Corrigendum

Kaveh, A., Khazaee, N. "Frequencies of Near Regular Structures Using the Results of the Corresponding Regular Structures", Periodica Polytechnica Civil Engineering, 2023.

https://doi.org/10.3311/PPci.21505

When the above article was first published online the following parts were incorrect. These have now been corrected in the online version.

First page, last paragraph

Then the eigenvalues of the matrix $B = A + \sum_{i=1}^k u_i v_i^T$ are $(\mu_1, \mu_2, \mu_3, ..., \mu_k, \lambda_{k+1}, \lambda_{k+2}, \lambda_{k+3}, ..., \lambda_n)$ where $(\mu_1, \mu_2, \mu_3, ..., \mu_k)$ are the eigenvalues of the $k \times k$ matrix $diag(\lambda_1, \lambda_2, \lambda_3, ..., \lambda_k) + U^T V$.

Equation 6

$$\overline{v_1} = \dot{\beta}_{1,1}v_1 + \dot{\beta}_{1,2}v_2 + \dot{\beta}_{1,3}v_3 + \ldots + \dot{\beta}_{1,n}v_n$$

Equation 9

$$\overline{v_k} = \dot{\beta}_{k,1} v_1 + \dot{\beta}_{k,2} v_2 + \dot{\beta}_{k,3} v_3 + \ldots + \dot{\beta}_{k,n} v_n$$

Equation 14

$$\beta_{k,1} = v_{i_1^k}^T \overline{v_k}, \beta_{k,2} = v_{i_2^k}^T \overline{v_k}, \dots, \beta_{k,m_k} = v_{i_{m_k}^k}^T \overline{v_k}$$