Deflection of a Partially Composite Beam Considering the Effect of Shear Deformation

Hamli Benzahar Hamid1*, Chabaat Mohamed2, Ayas Hillal2

1 Acoustics and Civil Engineering Laboratory, Faculty of Sciences and Technology, Khemis Miliana University, Road of Theniet el Had, Khemis Miliana 44225, Algeria
2 Built Environment Research Laboratory, Department of Structures and Materials, Civil Engineering Faculty, University of Sciences and Technology Houari Boumediene, B.P. 32 El-Alia, Bab Ezzouar, 16111 Algiers, Algeria

* Corresponding author, e-mail: hamli-zahar@univ-dbkm.dz

Received: 02 April 2023, Accepted: 24 July 2023, Published online: 25 August 2023

Abstract
In this research, the deflection in the interface of a partially composite beam considering the effect of shear deformation is determined. The system of beams is structured by two beams of prismatic sections, connected by an adhesive very thin and rigid, subjected to a uniform bending moment and a uniformly distributed load. The governing differential equation of the partially composite beam is obtained from the total functional energy that takes into consideration the shear deformation. The extreme moments creating second moments, shear forces and normal forces are applied to each beam. The differential equation is derived and then, compared to the one found in partial composite beams where the shear deformation is neglected. It is shown that the theoretical results of deflection with and without shear deformation are compared to each other and also with those found in the Timoshenko's beam theory.

Keywords
partially composite beam, shear deformation, deflection, differential equation

1 Introduction
Composite elements (beams, columns, diagonals) are mostly made of material with ductile or brittle behavior and are used, in civil engineering, for structures of reinforced concrete and metal frame [1–3]. The system of partially composite beam (PCB) is found in the case of the connection of beams with sail (reinforced concrete structures) and also in the case of mixed structures (steel-concrete). PCB proposed in this study is structured by two prismatic beams of different sections, superposed and assembled between them. In general, the connection between the beams is provided by bolts, rivets, welding or adhesive [4–6]. In the present research work, the assembly of the PCB is provided by a very thin adhesive which is stressed by shearing, bending, compression and traction with existing shear deformation. The normal force in each individual beam has a non-zero value, however, using the boundary conditions in which the normal force in the individual beam is generally assumed to disappear at the end of PCB [7]. The bending moment soliciting the PCB is a force torque. If one of the two beams is subjected to an axial force, then it produces an eccentric bending moment eccentric with respect to the gravity center of PCB [8, 9]. Nevertheless, to be comparable with the theory of PCB, these loads are presented in the form of axial load applied at the gravity center of PCB soliciting its whole cross section. The distribution of internal forces at the PCB boundaries is then evaluated as the difference between forces obtained at the extremities from the theoretical analysis of the distribution of forces at the extremities with those of the actual distribution of these efforts applied at the boundary [10, 11]. PCB behavior is based on the relationship between tangential forces and inelastic propagation of fracture [12–14].

This paper deals with the analysis of a partial composite beam under bending solicitation, based on the total functional energy of PCB (Eq. (12)). Taking into account in this equation the shear deformation (γ'), a governing differential equation of deflection is found and compared to the one obtained by Challamel and Girhammar [9] where the shear deformation is neglected. The shear deformation effect on the fully composite beam is also treated in this study, the main results are compared with those found in the Timoshenko's beam theory.
2 Geometrical characteristics of the proposed PCB

In Fig. 1, all the geometrical characteristics of the sandwich beam are well described. The system is a superposition of two prismatic beams whose dimensions and forces are clearly shown. The first beam is denoted by the index 1 as \(B_1 \) and the second beam corresponds to the index 2 as \(B_2 \).

Then, the whole system is considered partially composite. \(u, v, w \) are the displacements taken along the principal axes \(X, Y, Z \), respectively. \(M_0 \) is the bending moment applied at the extremities of the system of PCB. \(M_1 \) and \(M_2 \) are seconds individually bending moments applied on the upper and lower beam, respectively. \(N_1, N_2 \) are the normal forces generated by the seconds bending moments applied on the upper and lower beam, successively. \(\text{c.g.1} \) and \(\text{c.g.2} \) correspond to the center of gravity of the upper and lower beam, respectively. \(\text{c,g.PCB} \) is the center of gravity of the partially composite beam.

On the other hand, \(h_1 \) and \(h_2 \) are the heights of upper and lower beam, respectively. \(b_1, b_2 \) correspond to the width of the upper and lower beam. \(d_1, d_2 \) are the distances between \(\text{c.g.1} \) and \(\text{c.g.PBC} \), \(\text{c.g.1} \) and \(\text{c.g.PBC} \), respectively. The overall axial rigidity of PCB is given by:

\[
EA_0 = E_1 A_1 + E_2 A_2, \quad E_1, E_2, A_1, A_2 \quad \text{are the longitudinal elastic modulus of PCB, upper and lower beam, respectively.}
\]

2.1 Interface and boundary conditions

It is obvious that composites whose fibers and matrices are britles can show a fairly high resistance to fracture when the latter occurs along the interface before failure of the fibers [16–18]. Most of the important mechanisms of hardening are a result of the direct failure (shearing) of the interface [19]. This mechanism is at the origin of energy absorption with sustained stability of crack propagation [20, 21]. On the other hand, the tensile mode induces unstable fracture with limits of energy absorption [22, 23]. Therefore, the strength of the compound can be determined by optimizing the interface properties between the reinforcing fibers and the matrix phase [24, 25]. The two beams forming PCB are interconnected by a very thin adhesive with a high performance (good cohesion, mechanical strength and thermal). To obtain a durable assembly, the mechanical and physical characteristics must be comparable to those of parts to be assembled such as concrete, steel, wood, glass, etc. [26–28]. The glue used in this research work must be hard or dry, in order to give a strong bond and a high mechanical strength between the two materials. Fig. 2 shows three modes of bonding two beams by a thin adhesive [29, 30].

The beam above the interface \((Z > 0) \) is denoted by the lower index 1, and the other one located in the lower part \((Z < 0) \) by the index 2. For the present study, the conditions from the border to the interface are defined as follows [26]:

\[
u_i \left(x, y, z = 0^+ \right) = \nu_i \left(x, y, z = 0^- \right), \quad i = 1, 2, 3, \quad (2)
\]
\[
\sigma_{ij} \left(x, y, z = 0^+ \right) = \sigma_{ij} \left(x, y, z = 0^- \right), \quad j = 1, 2, 3, \quad (3)
\]

where, \(u_i \left(i = 1, 2, 3 \right) \) is the displacement in the \(X, Y, Z \) directions, respectively. \(\sigma_{ij} \left(i, j = 1,2,3 \right) \) is the component of the constraint in the \(X, Y, Z \) directions, respectively.
By applying the theory of a bi-material (composite actions) and neglecting the effects of the vertical separation between the two assembled materials, there are several experimental verifications that can be made [31–34]. For the complete composite action, the shearing modulus tends to infinity (\(K_T \rightarrow \infty\)), on the other hand, in the case of a non-composite action, the shearing modulus tends to zero (\(K_T \rightarrow 0\)). For the PCB system, the bonding layer between two beams is stressed by a shearing force given by the following relation:

\[
K_T G e = \frac{M_0}{d_0},
\]

where \(G\) is the shear modulus, \(e\) is the thickness, and \(b\) is the width of the bonding layer (adhesive), respectively.

3 Stress in partially composite beams

According to Fig. 1, the PCB system is loaded by the moments (\(M_0\), the global moment at the ends on either side, \(M_1\) and \(M_2\), seconds individually moments at the upper and lower beams, respectively) and on the other side by the shear forces \(V_1\) and \(V_2\) that affect the sections of the upper and lower beam, respectively. It is obvious that \(N_1\) and \(N_2\) corresponding to the normal forces are created by the global moment \(M_0\) applied individually to the sections of the upper and lower beam, respectively. Thus, shear deformation is considered for composite and partially composite beams [35, 36]. Assuming that the deflection curves of the two beams are equal, the differential equation should confirm the relationship provided by Girhammar and Gopu [37]:

\[
N_2 = \left(1 - \frac{EI_{Z,0}}{EI_{Z,\infty}}\right) \frac{M_0}{d_0}; \quad N_1 = -\left(1 - \frac{EI_{Z,0}}{EI_{Z,\infty}}\right) \frac{M_0}{d_0}.
\]

The following boundary conditions are satisfied:

\[
N_1(0) = N_1(L) = 0.
\]

4 Boundary layer effect

The loaded systems must be equilibrated at their ends. According to the PCB shown previously in Fig. 1, the equilibrium equations of the forces are as follows:

\[
M_0 = M_1 + M_2 - N_1 d_0,\]

\[
N_1 + N_2 = 0.
\]

Since the assumptions of linear and nonlinear elasticity stand for this research study, then normal forces and bending moments can be written in the following form:

\[
N_1 = E_1 A_1 u_1',
\]

\[
N_2 = E_2 A_2 u_2',
\]

\[
y = \int \frac{M_1(x)}{E_1 I_1} dx = \int \frac{M_2(x)}{E_2 I_2} dx,
\]

where, \(y\) is the deflection of beams.

5 Differential equation of PCB

Differential equations of the PCB with a shear deformation subjected to a uniform bending moment and uniformly distributed load are obtained from the total energy as follows:

\[
U(u_1, u_2, v) = \int_0^L \left[\frac{1}{2} EI_{Z,0}(v'^2) + \frac{1}{2} E_1 A_1 (u_1')^2 \right] dx + \frac{1}{2} b e G \gamma'^2 dx + M_0 \left[v'(L) - v'(0) \right] - \int_0^L q v dx,
\]

where, \(G\) corresponds to the shear modulus of the adhesive, \(\gamma'\) is the shear deformation and \(a\) is a constant value.

For a complete composite action, the shearing modulus tends to infinity (\(a \rightarrow \infty\)), on the other hand, for a non-composite action the shearing modulus tends to zero \(a \rightarrow 0\). This last equation assumes that the curvature of the two sub-elements (upper and lower beam) is equal. Let’s derive Eq. (12) and substitute both Eq. (9) and Eq. (10), one can get an equation of a stationary energy leading to the principle of virtual work as follows:
The corresponding solution to previous Eq. (22) is given as follows:

\[v^*(x) = \frac{M}{EI_{Z,\infty}} e^{-\frac{\mu x}{\sqrt{ab} \mu_2}}. \]

(23)

Substitution of Eq. (5), Eq. (9), Eq. (10) in Eq. (16), lead us to a simplified expression of the curvature:

\[M_0 + ab^2G \left(\frac{1 - EI_{Z,0}}{EI_{Z,\infty}} \right) M_0. \]

(24)

On the other side, if we substitute Eq. (23) into Eq. (24), then, the bending moment takes the form:

\[
M = EI_{Z,\infty} \left\{ \frac{M_0 + ab^2G \left(\frac{1 - EI_{Z,0}}{EI_{Z,\infty}} \right) M_0. \frac{EA_0}{EA_p}}{EI_{Z,0} + ab^2Gd_0^2} \right\} - 1. \]

(25)

Let’s substitute Eq. (25) into Eq. (23) and integrate, the deflection becomes:

\[v(x) = \left(\frac{M_0 + ab^2G \left(\frac{1 - EI_{Z,0}}{EI_{Z,\infty}} \right) M_0. \frac{EA_0}{EA_p}}{EI_{Z,0} + ab^2Gd_0^2} \right) \frac{(Lx - x^2)}{2}. \]

(26)

In the absence of the shear deformation \((a = 0)\), the deflection can be written under the following form:

\[v(x)_{a=0} = \left(\frac{M_0}{EI_{Z,0}} \right) \frac{(Lx - x^2)}{2}. \]

(27)

On the other hand, the presence of the shear deformation \((a \to \infty)\) can stiffen the PCB system by inertia \(EI_{Z,\infty}\) as (see Appendix B for more details).

\[v(x)_{a=\infty} = \left(\frac{M_0}{EI_{Z,\infty}} \right) \frac{(Lx - x^2)}{2}. \]

(28)

Taking into account the shear deformation, previous Eq. (26) is determined as a function of the shear modulus \((G)\) and the width of the bonding layer as well as the geometrical characteristics of the section of PCB system such as \(EI_{Z,0}, EI_{Z,\infty}, EA_0, E_p, \) and \(d_p.\) In the absence of shear deformation, Eq. (27) is written as a function of the inertia \(EI_{Z,0}\), meaning a superposition of two unrelated beams. On the other hand, one can notice that for the case of a shear deformation at infinity, Eq. (28) is derived as a function of the PCB section inertia \((EI_{Z,\infty})\) which is considered as a superposition of the two beams linked together.
Table 1 Deflection in case of both an existing and absence of shear deformation

<table>
<thead>
<tr>
<th>PBC Length (L)</th>
<th>Deflection with shear deformation (a → ∞)</th>
<th>Deflection without shear deformation (a → 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L/8</td>
<td>7M_aL^3/128EI_{z,∞}</td>
<td>7M_aL^3/128EI_{z,0}</td>
</tr>
<tr>
<td>L/4</td>
<td>12M_aL^3/128EI_{z,∞}</td>
<td>12M_aL^3/128EI_{z,0}</td>
</tr>
<tr>
<td>3L/8</td>
<td>15M_aL^3/128EI_{z,∞}</td>
<td>15M_aL^3/128EI_{z,0}</td>
</tr>
<tr>
<td>L/2</td>
<td>16M_aL^3/128EI_{z,∞}</td>
<td>16M_aL^3/128EI_{z,0}</td>
</tr>
<tr>
<td>5L/8</td>
<td>15M_aL^3/128EI_{z,∞}</td>
<td>15M_aL^3/128EI_{z,0}</td>
</tr>
<tr>
<td>3L/4</td>
<td>12M_aL^3/128EI_{z,∞}</td>
<td>12M_aL^3/128EI_{z,0}</td>
</tr>
<tr>
<td>7L/8</td>
<td>7M_aL^3/128EI_{z,∞}</td>
<td>7M_aL^3/128EI_{z,0}</td>
</tr>
<tr>
<td>L</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The deflection can be determined in case of both an existing and absence of shear deformation. The following Table 1 summarized the deflections found in different sections of PCB.

Eq. (28) and Eq. (27) have proven that the presence of shear deformation increases the total inertia of PCB and consequently; decreases the deflection. In Eq. (26), the variation of the deflection can be determined according to the constant a. Fig. 3 represents the variation of the deflection v(x) as a function of the length (L) of the PCB (case: a = 0, 1, 2, 3, 4 + ∞).

In the case of shear deformation, shear modulus (G) of the cohesive greatly influences the deflection of PCB. Fig. 4 shows the variation of the deflection as a function of the rate (G/E), at presence and absence of shear deformation.

6 Variation of the width of the lower beam
As shown in Fig. 1, keeping the section of the upper beam B_1 (h_1, b_1) and varying the width (b_2) of the lower beam, the deflection can be determined with the consideration of the presence of the shear deformation (a → ∞) and at absence of this shear deformation (a = 0). For each width (b_2), the deflection without a shear deformation always remains greater than that taken with a shear deformation. Fig. 5 represents the variation of the deflection versus the rate (b_2/b_1) of widths of the two beams.

Fig. 4 shows the variation of the maximum deflection with the rate (G/E). One can notice from this curve that when a = 1 to 4, the deflection decreases while the rate (G/E) increases. For the case of an interface without a shear deformation (a = 0), the deflection is steady and can reach a maximum value, meanwhile, in the presence of a shear deformation (a → ∞), the deflection is constant towards a minimum value as displayed in Fig. 5. Both curves show that the deflection decreases while the width's rate increases. It is obvious that the deflection rate (v_2/v_1) is proportional to the width's rate (b_2/b_1).
7 Rate of two deflections
For each cross section of PCB, deflection can be determined at an existing or not of the of shear deformation.
The deflection with a shear deformation is noticed by n_1 and that without a shear deformation by n_2. The rate of both deflections (n_2/n_1) is determined on the basis of the variation of the width at the lower beam in comparison to that of the upper beam (b_2/b_1). Fig. 6 represents the variation of n_2/n_1 as a function of b_2/b_1.

8 Fully composite beam
It is assumed that a composite beam (CB) is structured by two identical beams having the same cross section (h, b) and a length L, subjected to a uniform bending moment and a uniformly distributed load (see, Fig. 7).

In case of a deflection without a shear deformation ($a = 0$), we get:

$$EI_{Z,0} = EI_1 + EI_2 = \frac{2Eh^3}{12} \text{ and } I_1 = I_2 = \frac{bh^3}{12}. \quad (29)$$

And if we substitute Eq. (29) into Eq. (27), the deflection becomes as

$$v(x) = \frac{3}{4} \left[\frac{M_0}{Ebh^3} \right] \left(Lx - x^2 \right). \quad (30)$$

On the other hand, if we substitute Eq. (29) into Eq. (28), the presence of the shear deformation leads us to a deflection of two identical beams under the following form:

$$v(x) = \frac{3}{4} \left[\frac{M_0}{Ebh^3} \right] \left(Lx - x^2 \right). \quad (31)$$

In the case of a superposition of two identical prismatic beams and according to Eqs. (30) and (31), it is obvious that the presence of a shear deformation can decrease the deflection by four times which is compared with Timoshenko beam’s theory. The Fig. 8 represents the deflection of the composite beam with and without shear deformation.
9 Conclusion
Deflection in the PCB considering the shear deformation has been theoretically studied. In this study, PCB is subjected to uniformly distributed load and bending moments M, with existing shear deformation at the interface. Using the total functional energy, the governing differential equation of PCB is derived as a function of the shear deformation. Neglecting the term of the shear deformation in the global expression of deflection developed in this research, the resulting equation takes the form of a differential equation of the deflection of a PCB which is similar to the one formulated by Challamel and Girhammar [9]. It is shown that the general solution of the governing differential equation represents the second derivative of the deflection of PCB. Based on the boundary conditions and using the double integral, equation of the deflection with the shear deformation is obtained. One can notice that the variation of the deflection versus the shear deformation can decrease the deflection in the PCB. For a fully composite beam, it is noticed here that the presence of a shear deformation reduces the inertia and the deflection of CB by four times. This phenomenon is proven in the Timoshenko’s beam theory.

References
https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1159)
https://doi.org/10.1108/IJSI-08-2018-0048
https://doi.org/10.1016/j.jnonlinmec.2011.01.001
https://doi.org/10.1016/j.euromechsol.2020.104108
https://doi.org/10.3311/PpCe.10910
https://doi.org/10.1007/s13296-017-1228-3
https://doi.org/10.1007/s10443-019-09776-4
https://doi.org/10.12989/se.2016.58.2.327
https://doi.org/10.1061/(ASCE)AS.1943-5525.000027
https://doi.org/10.1115/1.3167673
https://doi.org/10.1177/1687814019828461
https://doi.org/10.1016/j.composites.2019.03.004
https://doi.org/10.3311/PPCi.19642

Nomenclature

<table>
<thead>
<tr>
<th>PCB</th>
<th>Partially Composite Beam</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1, B_2</td>
<td>Upper and lower beam successively</td>
</tr>
<tr>
<td>n_1, n_2</td>
<td>Deflections of upper and lower beam successively</td>
</tr>
<tr>
<td>γ'</td>
<td>Shear deformation</td>
</tr>
<tr>
<td>M_0</td>
<td>Bending moment applied at the extremities of the system of PCB</td>
</tr>
<tr>
<td>M_1, M_2</td>
<td>Normal forces generated by the seconds bending moments applied on the upper and lower beam successively</td>
</tr>
<tr>
<td>N_1, N_2</td>
<td>Normal forces generated by the seconds bending moments applied on the upper and lower beam successively</td>
</tr>
<tr>
<td>A</td>
<td>Dimensionless parameter</td>
</tr>
<tr>
<td>e, b, q</td>
<td>Thickness and width of the bonding layer (adhesive) Uniformly distributed load</td>
</tr>
<tr>
<td>E_1, E_2</td>
<td>Longitudinal elastic modulus of upper and lower beam successively</td>
</tr>
<tr>
<td>A_1, A_2</td>
<td>Section of upper and lower beam successively</td>
</tr>
<tr>
<td>I_1, I_2</td>
<td>Inertia's of upper and lower beam successively</td>
</tr>
</tbody>
</table>
Appendix A

The axial flexural rigidity of PCB is given by:

\[EA_0 = E_A h_A + E_2 h_2, \quad (A1) \]

\[EA_p = E_A h_A \cdot E_2 h_2, \quad (A2) \]

\[I_0 = E_I I_1 + E_2 I_2, \quad (A3) \]

\[EI_{\infty} = EI_0 + \frac{EA_p d_0^2}{EA_0}. \quad (A4) \]

Appendix B

Eq. (13) becomes

\[
\delta(U) = \int_0^L \left[EI_{Z,0} (v')^2 + N_1 \delta u' + N_2 \delta u' + b t d_0 \delta v' + b t \delta u_2 \right] dx + M_0 [\delta v'(L) - \delta v'(0)] - \int_0^L q \delta v dx = 0 \quad (B1)
\]

where:

\[
\begin{align*}
\gamma &= \left(\frac{u_2 - u_1}{L} \right) + \frac{d_0}{e} \delta v' \\
\gamma' &= \left(\frac{u_2 - u_1}{L} \right) + \frac{d_0}{e} \delta v
\end{align*} \quad (B2)
\]

\[
\begin{align*}
d\gamma &= \left(\frac{\delta u_2 - \delta u_1}{L} \right) + \frac{d_0}{e} \delta v' \\
d\gamma' &= \left(\frac{\delta u_2 - \delta u_1}{L} \right) + \frac{d_0}{e} \delta v
\end{align*} \quad (B3)
\]

Eq. (19) becomes (with;)

\[
(v^2) = \left(\frac{\alpha^2}{1 + abe \alpha^2} \right) (v^4) + q \left(\frac{\alpha^2}{EI_{Z,0} (1 + abe \alpha^2)} \right) - q \left(\frac{abe \alpha^2}{1 + abe \alpha^2} \right) = 0 \quad (B4)
\]

Eq. (28) becomes:

\[
\lim_{a \to \infty} \nu(x) = \frac{a}{\left[\frac{M_0}{a} + b^2 G \left(1 - \frac{EI_{Z,0}}{EI_{Z,\infty}} \right) \frac{M_0}{EA_0} \right] \left(\frac{EI_{Z,\infty} - EI_{Z,0}}{EA_p} \right)} \left(\frac{Lx - x^2}{2a} \right) \quad (B5)
\]

where:

\[
\left(\frac{EI_{Z,\infty} - EI_{Z,0}}{EA_p h_0^2 / EA_0} \right) \quad (B6)
\]
Appendix C
Integration of differential equation

In Eq. (13), the integrations by parts can be rewritten in the following form:

$$\left[\left(-EI_{x,0} (\nu^2) + \beta t d_0 - ab^2 \epsilon t \delta d_0 \right) \delta (\nu) \right]_0^L = 0 , \quad (C1)$$

$$\left[\left(N_1 - ab^2 \epsilon t \right) \delta u_1 \right]_0^L = 0 . \quad (C2)$$

$$\left[\left(N_2 - ab^2 \epsilon t \right) \delta u_2 \right]_0^L = 0 . \quad (C3)$$

From where:

$$\int_0^L EI_{x,0} (\nu) \delta (\nu) = \left[EI_{x,0} (\nu) \delta (\nu) - EI_{x,0} (\nu^2) \delta (\nu) \right]_0^L + \int_0^L EI_{x,0} \left(\nu^{(4)} \right) \delta (\nu) \, dx = 0 , \quad (C4)$$

$$\int_0^L N_1 \delta u_1 = \left[N_1 \delta u_1 \right]_0^L + \int_0^L N_1' \delta u_1' \, dx = 0 , \quad (C5)$$

$$\int_0^L N_2 \delta u_2 = \left[N_2 \delta u_2 \right]_0^L + \int_0^L N_2' \delta u_2' \, dx = 0 , \quad (C6)$$

$$\int_0^L \beta t d_0 \delta \nu' \, dx = \left[\beta t d_0 \delta \nu' \right]_0^L - \int_0^L \beta d_0 \delta \nu \, dx = 0 , \quad (C7)$$

$$\int_0^L ab^2 \epsilon t \delta u_2' \, dx = \left[ab^2 \epsilon t \delta u_2' \right]_0^L - \int_0^L ab^2 \epsilon t \delta u_2 \, dx = 0 , \quad (C8)$$

$$\int_0^L ab^2 \epsilon t \delta u_1' \, dx = \left[ab^2 \epsilon t \delta u_1' \right]_0^L - \int_0^L ab^2 \epsilon t \delta u_1 \, dx = 0 , \quad (C9)$$

$$\int_0^L ab^2 \epsilon t d_0 \delta \nu' \, dx = \left[ab^2 \epsilon t d_0 \delta \nu' - ab^2 \epsilon t d_0 \delta (\nu) \right]_0^L + \int_0^L ab^2 \epsilon t d_0 \delta (\nu) \, dx = 0 . \quad (C10)$$