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Abstract

The interaction behavior between local and global buckling modes in high-strength steel box-section columns has received limited 

research attention. Currently, there is a lack of a validated equivalent geometric imperfection that can be effectively employed in 

nonlinear plastic analysis to estimate the interaction buckling resistance. This research aims to find equivalent geometric imperfections 

that can be used in geometrical and materially nonlinear analysis using imperfections (GMNIA) to estimate the interaction buckling 

resistance of square welded box-section columns made of high-strength steel. It extends prior investigations by the authors on 

equivalent imperfections for normal-strength steel welded box-sections. A developed and validated numerical model is used to 

perform parametric studies to estimate the accurate buckling capacity using previously developed and verified combinations of 

imperfections and residual stresses. The accurate buckling capacities are used to calibrate equivalent local and global imperfection 

combinations that can be used in FEM-based design. A reliability assessment study is also performed to check the safety level of the 

proposed imperfection combinations.
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1 Introduction
Welded box-section columns are widely used in buildings 
and bridges due to their strength and stability. However, 
when these columns are subjected to compressive loads, 
they can fail due to global buckling, local buckling, or under 
the interaction of both. This significantly reduces the col-
umn’s load-carrying capacity and compromises the struc-
ture's integrity. Global buckling involves the buckling of 
the entire column, while local buckling occurs when plates 
of the column cross-section fail due to compressive load. 
Interaction buckling occurs when both local and global 
buckling happens simultaneously. Globally and locally, 
slender sections are prone to this type of buckling. This 
study aims to find suitable equivalent imperfection combi-
nations that can be used in numerical models to accurately 
estimate the interaction buckling resistance of welded 
square box-section columns made of high-strength steel 
(HSS). These combinations can be used in design problems 
not entirely covered by the current design standards. 

Nonlinear analysis techniques, such as finite element 
analysis (FEA), can be used to simulate and predict the 
buckling behavior of columns. The combination of geomet- 

rical and material nonlinear analysis with imperfection 
(GMNIA) is particularly important, as it allows for more 
accurate predictions of the buckling capacity. Two possi-
ble techniques can be followed to perform GMNI anal-
ysis, either by using geometric imperfection and resid-
ual stresses or using equivalent geometric imperfections. 
Equivalent imperfection presents a more convenient way 
to perform GMNI analysis as these imperfections also 
take the effect of residual stresses, enabling the designer 
to avoid modeling the residual stresses that can be chal-
lenging for complex structures. Therefore, in this study, 
the magnitudes of equivalent geometric imperfections are 
determined by calibrating against the resistance obtained 
by modeling the residual stresses.  

The authors extensively investigated the interaction 
buckling resistance of welded box-section columns in the 
past, where combinations of global and local imperfections 
with residual stresses were developed [1]. These combi-
nations can accurately estimate the interaction buckling 
resistance of welded box-section columns. In these com-
binations, the authors calibrated local imperfections based 
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on the buckling curve of Schillo et al. [2] and Annex B 
of EN1993-1-5 [3–5]. These buckling curves were proven 
experimentally and numerically to better estimate the 
local buckling resistance of welded box-sections compared 
to the Winter-type buckling curve of the Eurocode EN 
1993-1-1 [5–8]. The global imperfection used in the devel-
oped combination is L/1000, a widely agreed-upon imper-
fection if the residual stresses are applied [2]. Equivalent 
global imperfections suitable for GMNIA analysis were 
recently developed by Somodi et al. [9] for global buckling 
resistance. For interaction buckling, the authors developed 
equivalent imperfection combinations for welded square 
box-sections made of normal strength steel (NSS)  [10]. 
However, several researchers emphasized the difference 
between normal and high-strength steel, such as resid-
ual stresses and material behavior  [11]. Therefore, this 
research will develop equivalent imperfection combina-
tions for high-strength steel welded box-section columns 
which are still missing from the international literature.

The current investigation uses the previously developed 
and validated numerical model to conduct a parametric 
study to find the accurate buckling resistance of square 
welded box-sections made of HSS. The accurate buckling 
resistance is determined using the previously developed 
combination of local and global imperfection with residual 
stresses for steel S500, S690, and S960 on a wide range of 
global and local slenderness. This resistance is considered 
reference resistance. A calibration process is performed to 
find equivalent global and local imperfections that yield 
buckling resistance equal to the reference resistance. After 
it, a detailed reliability assessment is performed to check 
the applicability of the calibrated imperfections and the 
safety margins. 

The paper is organized into six chapters: Section 2 pres-
ents a comprehensive literature review on interaction buck-
ling behavior, as well as the magnitudes of local and global 
imperfections. In Section 3, the development of a numer-
ical model is discussed. Section 4 presents the results of 
parametric studies, demonstrating the calibrated equiva-
lent global and local geometrical imperfections. Section 5 
shows a detailed reliability analysis to evaluate the cali-
brated imperfection combinations. Finally, Section 6 exam-
ines the constant amplitude imperfection factors.

Overall, this paper serves as a resource for researchers 
and designers working in the field of FEM-based design 
to aid in estimating the interaction buckling resistance of 
HSS welded box-section columns. 

2 Literature review
2.1 Interaction buckling resistance
Degée et al. [12] performed experiments on rectangular 
box-section columns made of S355 steel to study the inter-
action buckling resistance. An experimental test program 
has been executed on six specimens within a global slen-
derness range of λ̅g = 0.35, 0.55, and 0.7 with constant local 
slenderness of λ̅h = 0.9. L/1000 was used as global imper-
fection and b/1000 as local imperfection with applied 
residual stress in the numerical model. The authors found 
that the buckling curve "b" of EN 1993-1-1 [8] yields con-
servative results, and the buckling curve "a" had a bet-
ter agreement. An enhanced design method was proposed 
that takes into account the loss of stiffness caused by local 
buckling, where a modified global slenderness ratio λ̅int is 
determined, which depends on the gross to the effective 
moment of inertia and area and the local reduction fac-
tor ρ. In this method, higher resistance is estimated as λint 
is smaller than λg. Khan et al. [13] performed experiments 
on S690 welded box section columns to study the interac-
tion buckling resistance. They performed an experimen-
tal test program on fifteen specimens, and a numerical 
study was performed. In the parametric study, the authors 
used L/1000 and b/1000 for global and local imperfec-
tions, respectively. Residual stresses were applied too. 
Specimens with intermediate lengths experienced global 
and local buckling. The authors suggested a reduction 
factor to consider the interaction effect, and the buck-
ling curve "b" of EN1993-1-1[8] was suggested, as all the 
numerical results lay above it. Usami and Fukumoto [14] 
experimented on HSS S460 and S960 welded box-sections 
to study the interaction buckling capacity. Twenty-seven 
compression tests were performed, with twenty-four tests 
loaded concentrically and the remaining loaded eccentri-
cally. Schillo et al. [2] conducted thirteen buckling tests 
on welded box-sections made of S500 and S960 to study 
the interaction buckling resistance. A numerical model 
was validated using the experimental tests, and a paramet-
ric study was conducted to determine reduction factors to 
determine the interaction resistance. The authors used the 
EN1993-1-1 [8] method to determine buckling resistance 
with an additional modification to account for stiffness 
loss caused by local buckling by including an equivalent 
local imperfection (ep) in the reduction formula. 

Somodi et al. [9] calibrated equivalent global imperfec- 
tions based on EN1993-1-1 [8] buckling curves using a para- 
metric study and GMNI analysis. An equivalent imper- 
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fection formula, denoted as L/fglob, was proposed. The value 
of fglob is determined according to Eq. (1), where � �

235

f y , 
α is the imperfection factor according to EN1993-1-1 [8], 
and �g y

cr

Af
N

�  is the global slenderness ratio. The  formula 
can be used for steel grades of S235-S960. It was found 
that the buckling resistance obtained using this formula 
showed good agreement with the buckling curves of the 
Eurocode. A maximum error of 2% was observed.
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Radwan and Kövesdi [5] calibrated local imperfections 
to fit the buckling curve of Annex B of EN1993-1-5  [4] 
and the curve developed by Schillo et al. [2]. The authors 
calibrated geometrical imperfections applied with residual 
stresses and equivalent geometrical imperfections that take 
the residual stresses into account. The imperfections mainly 
depend on the yield strength fy and the local slenderness 
ratio λ̅p of the analysed cross-section. The equivalent local 
imperfection can be determined based on Eq.  (2), which 
represents accurate results compared to the calibrated 
imperfections for HSS. In Eq. (2), fy is the nominal yield 
strength and λ̅p is the local plate slenderness ratio. The local 
imperfection factor is applied as b/f0,local, where b is the 
plate width. In a different study [15], the authors found that 
imperfection of b/125 yields resistances correspond with 
the buckling curve developed by Schillo et al. [2], based on 
statistical assessment with a mean value of 1.0.
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,

.
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2.2 Executed research strategy
Several researchers emphasized that further global and 
local buckling investigation is needed to estimate the 
buckling resistance accurately for welded box-sections 
made of HSS [2, 12, 16]. Moreover, new global and local 
equivalent imperfections must be developed for HSS to be 
used in the numerical modeling-based design, as the avail-
able suggestions are based on elastic analysis. Two short-
comings of the previous investigations on the interaction 
buckling are overcome in this study, where the buckling 
curve available in Annex B of EN1993-1-5 [4] is used 
instead of the Winter-type curve, which many researchers 
criticized for overestimating the local buckling resistance 
of welded box-sections. The other shortcoming is using 
a  constant value for the local imperfections for the dif-
ferent sections with different steel grades and local slen-
derness. The authors developed local imperfections that 

depend on the steel type and local slenderness of each 
section under study, calibrated to Schillo et al. [2] and 
Annex B curves and yield their resistances if applied in 
the numerical model. This allows for a better estimation 
of the local buckling resistance. 

This paper outlines the research program that was con-
ducted and is being presented in the following manner:

1. The utilization of calibrated local geometric imper-
fection, as discussed in [5], enables control of the local 
buckling resistance to align with the Annex B curve of 
EN1993-1-5 [4]. A specific imperfection is used for each 
section depending on the yield strength and local slender-
ness ratio, as illustrated in Figure 19 of [5]. The manufac-
turing tolerance of ±b/125 is used as the maximum applied 
imperfection [17] (max (calibrated imperfection to Annex 
B curve, b/125)).

2. The utilization of L/1000 as global imperfection with 
residual stresses enables control of the global buckling 
resistance. This imperfection magnitude yielded a good fit 
to the global buckling resistance [12, 18].

3. The previously developed and validated numerical 
model is used, as shown in the previous research [10], 
where this numerical model was validated for both NSS 
and HSS against tests in the literature.4. The numerical 
model and the combinations of imperfections and resid-
ual stresses are used to perform a parametric study to 
determine the accurate resistance (referred to as reference 
resistance) for a wide range of global and local slenderness 
ratios for steel grades of S500, S690, and S960.

5. Two additional numerical studies are performed to 
calibrate equivalent global and local imperfections. In the 
first parametric study, a leading local imperfection is cho-
sen according to Eq. (2), and the global imperfections 
are calibrated. In the second parametric study, a leading 
global imperfection is chosen according to Eq. (1), and the 
local imperfections are calibrated. Calibrations are made 
to align with the reference buckling resistance. 

3 The developed numerical model
Ansys finite element software [19] was utilized to develop 
the model using SHELL181 elements. Geometrical and 
material nonlinear analysis with imperfection (GMNIA) 
is used to estimate the buckling resistance of the columns 
under study. The global and local imperfections are defined 
in the numerical model, as shown in Fig.  1. The local 
imperfections are defined as half sin-waves, with alter-
native signs for adjacent edges, where outwards imper-
fections are considered positive, as shown in Fig.  1(a). 
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The number of half sin-waves is equal to the length of the 
plate L divided by the plate width b. The global imper-
fection is applied as a large half sin-wave across the 
entire length of the column, as shown in Fig. 1(b). Both 
half sin-waves are applied in case of interaction buck-
ling, as shown in Fig. 1(c). The accurate modeling of these 
imperfections is essential to ensure the efficient design 
of steel columns. Master nodes were added at the cen-
ter of the end cross sections of the columns to define the 
boundary conditions and applied load. This simplifies the 
process of defining the boundary conditions. Rigid dia-
phragms are defined to link all 6 DOFs between the mas-
ter nodes and end cross-section nodes. The translations 
in all directions (UX, UY, UZ) are restrained at the first 
master node, and the translation in X- and Y- directions 
(UX, UY) are restrained on the second node as the load is 
applied in the Z-direction. The rotation in the Z-direction 
(ROTZ) is restrained on both master nodes. 

In contrast to NSS, where a quad-linear material 
model was used to define the behavior of the material, 
the Ramberg-Osgood-type material model is utilized 
in this research to define the material behavior for HSS, 
as depicted by Eq. (3). The model characterizes the non-
linear material behavior of HSS under complex loading 
conditions, such as large strains and stress reversals. This 
material model relates the stress and strain of the mate-
rial by using the yield strength and the hardening expo-
nent, which is determined by different coupon tests. In this 
analysis, a value of n = 14 is used with a modulus of elas-
ticity of E = 210000 MPa and Poisson's ratio v = 0.3 [11]. 
The utilized yield and ultimate strengths are summarized 
in Table 1.

�
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� �
�

�
�

�

�
�E fy

n

0 002. 	 (3)

The utilized residual stress model has been proven to 
provide an accurate estimation of buckling resistance and 
is consistent with the guidelines set forth by the European 
Convention for Constructional Steelworks (ECCS) [20] 
and the preliminary version of the updated Eurocode 
prEN1993-1-14  [21]. The sections studied in this inves-
tigation have an H/t ratio of 40 to study the interaction 
buckling of class 4 cross-sections. It was shown by sev-
eral researchers that the compressive residual stresses 
have smaller values in HSS compared to NSS due to better 
welding techniques and manufacturing processes [22, 23]. 
Accordingly, the tensile residual stress is equal to the yield 
strength fy, while the compressive residual stress is equal 
to 0.13 × 355 MPa for all the steel types in this study. Static 
equilibrium between residual stresses is used to define the 
tensile zone width. 

Mesh sensitivity analysis is a numerical simulation 
technique for assessing the accuracy and reliability of 
finite element analysis (FEA) results. It involves systemat-
ically varying the mesh density of the model and analyz-
ing the corresponding changes in the simulation results 
to determine the optimum mesh size for the analysis. 
In this research, it was found that a mesh of 16 elements 
along the plate width results in a reliable estimation of the 
resistance with 1% from the smallest applied mesh size. 
The details of the mesh analysis are illustrated in previ-
ous research  [10]. Validation of the numerical model is 
a process of comparing the results obtained from numer-
ical simulation with those obtained from physical experi-
ments. It is essential to ensure the accuracy and reliability 
of the developed numerical model and its ability to predict 
the behavior of the test specimen. The details of the val-
idation process of the numerical model are demonstrated 
in previous research [10], where the model was validated 
for both NSS and HSS using samples taken from several 
research programs with S235, S500, S700, and S960 steel 
types. The numerical model was able to estimate the buck-
ling capacity of the test specimens accurately. The mean 
and coefficient of variation (CoV) of the ratio F

F
numerical

erimantalexp

 is 
equal to 0.99 and 0.061, respectively.

Equivalent global imperfection L
fint

= 	 (4)

(a) (b) (c)

Fig. 1 Imperfection definition for columns experiencing (a) local, 
(b) global, (c) interaction buckling

Table 1 The yield and ultimate strength of the studied HSS

Steel grade Yield strength ( fy) [MPa] Ultimate strength ( fu) [MPa]

S500 500 625

S690 690 850

S960 960 1115
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4 Results of the parametric studies
4.1 Equivalent global geometrical imperfection
In the first parametric study, the local imperfection is con-
sidered as leading imperfection applied with 100% mag-
nitude depicted in Eq. (2), and the accompanying global 
imperfection is searched. The obtained equivalent global 
imperfections showed smaller differences between the 
studied HSS types. Hence, a single formula that fits all the 
investigated types is employed to calculate the equivalent 
global imperfection, as presented in Eqs. (4–5). The fit for-
mula is expressed as fint /fglob, where fint is the calibrated 
equivalent imperfection scaling factor and fglob is the 
global imperfection scaling factor for pure global buckling 
according to Eq.  (1). The accompanying imperfections 
are a function of local slenderness ratios. The  proposed 
formula is illustrated in Fig. 2, depicting the relationship 
between the local slenderness ratio λ̅p on the x-axis and 
the fint /fglob ratio on the y-axis for several global slender-
ness ratios λ̅g, shown in the legend. Fig.  2 demonstrates 
the global and local slenderness, where a smaller or equal 
imperfection is required in comparison to the pure global 
imperfections. No interaction occurs before λ̅p   <  0.7, 
therefore fint /fglob, the is equal to 1.0, as shown in the Fig. 2. 
For λ̅p  < 1.35, the ratio fint /fglob ratio is represented by a line 
with an increasing magnitude with a value less than 3.0. 
For the region 1.35 <  λ̅p < 1.85, the imperfection scaling 
factor is another line with a larger slope due to the fact that 
a relatively larger local imperfection was applied here, and 
therefore, a smaller accompanying global imperfection is 

required for this region. For local slenderness larger than 
λ̅p > 1.85, an upper limit of 12 was applied as the small-
est possible applied accompanying imperfection to yield 
safe results. It is worth mentioning that different trends 
are obtained for HSS compared to NSS as different mate-
rial models, local imperfections, and residual stress mag-
nitudes are applied. The obtained equivalent global imper-
fection can be applied according to Eq. (4), where fint is 
obtained using Eq. (5). 

4.2 Equivalent local geometrical imperfection
This approach involves using the global imperfection as 
the leading imperfection with 100% magnitude and subse-
quently determining the magnitudes of local imperfections 
required for the analyzed cross-section against the refer-
ence buckling capacity. The same procedures, as shown in 
Section 4.1, are followed here using the same sections and 
materials properties. An accompanying equivalent local 
imperfection is proposed, as shown in Fig. 3, if Eq. (1) is 
employed as the leading global imperfection scaling factor.

Fig. 3 illustrates the global slenderness ratio λ̅p on the 
x-axis and fint /f loc ratio on the y-axis. fint is the obtained 
accompanying local imperfection scaling factor for col-
umns experiencing interaction buckling. f loc is the equiv-
alent imperfection scaling factor for pure local buckling, 
as depicted by Eq. (2). Fig. 3 shows that there is a clear 
trend for the fint /f loc, where the ratio is smaller for small 
global slenderness ratio (large imperfection is needed) and 
larger for large global slenderness (small imperfection is 
needed). This is because the local imperfection is less sig-
nificant for columns with high global slenderness. On the 
local slenderness range, the trend starts with a larger 
fint /f loc ratio decrease to a minimum around the range 1–1.2 
and gradually increases for a larger local slenderness ratio 
indicating a small imperfection; this happens due to the 

Fig. 2 Suggested formula for accompanying equivalent global imperfections
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applied global imperfections where it is large for this 
range, and therefore to achieve the reference resistance 
only a smaller imperfection is needed. It was noticed that 
the differences in calibrated imperfections for the studied 
HSS are small. Therefore, a single equation can be used for 
all the studied HSS columns, as depicted by Eqs. (6)–(7). 
The calibrated accompanying equivalent local imper-
fection for interaction is according to Eq. (6), and fint is 
according to Eq. (7). 

Equivalent local imperfection
f
b

int
= 	 (6)

f fint local

p g p
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It is important to notice that this formula is only appli-
cable to the range λ̅p > 0.7 and λ̅g > 0.2, where the interac-
tion buckling occurs. It is worth noticing that for the range 
0.9  <  λ̅p  <  1 and λ̅g  >  1.12 the required equivalent local 
imperfection is always smaller than b/500. When fint is less 
than 500, utilizing solely the global imperfection in accor-
dance with Eq. (1) results in overestimating the buckling 
capacity by less than 5%.

5 Evaluating the calibrated imperfection combinations 
using statistical assessment
This section presents the reliability assessment performed 
according to the method of the EN1990 Annex D  [24]. 
The  method aims to ensure that structural designs meet 
specified levels of reliability and safety, taking into account 
the uncertainties associated with various factors.

The reference resistance, determined using the devel-
oped combination of residual stresses and imperfections 
for HSS [5], accurately predicts the interaction buck-
ling resistance of welded box sections. In this study, 
the reference resistance is considered as the experimen-
tal results re. The buckling resistance obtained using the 
previously obtained equivalent imperfection formulas 
in Section  4 is considered the theoretical resistance  rt. 
EN1990 Annex D [24] outlines a systematic approach for 
evaluating the reliability of structural systems in design. 
As per Eurocode standards, the corrected partial safety 
factor, γM*, for member stability is set to 1.0 for build-
ings and 1.1 for bridges. To begin with Annex D method, 
a comparison is made between the experimental rt (y-axis) 
and theoretical re (x-axis) resistances by plotting them as 
pairs, as illustrated in Fig. 4.

The detailed statistical evaluation to determine the par-
tial safety factor was demonstrated in previous research 
by the authors [10]. Here, only a summary of the steps is 
presented. The model uncertainties must be determined 
by calculating the mean value correction factor b, the 
error term δi for each experimental resistance value, the 
variance s2 and the coefficient of variations Vδ, accord-
ing to [10]. The coefficient of variation Vδ is a measure 
of the variabilities in estimating the resistance using the 
proposed theoretical values. Several basic variables con-
tribute to the uncertainties of the design method. In this 
study, the material strength fy, the plate width b, the thick-
ness t, and the length L are considered the main basic vari-
ables, shown in [10]. Smaller values for the Vfy are utilized 
here for HSS, as shown by Schillo et al. [2]. The general 
coefficient of variations Vrt ,which includes the CoVs of the 
basic variables, the coefficient of variations of the model 

Fig. 3 Suggested formula for accompanying equivalent local imperfections
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Vr and the partial safety factor γM can be determined 
according to [10]. Several researchers used the nominal 
values of the basic variables to determine a corrected par-
tial safety factor, as they found that it yields a better pre-
diction of the partial safety factor [2, 25–29]. A different 
method that is used by other researchers considers the Δk 
coefficient. Δk is a modification factor equal to the mean 
value of resistance calculated using nominal values to the 
characteristic values. Here the Δk coefficient method is 
used to find the corrected partial safety factor.

Table 2 summarizes the performed reliability assess-
ments for the developed imperfection combinations (i) 
leading local and accompanying global and (ii) leading 
global and accompanying local. (iii) the minimum resis-
tance obtained by (i) or (ii). The table shows the leading 
imperfection, the local imperfection scaling factor, the 
global imperfection scaling factor, the mean value correc-
tion bm, the coefficient of variations bm, Vδ, Vrt,avg, Vr,avg 
and the corrected partial safety factors γM*. The total num-
ber of samples is 310.

As shown in Table 2, the mean correction factor bm 
for both combinations is larger than 1.0, indicating that 
the resistance of the numerical model implementing the 
equivalent combinations of imperfections is smaller than 
the reference resistance, i.e., safe side results. If the uncer-
tainties are considered, the achieved value for the leading 
local imperfection combination is 1.116, and for the lead-
ing global imperfection combination is 1.000. It can be 
seen that the combination leading global and calibrated 
accompanying local provides safe and reliable results 
with minimum scatter. A smaller scatter is achieved by 
taking the minimum resistance of the two combinations 
yielding safe results.

6 Constant amplitude imperfection factors
In accordance with Annex C of Eurocode EN1993-1-5 [4], 
when combining imperfections, a leading imperfection can 
be selected, and the accompanying imperfection may be 
reduced to 70%. In this parametric study, three combina-
tions are tested; i) both global and local imperfections are 
applied with 100% magnitude, ii) the global imperfection is 
applied with 100%, and the local imperfection is reduced to 
70%, iii) the local imperfection is applied with 100%, and 
the global imperfection is reduced to 70%. It was mentioned 
in the literature review that the authors found that the local 
imperfection b/125 yielded the best-fit estimation of the 
buckling curve developed by Schillo et al. [2]. By applying 
this imperfection in a numerical model, the obtained buck-
ling resistance is close to the buckling resistance estimated 
by the mentioned buckling curve. Hence, this local imper-
fection is used here in the parametric study. For global imper- 
fections, the formula developed by Somodi et al. [9, 30] 
is used for the global buckling imperfection scaling factor 
according to Eq. (1). The global imperfection is applied as 
the length L over the value obtained using Eq. (1).

The same statistical assessment procedures described 
in Section 5 are applied here to evaluate the computed 
resistances and obtain the corrected partial safety factors 

(a)

(b)
Fig. 4 The reference resistance re (experimental) and the equivalent 

imperfection combination resistance rt (theoretical). (a) Using 
leading local and accompanying global. (b) Using leading global and 

accompanying local

Table 2 Summary of the parameter uncertainties using the nominal 
values and overstrength factor

Criteria Local 
imp.

Global 
imp. bm Vδ Vrt,avg Vr,avg γM*

Leading 
local

b/Eq. 
(2)

calib-
rated 1.04 0.0598 0.0711 0.0929 1.116

Leading 
global

calib-
rated

L/Eq. (1) 
- b curve 1.07 0.0543 0.0711 0.0895 1.000

Min 1.08 0.0464 0.0711 0.0849 1.000
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for the discussed combinations of imperfections. The exper-
imental resistance re is the reference resistance, and the 
resistance obtained with the mentioned combinations is 
the theoretical resistance rt. Fig. 5 shows the outcomes of 
the parametric study. The figures compare the buckling 
resistance obtained using the studied combinations (theo-
retical resistance) to the reference resistance (experimental 
resistance). Fig. 5(a) depicts the combination where both 
global and local imperfections are set to 100% magni-
tude, Fig. 5(b) shows the combination with 70% reduction 
in local and 100% in global imperfection, while Fig. 5(c) 
shows the combination with 100% local and 70% global 
imperfection. The blue lines in the figures represent the 5% 
and 95% values. It can be seen that all three combinations 
yielded results within the 5% range around the mean value.

The same procedures shown previously are used to 
determine the parameters in Table 3. If both imperfec-
tions are applied with 100% magnitude, the mean correc-
tion factor equals to 1.11, indicating that the obtained aver-
age numerical results (rt ) are smaller than the reference 
resistance (re ). All the other combinations yield safe resis-
tance based on bm. By taking the model uncertainties into 
account, it is possible to see that the corrected partial safety 
factors γM* for 100% global and 100% local combination is 
less than 1.0 while all the other combinations are larger 
than 1.0; this happens since the bm value is larger. It can be 
seen the scatter is large for constant imperfection combi-
nations, as demonstrated by taking a look at the value of 
Vδ and comparing the values to Table 2. The larger value of 
the coefficient of variation is due to using a constant local 
imperfection factor instead of a curve. A smaller scatter 
can be achieved if the minimum resistance of 70% local 
and 70% global combinations is considered compared to 
each combination individually. 

7 Conclusions
Previous studies proved that the equivalent imperfec-
tion factors given by the Eurocode were developed for 
elastic analysis, and using them in GMNI analysis is not 
recommended. In previous research, the authors devel-
oped equivalent local and global imperfection combina-
tions that can be used to estimate the buckling resistance 
of square welded box-sections experiencing interaction 
buckling  [10]. However, these imperfections were devel-
oped mainly for normal-strength steel (NSS). Therefore, 
this research used the same approach to develop equivalent 
imperfection combinations suitable for welded box-sec-
tions made of high-strength steel (HSS). The equivalent 

imperfections are calibrated against a reference resis-
tance obtained by combining local and global imperfec-
tions with residual stresses that the authors developed in 
a different research study [1]. Equivalent local and global 

(a)

(b)

(c)
Fig. 5 The reference resistance re (experimental) and the equivalent 
imperfection combination resistance rt (theoretical). a) using 100% 

global and 100% local. b) using 100% global and 70% local. c) using 
70% global and 100% local
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imperfections were previously determined for pure local 
and global buckling modes [5, 30]. A leading imperfection 
using the pure local or pure global imperfection is selected, 
and the accompanying imperfection is calibrated against 
the reference resistance. A reliability assessment study was 
conducted to check if the obtained combinations of leading 
and accompanying imperfections meet the safety require-
ments of Annex D of EN1990 [29]. The study showed that 
the proposed equivalent imperfection combinations pro-
vide safe results based on the mean correction factor bm. 
By taking the uncertainness into account, the analysis 
revealed that by taking the global imperfection as the lead-
ing imperfection, a partial correction factor of γM* 1.00 is 
obtained for the full set, including S500, S690 and S960, 
which can be safely used for design. However, the combi-
nation with local imperfection is the leading imperfection 
yield a partial safety factor γM* of 1.12 for the full set. 

Annex C of Eurocode EN1993-1-5 [4] recommends 
choosing a leading imperfection, applied with 100% 
magnitude, and the accompanying imperfection mag-
nitude reduced to 70%. Two additional parametric stud-
ies were conducted to investigate the applicability of this 

suggestion, using equivalent global and constant local 
imperfections. The findings demonstrated that while it is 
generally safer to employ 100% magnitude of both global 
and local imperfections. However, the difference in the 
average resistance using 70% or 100% for the accompa-
nying imperfection leads to a maximum of 3% difference. 
Therefore, it is recommended to use 100% for both imper-
fection types in the design practice; thus, it does not lead 
to large differences. 

In summary, this paper has developed and validated 
equivalent geometrical imperfections for accurately esti-
mating the interaction buckling resistance of square welded 
box sections made of high-strength steel, specifically tai-
lored for use in GMNIA. These findings significantly con-
tribute to enhancing FEM-based design practices.
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Table 3 Summary of the parameter uncertainties using the nominal values and overstrength factor for S500, S690, and S960

Criteria Local imp. Global imp. bm Vδ Vrt Vr γM*

70% local 1.08 0.063 0.071 0.095 1.06

70% global 1.06 0.056 0.071 0.091 1.073

Min (70%local, 0%global) 1.08 0.062 0.071 0.094 1.051

100% global and 100% local 1.11 0.065 0.071 0.096 0.998
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