular budget or no lower cost under a prede-
termined project deadline, the solution is considered to be 
Pareto optimum. The Pareto front is the minimal time-cost 
curve, which spans the range of minimum and maximum 
duration and has a negatively sloped convex cost curve.

The goal of this work is to demonstrate the applica-
bility of an alternate metaheuristic optimization method 
for solving DTCTP, when discrete time-cost combina-
tions are available for a project's activities. This study dif-
fers from earlier research in that it suggests a brand-new, 
enhanced strategy based on the Jaya Algorithm (JA), which 
has not yet been investigated enough in project planning. 
The method is applied using numerical experiments that 
simulate real-world undertakings. Additionally, showing 
the Pareto front allows decision-makers the flexibility to 
choose the best option in light of the project priorities.

The rest of this paper is structured as follows. Section 2 
provides a quick overview of the DTCTP literature that 
has already been published. The details of the JA and A-JA 
algorithms are discussed in Section 3, and the suggested 
model is validated using benchmark analysis. The decision 
variables, the objective function, and problem constraints 
are built upon in Section 4 which is included presentation 
of the problem formulation and notations. The numer-
ical experiments are then investigated. Additionally, the 
results are summarized, and Section 5 compares the effec-
tiveness of the strategy. The report concludes in Section 6, 
which also presents the contributions of the study.

2 Literature review
About six decades ago, the significance of the time-cost 
trade-off was realized along with the emergence of project 
planning methodologies. Kelley and Walker [5] used para-
metric linear programming to offer the original time-cost 
trade-off solution procedures. Primarily, the researchers 
developed the solution procedures that consider trade-offs 
among time and cost with linear functions deterministi-
cally. Since TCTP has formed as discrete in later studies 
such as [6] and [7], the problem became NP-hard type. 
All versions of DTCTP are NP-hard, in the strict sense, as 
demonstrated in [8], which is the most important complex-
ity result of the project planning literature. Therefore, the 
use of heuristic and metaheuristic methods has become 
necessary to solve the problem. In many years DTCTP has 
been extensively studied in the literature. Only a small 
number of research, nevertheless, have focused on employ-
ing multi-objective models to solve the problem [9].

Although different exact approaches are available for 
small size experiments, DTCTP cannot be solved with 
deterministic methods effectively due to the NP-hard 
structure of the problem. As a result, various metaheuris-
tics have been suggested for resolving problems involv-
ing multi-objective optimization. The metaheuristic algo-
rithms work with mathematical imprecision in reaching 
the ideal solution, but they concentrate on finding good 
solutions in a fair amount of calculation time. These meth-
ods are more practical for dealing with real-world prob-
lems than exact procedures, because they allow for fast 
decision-making.

The Nondominated Sorting Genetic Algorithm (NSGA), 
Particle Swarm Optimization (PSO), and hybrid algorithms 
are just a few of the metaheuristic algorithms that have 
been presented for DTCTP over the past ten years. Some 
studies related DTCTP are presented in Table 1 [9–28].

The earlier research mentioned below demonstrated the 
efficiency of the metaheuristic methods on DTCTP. But the 
majority of them, the researchers looked into more hypo-
thetical cases. As a result, the applications for construction 
projects' trade-offs have remained superficial. The practi-
cal applicability of the proposed method to the actual proj-
ects is the most significant contribution of this study.

2.1 Discrete time-cost trade-off problem (DTCTP) model
Regarding DTCTP is NP-hard, metaheuristic models have 
been developed to provide results that can help project 
managers make decisions. DTCTP can be considered as 
a multi-mode problem to represent the challenges more 
accurately faced in practice. The multi-modal modelling 
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Table 1 Previous DTCTP studies

Publication Procedure Key Contributions

Afshar et al. [10] Nondominated Archiving 
Multicolony Ant Algorithm

To assess the effectiveness of the suggested technique, a case study involving 
18-activity was examined. The findings demonstrated that the suggested method 
outperformed well-known weighted method to produce non-dominated solutions 

in a combinatorial optimization problem.

Hazır et al. [11] Robust Optimization Models The models that were created wherein interval uncertainty was taken into account 
for the uncertain cost factors.

Son et al. [12] Hybrid Optimization The two distinct scenarios were mathematically merged using the novel 
formulation technique for solving DTCTP.

Ghoddousi et al. [9] NSGA The impacts of resource levelling on project time and cost were investigated.

Kaveh et al. [13] CBO and CSS Algorithms

The application of Charged System Search (CSS) and Colliding Body 
Optimization (CBO) were introduced to solve well-established scheduling 

problems including DTCTP. The outcomes of the case study showed that CBO 
model obtained better solutions in a faster process compared to the CSS model.

Said and Haouari [14] Two-Stage Solution Strategy The uncertainties of the crashing options were considered in the model.

Aminbakhsh and Sonmez [15] PSO The model was developed to provide an efficient method for the large-scale 
types of DTCTP.

Bettemir and Birgönül [16] Network Analysis Algorithm
The suggested algorithm's capacity to locate the global optimum and its pace 

of convergence were evaluated. According to test results, the algorithm reaches 
optimal or almost optimal answers quite quickly.

He et al. [17] Variable Neighborhood 
Search and Tabu Search

The investigation has significance for project scheduling research due to the 
addition of a new objective as well as practical consequences for contractors to 

adjust their cash flows.

Li et al. [18] Bi-Objective Hybrid Genetic 
Algorithm

The approach produced effective solutions by solving the DTCTP iteratively 
under various deadline constraints.

Leyman et al. [19] Iterated Local Search The model was created with the intention of taking activity progress into account 
when deciding in DTCTP when and how much to pay the contractor.

Albayrak [20] Novel Hybrid Algorithm On the DTCTP application, the method which was created by fusing PSO and GA 
was contrasted with traditional PSO.

Sonmez et al. [21] Activity Uncrashing 
Heuristic

The study looked into a novel heuristic technique that can successfully produce 
solutions for large-scale type of DTCTP.

Panwar and Jha [22] NSGA-III The study offers a different planning approach that helps project managers choose 
the best trade-offs while building a facility.

ElMenshawy and Marzouk [23] NSGA-II The suggested model has the ability to choose the ideal scenario for DTCTP.

Huynh et al. [24] Multiple Objective Social 
Group Optimization

A novel optimization method was suggested and then verified on case studies 
based on two construction projects.

Çakır et al. [25] Exact methods A new explicit integer linear programming model and constraint programming 
model were presented and compared.

Van Eynde and Vanhoucke 
[26] Reduction Tree Method

The exact algorithm was proposed to obtain the complete curve of non-dominated 
time-cost alternatives for the project. The computational experiments show that 

the use of the reduction tree provides significant speedups.

Son and Nguyen Dang [27] Hybrid MultiVerse 
Optimizer Model

The proposed method can accomplish high-quality solutions for medium and 
large-scale DTCTP and can be used to optimize the cost-time problems for real-

life projects.

Yılmaz and Dede [28] Rao Algorithms
Non-dominant sorting based Rao-1 and Rao-2 algorithms were applied to 

multi-objective DTCTP. The findings indicate, this approach can be considered 
a promising alternative to other metaheuristic algorithms.

allows the project manager to exercise greater flexibility in 
project execution by selecting possible compromises. Each 
activity with distinct application modes has varied activ-
ity time and cost options, according to that modelling. The 
DTCTP mathematical model is explained below.

Consider a project with N activities in which project 
activity utility data is represented as discrete points. There 
are mi distinct points in each action i where mi1. Each dis-
crete point represents a distinct method of performing the 
activity. We assume that di and ci are variables to indicate 
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the time and cost of activity i. Also, di1 and ci1 represent 
the normal point, while dimi and cimi correspond to the crash 
point. Normal and crash points overlap for activities with 
just one discrete point, and therefore mi1. Fig. 1 shows the 
attributes of discrete activity in the time-cost relationship.

In order to obtain the best solution, an effective DTCTP 
model is created in this study. The model is developed in 
the binary linear programming that minimizes the total cost 
and duration. Overlapping across the activities is allowed, 
and discrete activity time-cost relationships are taken into 
account. The model includes zero-one (binary) variable con-
straints and logical constraints based on the network. A zero-
one variable (x) is required for every discrete point one per 
activity. In order to guarantee that only one discrete point 
is chosen for each action, binary variables are included. 
Eqs. (1) and (2) allow for the expression of the project's over-
all duration and cost (2). The binary variable xij is a compo-
nent of discrete point j of activity i in the equations. 

Total dur.( ) dd d x d x x d xi i i i i imi imi ij ijj
mi� � � � � � �1 1 2 2 1  (1)

Total cost( )c c x c x c x c xi i i i i imi imi ij ijj
mi� � � � � � �1 1 2 2 1  (2)

3 Method
3.1 Jaya algorithm (JA)
The Jaya Algorithm (JA), which has been suggested by 
Rao [29], is a new optimization algorithm that lack of spe-
cific parameters. Other significant characteristics of JA 
include easy and flexible implementations, as the solutions 
are updated using a single equation, in addition to specific 
parameter-less control. Additionally, it has been shown 
that JA can solve optimization issues that are constrained 
and unconstrained [30]. JA is a simple yet powerful meta-
heuristic optimization algorithm, which has been widely 
used to solve various types of optimization problems [31]. 
The findings demonstrate that JA outperforms other well-
known optimization algorithms, such as GA, PSO, DE, 
ABC, and TLBO [29].

Initial solutions (P) are produced at random in the JA 
while adhering to the top and lower limits of the pro-
cess variables. After that, Eq. (3) is used to stochastically 
update each variable in each solution.

O O O abs O

O

p q r p q r p q p q best p q r

p q p q w

� � � � � �� �
�

1 1

2

, , , , , , , , , ,

, , , ,

�

� oorst p q rabs O� � �� �, ,

 (3)

The value with maximum fitness, or the best value of 
the objective function, is the best solution, and the value 
with minimum fitness is the worst option (i.e., worst value 

of the objective function). The terms best and worst in this 
context refer to the population's best and worst solutions, 
respectively. The indexes for variables, potential solu-
tions, and iterations are p, q, and r. Op,q,r refers to the r-th 
candidate solution's q-th variable in the p-th iteration. αp,q,1 
and αp,q,2 are numbers produced at random between [0, 1]. 
An initial population with an NP number of solutions is 
produced at random at the beginning. The non-dominant 
idea is then used to sort and rank this initial population. 
The best answer is chosen as the one with the highest rank 
(rank = 1). The worst answer is that with the lowest rating. 
The solution with the highest crowding distance is chosen 
as the best answer and if there are multiple solutions with 
the same rank. By doing this, the optimal solution will 
be chosen from the sparse area of the search space. This 
selection strategy is used so that the search process can be 
guided by solutions in less populated areas of the objective 
space. The updated solutions are based on the fundamen-
tal JA equation once the best and worst solutions are deter-
mined. A group of 2P solutions (where P is the size of the 
starting population) is created once all the updated solu-
tions are mixed with the initial population. The crowding 
distance value for each solution is calculated when these 
solutions are ranked again. The suitable solutions are 
selected based on the new ranking and crowding distance 
value. JA's flowchart is shown in Fig. 2.

3.2 Advanced Jaya algorithm (A-JA)
The Jaya Algorithm is a metaheuristic algorithm that is 
both simple and effective in terms of its population-based 
approach. In addition to its simplicity, it does not rely 
on any specific parameters associated with algorithms. 
Although it has these advantages, the JA suffers from some 
shortcomings including unwanted premature convergence 
and the possibility of being trapped in local minima due to 
insufficient population diversity [32]. When the objective 

Fig. 1 Duration and cost relation



810|Albayrak
Period. Polytech. Civ. Eng., 67(3), pp. 806–818, 2023

function converges to a local optimum, the population of 
the basic JA suffers from a loss of variety and early con-
vergence that may take place. Therefore, the population's 
diversity needs to be enhanced in order to overcome the 
shortcomings of the basic JA. An effective optimization 
technique must also strike a balance between exploitation 
and exploration [33]. The former concept refers to a popu-
lation's capacity to arrive at optimal answers as quickly as 
feasible, whilst the latter can be characterized as a search 
algorithm's capacity to explore various areas of a search 
space. While excessive exploration results in a random 
search, excessive exploitation only leads to a local search. 
The adjustment to JA that is suggested below will enhance 
both its global and local search capabilities, which will 
help to solve the difficulties with search, balancing, and 
convergence. The expression is given in Eq. (4).

O O O abs O

O

p q r p q r p q p q best RI p q r

p q p

� � �� � � � �� �
�

1 1

2

, , , , , , , , , ,

, ,

�

� ,, , , , ,q worst p q rabs O� � �� �
 (4)

where RI is a random integer 1 or 2. Using Eq. (5), where 
RI is not a parameter of JA, the value of RI is determined 
arbitrarily with equal probability.

RI round rand� � �� ��� ��1 0 1 1 2( , )  (5)

The algorithm does not receive the value of RI as an 
input, and instead chooses its value at random using 
Eq. (5). It has been found after numerous trials on numer-
ous benchmark functions that the technique works best 
when the value of RI is between 1 and 2. However, it is 
discovered that the algorithm performs significantly bet-
ter if the value of RI is either 1 or 2. As a result, in order 

Fig. 2 Flowchart of JA
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to make the algorithm simpler, it is advised that RI take 
either 1 or 2 based on the rounding up requirement pro-
vided by Eq. (5). Best (1) and best (2) are solution candi-
dates with the lowest and the second values of function 
within the population. These randomized values ensure 
exploration by serving as scaling factors. The abso-
lute value of the variable (instead of a signed value) also 
ensures exploration. The iterations' acceptable function 
values are all saved and utilized as input for the subse-
quent iteration. The solution obtained for a given problem 
in the suggested method moves toward the optimal solu-
tion while avoiding the worst option. The random number 
RI ensures that the search space is thoroughly explored. 
The proposed algorithmic flow is given as follows:
Step 1: Enter the predetermined parameters, such as the pop-

ulation size, the termination criterion, the number of jobs, 
the number of machines that are available, the number of 
operations, and the corresponding processing durations.

Step 2: Produce the initial population and assess the values 
of its objective functions. Decide which candidate solu-
tion has the highest and lowest function value, and then 
designate it as the best (or the worst) option.

Step 3: Determine whether the termination criteria has been 
met; if so, move on to Step 9; otherwise, move on to 
Step 4.

Step 4. Change the responses of the remaining candidates 
(with the best and worst solution using the proposed 
JA updating mechanism to generate new solutions)

Step 5. If the acceptance requirement is not met, update the 
existing solution to the changed solution for each solution.

Step 6. Update the existing solution to the changed solu-
tion if the acceptance requirement is met; else, keep the 
current solution.

Step 7. Create a new population by putting the suggested 
local search to use on each potential answer. Find the 
new best solution (and the worst solution respectively).

Step 8: Go back to Step 3 and repeat the process until the 
termination requirement is met.

Step 9: Stop and present the best answer.

A family of functions known as ZDT was chosen for this 
study because it is a comprehensive and well-liked collec-
tion of test functions for evaluating the effectiveness of 
multi-objective Pareto optimization techniques [34]. Each 
of these test functions has a specific characteristic that is 
analogous to a real-world optimization issue that can make 
convergence to the Pareto front challenging. The perfor-
mance of the well-known optimization techniques (Genetic 

Algorithm-GA, Particle Swarm Optimization-PSO and 
Multiobjective Evolutionary Algorithm-MOEA) on these 
test problems is studied. Iteration number and population 
size are found to be 500 and 25, respectively, after test 
experiments. The investigated algorithms and their param-
eters are given in Table 2.

The most typical application of Pareto optimization, 
particularly in project planning applications, is two tar-
gets, which are present in all ZDT functions. Five runs of 
each method were made for every ZDT function in this 
paper. This was done in order to determine how reliable 
each algorithm's outcomes were and to make sure they 
weren't influenced by the initial conditions. The obtained 
results are shown in Table 3.

It is important to note that the simplicity and lack of 
additional control parameters required by the original JA 
were unaffected by the transition to A-JA. Five benchmark 
functions were utilized as case studies to assess how well 
the suggested A-JA performed in terms of convergence 
speed and solution precision. Benchmark function compar-
isons with other metaheuristic algorithms reveal that the 
suggested A-JA greatly improves the original JA's perfor-
mance. Additionally, of all algorithms, it has the quickest 
global convergence, the greatest solution quality, and is the 
most reliable for practically all test functions. In contrast 
to single objective functions, multi-objective benchmark 
functions feature a large number of local optimal points. 
Therefore, they are appropriate for testing the exploration 
of a specific method. The problem also gets more challeng-
ing to solve as the number of local minima for multiple 
objective functions rises. The results show that A-JA con-
siderably offers good solution accuracy and a higher prob-
ability of avoiding local optimums. As a result, it comes 
in first place among all compared algorithms. As a result, 
A-JA can be viewed as a very effective method for solving 
challenging optimization issues.

Table 2 The parameters of the optimization techniques

Algorithm Parameter Value

GA Crossover probability 1

PSO

nGrid 30

Inertia weight 0.5

c1 1

c2 2

MOEA

Probability 1

Differential weight 0.5

Mutation distribution index 20

Neighbourhood size 30
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The learning factor and acceleration coefficient are 
employed for the initialization of other optimization 
approaches because they call for a scaling factor and 
crossover elements. So far as ignoring the effort of altering 
constraints and shortening the time needed for the optimi-
zation process are concerned, the JA and A-JA computa-
tion has a crucial advantage [35]. The goal of this work is 
to improve the algorithm for solving DTCTP. It is moti-
vated by the effectiveness and possible applications of the 
JA and A-JA. The next section presents the case study of 
DTCTP using the proposed A-JA and JA comparatively.

4 Application of discrete time-cost trade-off 
4.1 Mathematical modelling
The optimization implementations, which are performed 
on the example to confirm the comparative effectiveness 
of the A-JA and JA in regards of DTCTP, are discussed in 
detail. In order to achieve this, the data of the construc-
tion project with 18 activities and 63 activities are first 
explained, followed by a description of the mathemati-
cal model of DTCTP. The JA and A-JA algorithms were 
coded in MATLAB R2021a for this application. The time 
complexity is adopted to evaluate the runtime of the pro-
posed method in terms of the number of the activities. 
The testing of the total runtime was done in a laptop with 
configuration of Windows 10 OS, 1.80 GHz CPU, 8GB 
RAM. The total runtime of the A-JA was about 30 sec and 
150 sec for the projects with 18 and 63 activities, respec-
tively. All of the experiments were performed 20 times in 
order to reduce statistical mistakes. 

Equations (6), (7), (8), and (9) serve as constraints in the 
mathematical model of the DTCTP shown below, whereas 
Eq. (10) and Eq. (11) work as objective functions. In equa-
tions, ct total cost of the project, tt the project time, cij cost 
of the jth mode for ith activity, xij assignment of the jth 

mode for ith activity, Tn initializing time of the nth activity, 
mn mode alternatives, n total number of activity, Tij dura-
tion of jth mode of ith activity and Tmax represents max-
imum termination time. Equation (6) states that day 0 is 
where the algorithm begins. According to the Eq. (8), the 
project's maximum completion time should be equal to or 
less than the total of the initiation time of the nth activ-
ity, which is the last process, and the duration of the same 
activity in the jth mode. In accordance with Eq. (8), the 
starting time of the successor activity should be equal to 
or less than the total of the initial time of the predecessor 
activity and the duration of the jth mode. The final con-
straint, called as Eq. (9), states that only one mode, from j 
to m, can be chosen for all activities, from i to n. In light of 
this, it is obvious that xij has a binary variable value.

Constraint functions:

T1 0= , (6)

T T x Tn
j

m

nj nj max

n

� �
�
�
1

. , (7)

T T x T

a n b n

a
j

m

aj aj b

a

� �

� �
�
�
1

1 1

. ;

, , ; , , ,

for all predecessors

 

 (8)

i

n

j

m

ij

i

x
� �
�� �

1 1

1 . (9)

Objective functions:

Min c c xt
i

n

j

m

ij ij

i

�
� �
��

1 1
, (10)

Min t T T xt n
j

m

ij ij

n

� � � �
�

�
�
�

�

�
�
��

�
1

. . (11)

Table 3 The benchmark results according to ZDT functions

Functions Metric A-JA JA GA PSO MOEA

ZDT1
Mean 2.03E−04 5.21E−03 7.46E−02 1.51E−02 1.28E−02

Std. 2.45E−04 3.22E−03 3.57E−02 2.04E−03 3.41E−03

ZDT2
Mean 1.22E−03 5.29E−03 3.23E−03 3.63E−02 3.45E−02

Std. 2.01E−03 7.89E−04 2.04E−03 2.37E−02 1.98E−02

ZDT3
Mean 3.657E−03 2.79E−03 1.85E−03 5.77E−03 3.31E−03

Std. 4.04E−04 3.55E−03 1.54E−03 7.65E−03 4.01E−03

ZDT4
Mean 1.52E−03 6.67E−03 2.38E−03 6.03E−02 5.44E−03

Std. 1.03E−03 5.08E−03 5.72E−03 5.47E−02 2.67E−03

ZDT6
Mean 1.88E−03 1.45E−03 1.32E−03 3.99E−02 4.08E−02

Std. 3.43E−03 1.17E−03 1.59E−03 5.36E−02 6.02E−02
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The goal of the model's formulation is to reduce both 
project duration and overall cost. It incorporates multiple 
objective functions, depending on the optimization mode, 
as shown in Eq. (10) and Eq. (11). The first objective func-
tion in Eq. (10) aims to decrease overall project costs, 
whereas the second objective function in Eq. (11) seeks to 
reduce overall project duration.

4.2 Case studies 
In project planning literature, the activity list which holds 
all activity numbers in a sequentially order is a typical 
representation for metaheuristic optimization [19].

In this paper, the predecessors, different modes, timings, 
and cost amounts for each activity for 18-activity project 
are listed in Table 4 Feng et al. [36] provided the first case 
study issue, an 18-activity project, and Hegazy [37] iden-
tified time-cost modes. The table shows that the relation-
ship between time and cost is the discrete model since some 
tasks can be accomplished more quickly at the expense of 
higher costs. Following to 18-activity project, larger scale 
project is discussed considering the same options to gener-
ate solutions for minimum time and minimum cost to illus-
trate the capability of the presented model better. The sec-
ond case study large-scale project with 63-activities is taken 
from Sonmez and Bettemir [38]. Table 5 contains all the 
required data for 63-activity to be executed in the project.

The case studies have different modes. These modes 
relate to techniques used in accelerating construction 
projects. In real life, all project activities cannot have the 
same number of time and cost alternatives. Some proj-
ect activities can have only one option. There may not be 
a cheaper, more expensive, longer or shorter alternatives 
than this option. So, the activity is single-modal. That is, 
the activity is without alternative. Sometimes the activ-
ity may have different time and cost alternatives, which is 
called multi-modal. To increase the complexity of the opti-
mization, the presented examples are multimodal project 
planning problems.

5 Results and comparison
Following test trials, the case study's iteration counts for 
the first and second cases, respectively, is 200 and 500. 
Also, the population sizes are determined to be 25 for 
both cases. Both case studies are solved using five meta-
heuristic methods. These methods are Genetic Algorithm, 
Particle Swarm Optimization, Multiobjective Evolutionary 
Algorithm, Jaya Algorithm and Advanced Jaya Algorithm. 
The proposed model is employed in this study to simulta-
neously reduce project time and expense. Also, both the 
logical relationship and mathematical constraints are sat-
isfied in all algorithms. The termination criteria are deter-
mined as reaching of the maximum number of iterations. 

Table 4 18-activity project information for the first case study of DTCTP

Act. Pred. Mode (1) Mode (2) Mode (3) Mode (4) Mode (5)

Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost

1 - 14 2,400 15 2,150 16 1,900 21 1,500 24 1,200

2 - 15 3,000 18 2,400 20 1,800 23 1,500 25 1,000

3 - 15 4,500 22 4,000 33 3,200 - - - -

4 - 12 45,000 16 35,000 20 30,000 - - - -

5 1 22 20,000 24 17,500 28 15,000 30 10,000 - -

6 1 14 40,000 18 32,000 24 18,000 - - - -

7 5 9 30,000 15 24,000 18 22,000 - - - -

8 6 14 220 15 215 16 200 21 208 24 120

9 6 15 300 18 240 20 180 23 150 25 100

10 2, 6 15 450 22 400 33 320 - - - -

11 7, 8 12 450 16 350 20 300 - - - -

12 5, 9, 10 22 2,000 24 1,750 28 1,500 30 1,000 - -

13 3 14 4,000 18 3,200 24 1,800 - - - -

14 4, 10 9 3,000 15 2,400 18 2,200 - - - -

15 12 12 4,500 16 3,500 - - - - - -

16 13, 14 20 3,000 22 2,000 24 1,750 28 1,500 30 1,000

17 11, 14, 15 14 4,000 18 3,200 24 1,800 - - - -

18 16, 17 9 3,000 15 2,400 18 2,200 - - - -

Note: Act. - Activity, Pred. - Predecessor, Dur. - Duration (days), Daily indirect cost: $1500 
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Table 5 63-activity project information for the second case study of DTCTP

Act. Pred. Mode (1) Mode (2) Mode (3) Mode (4) Mode (5)

Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost

1 - 14 3,750 12 4,250 10 5,400 9 6,250 - -

2 - 21 11,250 18 14,800 17 16,200 15 19,650 - -

3 - 24 22,450 22 24,900 19 27,950 17 31,650 - -

4 - 19 17,800 17 19,400 15 21,600 - - - -

5 - 28 31,180 26 34,200 23 38,250 21 41,400 - -

6 1 44 54,260 42 58,450 38 63,225 35 68,150 - -

7 1 39 47,600 36 50,750 33 54,800 30 59,750 - -

8 2 52 62,140 47 69,700 44 72,600 39 81,750 - -

9 3 63 72,750 59 79,450 55 86,250 51 91,500 49 99,500

10 4 57 66,500 53 70,250 50 75,800 46 80,750 41 86,450

11 5 63 83,100 59 89,450 55 97,800 50 104,250 45 112,400

12 6 68 75,500 62 82,000 58 87,500 53 91,800 49 96,550

13 7 40 34,250 37 38,500 33 43,950 31 48,750 - -

14 1, 8 33 52,750 30 58,450 27 63,400 25 66,250 - -

15 9 47 38,140 40 41,500 35 47,650 32 54,100 - -

16 9, 10 75 94,600 70 101,250 66 112,750 61 124,500 57 132,850

17 10 60 78,450 55 84,500 49 91,250 47 94,640 - -

18 10, 11 81 127,150 73 143,250 66 154,600 61 161,900 - -

19 11 36 82,500 34 94,800 30 101,700 - - - -

20 12 41 48,350 37 53,250 34 59,450 32 66,800 - -

21 13 64 85,250 60 92,600 57 99,800 53 107,500 49 113,750

22 14 58 74,250 53 79,100 50 86,700 47 91,500 42 97,400

23 15 43 66,450 41 69,800 37 75,800 33 81,400 30 88,450

24 16 66 72,500 62 78,500 58 83,700 53 89,350 49 96,400

25 17 54 66,650 50 70,100 47 74,800 43 79,500 40 86,800

26 18 84 93,500 79 102,500 73 111,250 68 119,750 62 128,500

27 20 67 78,500 60 86,450 57 89,100 56 91,500 53 94,750

28 21 66 85,000 63 89,750 60 92,500 58 96,800 54 100,500

29 22 76 92,700 71 98,500 67 104,600 64 109,900 60 115,600

30 23 34 27,500 32 29,800 29 31,750 27 33,800 26 36,200

31 19, 25 96 145,000 89 154,800 83 168,650 77 179,500 72 189,100

32 26 43 43,150 40 48,300 37 51,450 35 54,600 33 61,450

33 26 52 61,250 49 64,350 44 68,750 41 74,500 38 79,500

34 28, 30 74 89,250 71 93,800 66 99,750 62 105,100 57 114,250

35 24, 27, 29 138 183,000 126 201,500 115 238,000 103 283,750 98 297,500

36 24 54 47,500 49 50,750 42 56,800 38 62,750 33 68,250

37 31 34 22,500 32 24,100 29 26,750 27 29,800 24 31,600

38 32 51 61,250 47 65,800 44 71,250 41 76,500 38 80,400

39 33 67 81,150 61 87,600 57 92,100 52 97,450 49 102,800

40 34 41 45,250 39 48,400 36 51,200 33 54,700 31 58,200

41 35 37 17,500 31 21,200 27 26,850 23 32,300 - -

42 36 44 36,400 41 39,750 38 42,800 32 48,300 30 50,250

43 36 75 66,800 69 71,200 63 76,400 59 81,300 54 86,200

44 37 82 102,750 76 109,500 70 127,000 66 136,800 63 146,000

45 39 59 84,750 55 91,400 51 101,300 47 126,500 43 142,750
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Continuation of Table 5

Act. Pred. Mode (1) Mode (2) Mode (3) Mode (4) Mode (5)

Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost

46 39 66 94,250 63 99,500 59 108,250 55 118,500 50 136,000

47 40 54 73,500 51 78,500 47 83,600 44 88,700 41 93,400

48 42 41 36,750 39 39,800 37 43,800 34 48,500 31 53,950

49 38, 41, 44 173 267,500 159 289,700 147 312,000 138 352,500 121 397,750

50 45 101 47,800 74 61,300 63 76,800 49 91,500 - -

51 46 83 84,600 77 93,650 72 98,500 65 104,600 61 113,200

52 47 31 23,150 28 27,600 26 29,800 24 32,750 21 35,200

53 43, 48 39 31,500 36 34,250 33 37,800 29 41,250 26 44,600

54 49 23 16,500 22 17,800 21 19,750 20 21,200 18 24,300

55 52, 53 29 23,400 27 25,250 26 26,900 24 29,400 22 32,500

56 50, 53 38 41,250 35 44,650 33 47,800 31 51,400 29 55,450

57 51, 54 41 37,800 38 41,250 35 45,600 32 49,750 30 53,400

58 52 24 12,500 22 13,600 20 15,250 18 16,800 16 19,450

59 55 27 34,600 24 37,500 22 41,250 19 46,750 17 50,750

60 56 31 28,500 29 30,500 27 33,250 25 38,000 21 43,800

61 56, 57 29 22,500 27 24,750 25 27,250 22 29,800 20 33,500

62 60 25 38,750 23 41,200 21 44,750 19 49,800 17 51,100

63 61 27 9,500 26 9,700 25 10,100 24 10,800 22 12,700

Note: Act. - Activity, Pred. - Predecessor, Dur. - Duration (days), Daily indirect cost: $2300 

Firstly, 18-activity project was solved using GA, PSO 
and MOEA. These algorithms were able to determine the 
optimal solutions of $162390, 161270 and 161270, respec-
tively. Secondly 63-activity project was solved and the 
same algorithms gave the following results: $5334600, 
5282450 and 5201750. Hence, when compared to GA, PSO 
and MOEA are more successful for converging the projects. 
Especially, in 63-activity project, MOEA outperformed to 
GA and PSO. The results obtained from these different 
methods can be shown in Table 6.

In first case study, according to JA results, the project 
can be terminated in 106 days with $153240 cost. Following 
the JA, the case study is solved with A-JA. DTCTP results 
of A-JA have the values of 100 days and $150270 cost. 
In second case study, according to JA results, solutions 
are 618 days for time and $4990500 for cost. For the same 
case, A-JA have the values of 616 days and $4911250 cost. 

The Pareto optimal solutions of 18-activity project and 
63-activity project obtained by A-JA are graphically pre-
sented respectively in Fig. 3.

In addition, according to the results, both JA and A-JA 
outperformed the other three well-known algorithms in 
terms of duration and cost. In all 20 runs, the A-JA was able 
to find the best solution to 18-activity problem Therefore, 
further comparisons are made for these two algorithms. 
In A-JA, which is limited to 200 iterations for 18-activity 
project, The Pareto front values were noticed in the first 
60 iterations. For 63-activity project, A-JA is terminated 
after 500 iterations and the Pareto front was concluded in 
150 iterations. The graphics of number of iterations-fitness 
value for both cases are given in the Fig. 4. The figures 
lead to the conclusion that the parameters used and the 
number of iterations is enough.

Table 6 DTCTP results of the case studies

Methods

Project Objective GA PSO MOEA JA A-JA

18-activity
Duration 113 110 110 106 100

Cost 162390 161270 161270 153240 150270

63-activity
Duration 624 623 621 618 616

Cost 5334600 5282450 5201750 4990500 4911250
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Using 18-activity and 63-activity projects, the perfor-
mances of JA and A-JA are compared. For each project, 
the metaheuristic methods are used 20 times. The mean 
deviation of 20 trials from the best solution is used to cal-
culate convergence. To assess the metaheuristics' perfor-
mance, the mean deviations of JA and A-JA are given and 
compared in Table 7. 

For both the 18-activity and 63-activity implementa-
tions, JA and A-JA were capable of arriving at the optimal 
solution. However, JA had a mean deviation value between 
1.62 and 2.11 for the same problems. The mean deviation 
values of A-JA were 0.96 and 1.14, respectively. The mean 
deviation of JA for 20 trials is 1.87 and mean deviation of 

A-JA is 1.05. In all of the applications, A-JA performed bet-
ter than the JA. As a result, A-JA presents a sufficient alter-
native for the DTCTP.

6 Conclusions
For the first time, the DTCTP is solved in this paper using 
an efficient metaheuristic multi-objective optimization 
algorithm based on the Jaya Algorithm (JA). The new meta-
heuristic method called A-JA was developed and proposed 
for DTCTP. In order to evaluate and compare the effective-
ness and applicability of the suggested approach, various 
benchmark problems were simulated. After then, the case 
studies were developed and analyzed with JA, A-JA and 
other well-known algorithms GA, PSO, MOEA. Both JA 
and A-JA outperformed the other three algorithms. The 
modified algorithm A-JA performed relatively better than 
the basic algorithm JA. In comparison to the findings of JA, 
the proposed A-JA demonstrated increased efficacy and 
efficiency. This research contributes to the construction 
management body of knowledge in the following terms: 

Fig. 3 The Pareto front solutions obtained by A-JA; (a) 18-activity project, (b) 63-activity project

(a) (b)

(a)
Fig. 4 The number of iterations-fitness value graphic of A-JA; (a) 18-activity project, (b) 63-activity project

(b)

Table 7 The mean deviations (%) from the optimal solution

No. of runs Project type
Mean deviation (%)

JA A-JA

20 18-activity 1.62 0.96

20 63-activity 2.11 1.14
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• Providing a comprehensive review for the construc-
tion project planning optimization literature, upon 
which researchers can rely to investigate the DTCTP 
in previous literature. 

• Developing a novel optimization model that consid-
ers multi-mode alternatives for each activity in addi-
tion to all project optimization capabilities. 

• The model successfully implements a metaheuristic 
method to optimize construction projects. It can be 
used in multi-mode optimization to simultaneously 
minimize duration and cost. It provides help deci-
sion makers to make trade-off among these objec-
tives and choose the optimum solution based on their 
preference.
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