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Abstract

Vibration-based structural damage detection is one of the most promising venues for building smart and automated structural health 

monitoring applications; however, its applicability is impeded by a large amount of collected vibration data, and the performance could 

be undermined by degraded data. Therefore, this study develops a robust framework, dubbed AutoBoost-SDD, that can effectively 

handle contaminated vibration data and provide reliable monitoring results within reasonable computational resources. The proposed 

method consists of three key components. Firstly, multi-domain feature extraction techniques are utilized to convert high-dimensional 

raw data into informative feature vectors. Secondly, the auto-encoder deep learning architecture is leveraged to refine feature vectors of 

contaminated data. Finally, a tree-based boosting machine learning algorithm, namely LightGBM, is employed to assess the structures’ 

operational states using learned output from the second step. The viability and performance of the proposed framework are illustrated 

via three case studies involving numerical data of a 5-degree of freedom system, a 2D frame structure, and experimental data of a large-

scale 18-story frame structure from the literature. The results show that the AutoBoost-SDD framework is able to provide reasonable 

detection results despite the presence of various contaminations, including noisy, missing, and anomalous data.
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1 Introduction
An intelligent structural damage detection system [1–3] 
is an indispensable and critical component of smart struc-
tures because it can timely provide an accurate evaluation 
of the actual state of a structure with reduced manual labor 
and a low budget. Towards an intelligent structural dam-
age detection (SDD) application, using vibration signal [4] 
for performing SDD tasks is a convenient way compared 
to other methods such as manual visual inspection, impact 
test, etc., since it can be carried out when the structure is 
in daily service condition and exposed to random oper-
ational and environmental loads, without requiring any 
interruption. A number of well-known works from vari-
ous authors [5–8] have demonstrated the applicability and 
credibility of the vibration-based SDD methods. However, 
in reality, this task is challenging due to unavoidable neg-
ative perturbations such as environmental noise, device 
instability, human errors, transmission loss, etc., leading 
to noisy and missing measurement data. 

A quick and simple technique for handling missing 
data is to assume a linear relationship between data fea-
tures, then use available features to derive missing ones, 
as done in [9]. However, the applicability of such a method 
for complex structures featuring non-linear responses 
is limited. When working with incomplete structures' 
static responses, Kourehli et al. [10] proposed to employ 
the probabilistic simulated annealing method to eval-
uate damages in structures. The viability of the method 
was demonstrated through a simulation example and an 
experimental 8-degree of freedom (dof)-spring-mass sys-
tem. Later, Yin et al. [11] developed a practical method 
based on the Finite element model reduction technique 
and Bayesian inference, which could provide reasonable 
structural damage detection results even with incomplete 
modal data. The proposed method was applied to detect 
connection stiffness reduction due to bolt loosening in an 
experimental two-story frame structure. Recently, deep 
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learning-based methods have been increasingly used to 
impute missing data. A common deep learning architec-
ture is effectively used in structural health monitoring by 
Dang et al. [12], namely, convolutional neural networks. 
Fan et al. [13] proposed an innovative approach based on 
a convolutional neural network for recovering incomplete 
structural health monitoring (SHM) information with 
a part of the data lost during the transmission process. 
The accuracy and robustness of the  proposed method were 
demonstrated via the Dowling Hall Footbridge, show-
ing that recovered signals could provide accurate modal 
identification results even with a 90% data loss ratio. 
Jiang et al. [14] utilized the generative adversarial network 
for directly recovering incomplete sensor data measured 
from a real bridge without requiring expert knowledge. 
Furthermore, the method was applicable to both static 
structural responses and dynamic responses, including 
those caused by transport vehicles. 

In addition to incomplete data, noise is also a nega-
tive factor commonly encountered in reality. Ibrahim 
et al. [15] proposed utilizing a high-pass filter for cancel-
ing low-frequency noise of signals measured from low-
cost sensors. The authors stated that the higher the cutoff 
frequency, the more noise cancellation is achieved; how-
ever, increasing the cutoff frequency also removes sig-
nals' low-frequency contents, which potentially introduces 
errors. de Castro et al. [16] developed a method combin-
ing the Electromechanical impedance technique and the 
cross-correlation signal processing technique for struc-
tural health monitoring in noisy environments. The authors 
found that the imaginary part of the impedance and wave-
let approximation is less sensitive to noise. The method 
was applied to an experimental plate structure, providing 
reasonable detection and quantification results of damage 
under low, moderate, and high noises. To detect minor 
damages in a structure under a noisy environment, Das 
and Saha [17] explored a hybrid damage detection algo-
rithm fusing the variational mode decomposition with fre-
quency domain decomposition. The method is applicable 
to various types of noise, including white noise and ran-
dom-valued impulse noise. Ma et al. [18] observed that if 
a sensor's performance degrades, it only affects the corre-
sponding data collected from that sensor but does not alter 
data from other sensors. Hence, the authors introduced 
a novel index, namely, the percentage of the extreme value 
of the largest principal components for, first, separating 
sensor performance degradation from structural damage, 
then performing damage detection with high accuracy 

even in the presence of noise. Recently, Dang et al. [19] 
demonstrated that using graph learning can effectively 
reduce the negative effects of missing and noisy data 
thanks to the ability to leverage the spatial correlation of 
sensor locations.

1.1 Research significance
In the authors' opinion, there are two drawbacks in reviewed 
works that could impede their applicability in practice. 
The first drawback is the difficulty of transmission, analy-
sis, and storage of a large number of raw vibration signals. 
The second drawback is the need to improve the robust-
ness against several types of perturbations with differ-
ent degrees. Therefore, this study proposes a novel SDD 
method, termed AutoBoost-SDD (Autoencoder-Gradient 
Boosting-Structural Damage Detection), to cope effec-
tively with multiple contaminated signals. The main idea of 
the method is three folds: first, vibration signals are trans-
formed into a concise yet meaningful feature vector [20] 
encoding information from statistical, temporal, and spec-
tral domains. Second, a denoising masked auto-encoder 
network is designed to adjust feature vectors extracted from 
perturbed signals to new vectors that are close to those from 
intact signals. Third, a tree-based boosting machine learn-
ing algorithm is leveraged to perform SDD tasks using the 
adjusted feature vector. To sum up, the key contributions of 
this study are summarized below:

• A robust SDD method able to work with contami-
nated vibration signals is designed and fully imple-
mented. The proposed method can provide accurate 
detection results with the presence of various types 
and different degrees of perturbations.

• The credibility and feasibility of the proposed Auto-
Boost-SDD are demonstrated through three structural 
databases with increasing complexity: a 5-degree of 
freedoms system, a 2D numerical frame structure, and 
a full-scale experimental 18-story structure from the 
literature.

• In addition, comparison, robustness, and parametric 
studies are carried out, providing comprehensive 
insights into the mechanism of the AutoBoost-SDD 
method and helping increase its applicability to other 
problems.

In the remainder of this paper, Section 2 presents the 
overall working flow and details of the main components 
of the AutoBoost-SDD framework, including the feature 
extractor, denoising masked autoencoder and the tree-based 
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boosting algorithm. In section 3, the proposed method is 
validated via a number of case studies. Finally, Section 4 
draws conclusions and outlines some future perspectives.

2 Self-supervised learning SDD framework using 
masked denoising auto-encoder 
The overall working flow of the proposed framework is 
graphically illustrated in Fig. 1, which consists of two 
stages: unsupervised learning and supervised classifier. 
The first stage is decomposed further into the feature 
extraction step using signal preprocessing techniques 
and the reconstruction step using a denoising masked 
auto-encoder deep learning architecture. Meanwhile, in 
the second stage, SDD problems are recast into equiva-
lent classification problems, and then, a highly effective 
and efficient boosting LightGBM is leveraged to perform 
SDD tasks using reconstructed data obtained from the first 
stage. The details of each stage of the framework will be 
described in the following subsections.

2.1 Extracting damage-sensitive features from 
vibration signals
High-dimensional raw vibration signals contain redundant 
information leading to unnecessary large storage require-
ments and additional computation times. Therefore, it is 
desirable to extract meaningful features that are sensitive 
to structural states [21–22] before performing subsequent 

calculation and storage actions. Vibration signals can be 
classified as time-series data that consist of sequences 
of values recorded at consecutive time instants. One can 
compute some statistical characteristics from time-series 
data, such as max/min values, standard deviation, and 
skewness. For example, if damage occurs, the structural 
stiffness will be reduced, and the structure will vibrate 
stronger; thus, the maximum amplitude will be increased. 
Therefore, these statistics can be used as damage indi-
cators. In addition, one can include quantile values that 
describe the shape of the probability distribution of signal 
values. On the other hand, there are temporal features that 
describe the evolution over time of vibration values, for 
example, the number of peaks, zero crossing rate, the area 
under the curve, and the total energy of the data. The high 
values of the number of peaks and the zero crossing rate 
mean that there is significant fluctuation in data, i.e., more 
contribution from high-frequency components, thus indi-
cating some changes in structural states. A more direct 
look at the frequency content of signals is to extract fea-
tures from the spectral domain, such as the fundamental 
frequency, spectral centroid, Fast Fourier Transform coef-
ficients, etc. It is commonly acknowledged that damages 
result in shifts in the structure's eigenfrequency values; 
thus, these spectral features, which can be obtained with 
the help of the Fourier Transformation, are useful indica-
tors in detecting damage. In short, the features employed 

Fig. 1 Architecture of the proposed AutoBoost-SDD framework including a symmetric denoising masker Auto-Encoder 
and the Boosting LightGBM model 
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in this study are enumerated in Table 1 with the help of 
the TFEL library [23]. It is possible to include more fea-
tures in the data to improve the detection accuracy; on the 
other hand, a feature importance study could be carried 
out to assess the contribution of every feature, and irrele-
vant ones could be discarded accordingly. A more in-depth 
study about feature extraction could be found in [24].

2.2 Contaminated vibration signals
In practice, there are numerous unfavorable factors that 
could contaminate the signal quality, such as transmission 
loss, human errors, device instability, and environmental 
noise. One of the most common perturbations is the pres-
ence of noisy signals, which can be modeled by adding an 
amount of white noise to the original signals. The noise 
level is characterized by a Noise-to-Signal ratio (NSR), 
which is the ratio between the noise amplitude and the 
root mean square value of the original vibration signals. 
Another popular perturbation is missing data, where some 
parts are not available, resulting in NaN (not a number) 
symbols in the database. Such a problem will lead to errors 
in calculations and stop the detection application since most 
equations and programming functions only take numerical 

values as inputs. In order to address this problem, imputa-
tion techniques need to be applied. Examples of these tech-
niques are zero imputation, mean imputation, neighboring 
imputation, etc. After imputing, traditional detection algo-
rithms can be performed, but the signal contents are con-
siderably altered, leading to inaccurate detection results. 
The third type of perturbation widely considered in assess-
ing the method robustness refers to the anomaly problem 
where certain signal values differ significantly from oth-
ers (either larger or smaller) or where a portion of signals 
exhibits abnormal patterns. Such a phenomenon could 
modify the statistic characteristics, the temporal shape, 
and the frequency contents of signals, leading to detection 
errors and misinterpretation. There are also other types of 
perturbations that have been addressed in the literature 
[25], such as scaling problems, artificial trends, magnitude 
warping, time warping, and so forth. Representative exam-
ples of contaminated signals are illustrated in the leftmost 
panel of Fig. 1, as well as later in Section 3.4. In short, it is 
desirable to design a robust detection framework that could 
provide acceptable detection results even with signals con-
taminated by unknown perturbation.

2.3 Denoising masked auto-encoder
Among various neural networks that have been suc-
cessfully applied in structural engineering [26–30], 
an auto-encoder is a specialized deep-learning archi-
tecture designed to learn a compact representation of 
data that encodes the most meaningful information [31]. 
The authors postulate that the learned compact data rep-
resentation of an auto-encoder architecture will filter out 
noise, anomalies, redundant information, and other spuri-
ous artifacts. Furthermore, it is expected that the recon-
structed feature vector resembles that of a vibration signal 
in good condition. It is worth noting that the auto-encoder 
does not require labeling data with associated structural 
states. Specifically, a vibration signal is polluted with 
perturbations described earlier; then, feature vectors are 
extracted before entering the auto-encoder. At the out-
put layer, the reconstructed feature vector will be com-
pared with that distilled from the original data. By doing 
so, the auto-encoder becomes practical and can be trained 
with a large volume of unlabeled vibration data. A typi-
cal auto-encoder network is composed of three parts: an 
encoder, a bottleneck, and a decoder. The encoder grad-
ually compresses input data into latent representations 
with significantly lower dimensionality compared to the 
input data. This can be done by using multiple layers of 

Table 1 List of features extracted from vibration signals 

No Feature description Function

1 Signal entropy tfea.entropy

2 Maximum value of the signal. np.max

3 Minimum value of the signal. np.min

4 Mean value of the signal. np.mean

5 Root mean square of the signal. tfea.rms

6 Standard deviation of the signal. np.std

7 Skewness of the signal. tfea.skewness

8 Kurtosis of the signal tfea.kurtosis

9 1st quartile value of the signal. np.quantile(0.25)

10 Median value of the signal. np.quantile(0.5)

11 3rd quartile value of the signal. np.quantile(0.75)

12 Area under the curve of the signal tfea.auc

13 Centroid along the time axis tfea.calc_centroid

14 Total energy of the signal tfea.total_energy

15 Zero-crossing rate of the signal tfea.zero_cross

16 fundamental frequency of the signal. tfea.fundamental_
frequency

17 Centroid of the signal spectrum. tfea.spectral_centroid

18 Variation of the signal spectrum tfea.spectral_variation

19 Skewness of the signal spectrum tfea.spectral_skewness

20 Kurtosis of the signal spectrum tfea.spectral_kurtosis

(*)tfea: tsfel.feature_extraction.features
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perceptron where the size of the subsequent layers pro-
gressively decreases. The bottleneck is a neural layer 
that has the smallest size in the network and represents 
the compressed data representation. Although it is possi-
ble to store and utilize learned representation at this step 
for performing damage detection, this representation does 
not have any physical or statistical significance, making it 
a complete black box to the users. Therefore, a decoder is 
employed to reconstruct vibration features back to their 
original form. Usually, the architecture of the decoder 
is symmetric to that of the encoder, consisting of multi-
ple layers where the size of the layers gradually increases 
from one layer to the next. Different from the traditional 
autoencoder, in this study, one does not directly feed sig-
nals into the encoder. Instead, one extracts vibration fea-
tures at first and compares reconstructed feature vectors 
with those of the original signal.

The similarity between reconstructed feature vectors 
and original ones is measured via the mean absolute error 
(MAE). Note that it is necessary to apply the standardiza-
tion to avoid the scaling problem, especially when comput-
ing the MAE loss. Otherwise, features of large values will 
dominate other features with small values regardless of their 
sensitivity to damage. Afterward, the autoencoder is trained 
by using the backpropagation algorithm [32]. The gradient 
of the loss function with respect to the model's weights is 
computed and used to simultaneously update the weights 
of the encoder and decoder in the direction that minimizes 
the loss function. The essential hyperparameters of the 
autoencoder are the size of the bottleneck layer, the number 
of layers in the Encoder/Decoder, the activation functions 
applied to the output of each layer, the learning rate, and 
batch size. The appropriate values for these hyperparame-
ters are problem and data-specific; they will be determined 
through a hyperparameter tuning process with the aid of 
specialized techniques such as grid search, random search, 
or Bayesian optimization. 

The Auto-encoder is implemented from scratch by 
the authors with the help of the machine learning library 
Pytorch [33] and trained on a computation server equipped 
with an Intel Xeon CPU E5-2650, Nvidia 3080 GPU and 
64 Gb RAM.

2.4 Tree-based boosting machine learning algorithm 
LightGBM
Decision trees. The decision tree model refers to a hier-
archical binary splitting model that divides data into two 
groups based on data features in a top-down fashion [34]. 

Each splitting is performed such that the homogeneity of 
samples within groups is maximized. The procedure is 
iterated until one of the stopping criteria is satisfied, e.g., 
reaching the maximum number of iterations or the min-
imum number of samples in a group. After that, the pre-
dicted output of each final group, a.k.a leaves, is obtained 
by averaging the values of its data samples. When a new 
sample enters the trained Decision Tree model, this sample 
will be classified into one of the final leaves, and the pre-
dicted value is the output value of the corresponding leaf. 

LightGBM. Although the decision tree is fast and prac-
tical, its performance is not stable; in other words, it is 
very sensitive to many parameters, e.g., the data size, 
the tree depth, the used criteria, etc. Based on the deci-
sion-tree algorithm, Ke et al. [35] developed a distributed 
gradient-boosting framework that can handle large data-
sets with reduced computation time and does not require 
as much memory. LightGBM consists of a sequence of 
decision tree models, which are successively trained such 
that the later tree learns to correct the mistakes of the pre-
vious trees. At each iteration, the tree models are grown in 
a leaf-wise fashion, i.e., the new tree is obtained by includ-
ing a new leaf to its predecessor. Note that the added leaf 
usually corresponds to the most important features that 
could significantly reduce the errors. The final predictions 
are calculated by summing the predictions of all the indi-
vidual tree models. A graphical explanation of LightGBM 
is illustrated in Fig. 2. It can be seen that starting with 
model 1, one will create a model 2 based on a critical fea-
ture (in red), and the results at iteration 2 are obtained by 
aggregating outputs of both models 1 and 2. Next, at iter-
ation 3, model 3 is devised to improve the performance of 
model 2, and the results at iteration 3 are calculated based 
on the outputs of all three models. The above procedure is 

Fig. 2 Graphical representation of the LightGBM algorithm
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repeated until one of the convergence criteria is reached. 
On the other aspect, some main hyperparameters of 
LightGBM are the number of decision trees to include in 
the ensemble, the maximum depth of each tree, the maxi-
mum number of leaves in a tree, etc.

3 Application examples
3.1 Problem descriptions 
In this section, the proposed AutoBoost-SDD model is 
applied to three case studies with increasing complex-
ity. The first case study is a 5-degree-of-freedom system 
modeling a 5-story structure with lumped masses sub-
jected to a time-varying horizontal load at the top story, 
as displayed in Fig. 3(a). Damage is artificially intro-
duced into the structure by randomly reducing one of 
five story stiffnesses by an amount in the range of [90%, 
60%, 30%, 10%]. It is desirable to detect whether the dam-
age exists or not and localize the story where it occurs 
based on vibration signals recorded at lumped masses. 
The system is numerically modeled by using the open-
source Finite element software OpenSees by the Pacific 
Earthquake Engineering Research Center [36]. In the 
model, the discrete masses are connected via zero-length 
elements with stiffness and viscous damping values 
described above. The structural responses are obtained by 
dynamic analysis using the Newmark integration scheme 
and Newton-Raphson method. The sampling frequency 
is 100 Hz, and the time duration of each simulation is 
30 s. To create the structural database of this 5-dof sys-
tem, 5000 simulations were carried out with random vari-
ables including the mass, the story stiffness, the damping 
coefficient, the loading amplitude, following normal dis-
tributions with mean values of m = 100 kg, k = 30 kN/m 

and c = 200 Ns/m, respectively. The database of the first 
example has a shape of [5000, 5, 3000], with 5000 being 
the total number of samples, 5 being the number of sen-
sors, and 3000 being the signal length.

The second example involves a three-span eight-story 
steel frame subjected to time-varying horizontal loads act-
ing at story levels, as shown in Fig. 3(b). The typical story 
height is 4.0 m, resulting in a total height of 32 m; the 
spans have the same width of 6 m. The cross-sections of 
the structural members are W12X87, W27X129, W24X62, 
and W24X55, as indicated in the figure. The structure's 
dynamic responses to time-varying excitations are obtained 
by using dynamic analysis, similar to the first example. 
However, the CPU time of each simulation is significantly 
longer than that of the 5-dof system due to the increased 
complexity and number of degrees of freedom, requiring 
a smaller time step (0.001 s) for convergence. The dam-
age is introduced to the structure by randomly decreasing 
the moment of inertia of one or multiple columns (up to 5 
columns) by an amount of [10%, 30%, 60%, 90%]. The 
purpose of the example is to use vibration signals recorded 
from beam-column connections to inversely detect the 
presence of damage. There are, in total, 5000 simulations 
with different damage locations, time-varying loads, and 
different structural parameters, including Young's modu-
lus, structural damping ratio, and time-varying loads drawn 
from the distributions enumerated in Table 2. The database 
of the second example has a shape of [5000, 32, 1000], 
with 5000 being the total number of samples, 32 being the 
number of sensors, and 1000 being the signal length.

The third example is a high-rise steel frame structure 
subjected to ground motions that simulate earthquake 
loads, carried out at the Hyogo Earthquake Engineering 

Fig. 3 Images of three case-studies including two numerical and one experimental structures



Dang
Period. Polytech. Civ. Eng., 67(3), pp. 875–889, 2023|881

Research Center [37]. The frame has 18 stories with 
a total height of 25.35 m, three equal spans of 2 m width 
in the long horizontal direction, and one 5 m span in the 
other direction. An image of the structure is shown in 
Fig. 3(c). The columns are made from built-up hollow sec-
tions, while the beams are I-shaped and welded to the col-
umns. The total weight of the structure is approximately 
4200 kN. The structure was subjected to ground motions 
having characteristics of earthquake waves recorded at 
the Tokyo Shiba Elementary school by MeSOnet in 2011. 
Furthermore, nine levels of amplitudes were used, corre-
sponding to pseudo spectral velocities (PSV) lying in the 
range of [40, 81, 110, 180, 220, 250, 300, 340, 420] cm/s. 
These excitations caused various damages to the structure, 
such as yielding at beam ends, fracture, local buckling of 
columns, global buckling at lower stories, and, eventually, 
collapse mechanism (Table 3). The floors' accelerations in 
the excitation direction were measured by accelerometer 
sensors. Furthermore, each vibration signal was divided 
into multiple 500-length sub-time-series, then combined 
with signals from different floors to form a multivariate 
time-series database. To be specific, the shape of the input 
data is (684, 18, 500), where 684 is the number of samples 
of the input database, 18 is the number of sensors, and 500 
is the signal length.

Of note, the datasets of all three examples are then split 
into two non-overlapping training and validation datasets 
with a ratio of 80:20.

3.2 Self-supervised learning process
Next, self-learning is performed to train the auto-encoder 
component such that it can reconstruct sensitive-damage 
features from contaminated vibration signals. The data-
sets are polluted by adding random noise, arbitrarily intro-
ducing anomaly values, and replacing original values with 

NaN for simulating missing scenarios. The contaminated 
data's underlying features will be extracted and passed 
through the Auto-encoder for reconstruction; next, the 
output will be compared with the original data's features 
using the MAE loss. It is noted that NaN values are filled 
with the average of other signal values. During this stage, 
50% of datasets will be used to train, and the remain-
ing 50% will be hidden from the Auto-Encoder to val-
idate its reconstruction ability. The learning curves of 
self-learning for the 5-dof systems, 2D numerical frame, 
and 3D experimental structure are highlighted in Fig. 4(a). 
It can be seen that, initially, MAEs are very high (more 
than 103), then the loss functions decrease before plateau-
ing around low values. Here, the exponential decay sched-
ule is applied to adaptively adjust the learning rate (lr) 
during the training process. In the beginning, the learning 
rate is set to lr = 0.005; then, it is decayed by a ratio of 
0.9 after every 50 epochs without improvement. From the 
figure, it is reasonable to stop the self-learning process at 
epoch 500 as no clear improvement is observed.

3.3 Supervised learning process
In terms of the model configuration, it is acknowledged that 
there is no one-size-fits-all optimal configuration. Herein, 
the authors performed a parametric study and selected 
a configuration that achieves a good balance between detec-
tion accuracy, time complexity, and computation resources. 
Specifically, the architecture details of the AutoBoost-SDD 
framework in this study are enumerated in Table 4. With 
the datasets and detection model in place, one will carry out 
several studies to assess the performance, robustness, and 
efficiency of the model as follows.

At first, the detection results with clean and complete 
data are presented, which serve as reference results when 
assessing the negative effect of unwanted factors such as 

Table 2 Random variables of the numerical 2D steel structure

Variable Mean CoV Distribution

E (GPa) 220 0.01 Normal

ζ (%) 5 0.05 Normal

F1 (N) 1000 0.1 Normal

F2 (N) 1000 0.1 Normal

F3 (N) 1000 0.1 Normal

F4 (N) 1000 0.1 Normal

F5 (N) 1000 0.1 Normal

F6 (N) 1000 0.1 Normal

F7 (N) 1000 0.1 Normal

F8 (N) 1000 0.1 Normal

Table 3 Damage scenarios of the experimental structure

State pSv (cm/s) Description

1 40 Elasticity

2 81 Partial plasticity

3 110 Beam plasticity, yielding occurred at column 
bases Cracking

4 180 Beam plasticity, Cracking

5 220 Beam fracture

6 250 Further beam fracture

7 300 Further Beam fractures

8 340 Local buckling

9 420 Observation of collapse 
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noise, missing data, and anomalies. More specifically, the 
features extracted from clean data are fed directly into the 
LightGBM algorithm to inversely identify the correspond-
ing structural states. The evolutions of the LightGBM 
model's accuracy during training iterations on both the 
training and validation datasets are highlighted in the sec-
ond rows of Fig. 4. Apparently, the feature-based model 

can quickly reach convergence with less than 100 training 
iterations, and the training times are in the order of a few 
minutes. Detailed values of CPU times will be presented 
later in the comparison study.

On the other hand, these SDD results for three case 
studies under investigation are graphically demonstrated 
via confusion matrices in Fig. 5. The vertical axis of a con-
fusion matrix refers to the actual structural states of data 
samples, whereas the horizontal axis denotes those pre-
dicted by the AutoBoost-SDD method. In the first and sec-
ond examples, the model classifies structural states into 
two categories: intact and damaged, while in the third 
example, there are nine states. Based on the confusion 
matrices, it is possible to derive other statistical metrics to 
measure the model performance, including accuracy, false 
negative and false positive errors, and f1-score. Accuracy 

Fig. 4 Learning curves of the Auto-Encoder network

Table 4 Configuration details of AutoBoost-SDD 

Model details Value Model details Value

Learning rate Exponential 
Decay schedule

N_layer of 
Encoder/ decoder 3

Loss function MAE Bottleneck size 64

Tree depth 15/15/8 Activation ReLu

N_leaves 50/125/9 Batch size 256

N_tree 200/1000/90 Optimizer Adam

Fig. 5 Damage detection results via confusion matrices
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is obtained as the ratio between the sum of diagonal cells 
and the total number of samples. F1-score is a metric that 
can be applied to both balanced and imbalanced data-
sets. From the figure, the accuracies of AutoBoost-SDD 
for three examples are 96.1%, 87.5%, and 83.0%, and 
the f1-score are 93.5%, 85.2%, and 81.6%, respectively. 
The first example has the highest SDD results, followed 
by the second example. Meanwhile, for the experimen-
tal dataset with significantly more structural states, the 
f1-score is lower than those of numerical datasets. Note 
that it is possible to improve the detection accuracy with 
a more complex model; however, such a model is more 
susceptible to contaminated data and overfitting problems 
if it relies only on supervised learning.

In this study, the LightGBM algorithm is selected as the 
classifier based on the results of a comparison study that 
evaluated nine machine learning algorithms, including 
XGBoost [38], CatBoost [39], Random Forest, AdaBoost, 
Gradient Boosting, Decision Tree, Logistic Regression, 
Support Vector Machine (SVM) in addition to the stan-
dard artificial neural network. Logistic regression is one 
of the most simple and fastest classification models that 
can quickly provide baseline results based on which other 
algorithms can improve results further. SVM is a well-es-
tablished method that was widely used before the deep 
learning era. Decision Tree is one of the few ML models 
that are considered interpretable rather than a black box 
like the others. XGBoost, LightGBM, CatBoost, Random 
Forest, AdaBoost, and Gradient Boosting are tree-based 
algorithms that have been devised to improve the models' 
performance, robustness, and speed by leveraging ensem-
ble theory and parallel computation on available hard-
ware. The comparison results are enumerated in Table 5, 

including the f1 score, training time, and inference time. 
Overall, the four algorithm tree-based ensemble models 
XGBoost, LightGBM, CatBoost, and Random Forest can 
provide highly similar f1 scores, e.g., 0.94, 0.84, and 0.81 
for the first, second, and third structures, respectively. 
These results are considerably higher than other methods, 
including the over-parameterized ANN, simple regression 
model, and single decision tree. However, the CatBoost 
model requires the longest training time and inference 
time which can be up to one order of magnitude longer 
than the others when working with multiple sensors at 
the same time. For instance, its training time for the third 
example reaches 60800 ms compared to 351 ms required 
by Random Forest. Overall, the LightGBM model consis-
tently achieves the best balance between the performance 
and time complexity, especially at inference time; it is the 
fastest among tree-based ensemble models. In order to 
ensure a relatively fair comparison, one applied the same 
key parameters for tree-based methods, such as the num-
ber of trees equal to 200, the number of leaves of 50, and 
the maximum depth level of 15. In short, these results 
provide specific and solid evidence for the adoption of 
LightGBM in this study.

3.4 Parametric study
As presented in the previous section, the AutoBoost-SDD 
framework has some key hyperparameters that could have 
a significant impact on the final results; hence, a paramet-
ric study was conducted to estimate their contribution. 
One divides hyperparameters into two groups, one for self- 
learning and the other for supervised learning. The first 
group consists of the activation function, the size of the bot-
tleneck layer, and the number of Encoder/Decoder layers. 

Table 5 Comparison results between different ML/DL-based classifiers

Model Ex1 Ex2 Ex3

F1-score Training 
time (ms)

Inference 
time (ms) F1-score Training 

time (ms)
Inference 
time (ms) F1-score Training 

time (ms)
Inference 
time (ms)

XGBoost 0.94 921 6.9 0.84 11100 22.9 0.81 1030 6.0

LightGBM 0.94 259 5.0 0.84 2990 9.0 0.81 1390 3.0

CatBoost 0.94 9500 25.9 0.83 5800 240 0.81 60800 21

RandomForest 0.94 1740 19.9 0.83 8610 38.7 0.80 351 12

AdaBoost 0.86 1770 21 0.72 19600 170 0.48 961 12

GradientBoosting 0.90 7970 3.93 0.80 95000 9.0 0.74 29500 3.0

DecisionTree 0.90 393 2 0.81 3760 6.01 0.78 90 2.0

LogisticRegressor 0.87 44 0.88 0.78 6890 4.0 0.56 123 4.2

SVM 0.86 378 157 0.74 12700 3710 0.69 31.9 16

ANN-(128/64) 0.87 4800 137 0.75 24100 172 0.80 1380 104
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Recall that the Encoder and Decoder of the Auto-Encoder 
model are symmetric, i.e., they have the same number of 
neural layers. For the activation function, five different 
functions are considered, which are relu, sigmoid, tanh, 
softmax, elu. These activation functions are commonly 
used in deep learning models. Their corresponding MAE 
losses are plotted in bar charts shown on the leftmost of 
Fig. 6. For all three case studies, the relu and elu func-
tions provide considerably lower MAE loss values than 
the others. However, the formula of the relu function is 
more straightforward, and does not introduce additional 
parameters like the elu function; hence, the relu func-
tion is selected. For the bottleneck size, associated MAE 
results are displayed in subfigures in the middle columns 
of Fig. 6. For the 5-dof systems, the 128-neuron layer 
yields the lowest MAE loss, while the smallest 16-neuron 
layer results in the highest MAE loss. For the 2D numer-
ical frame, except the 16-neuron layer, other bottleneck 

layers provide approximately the same MAE loss val-
ues. For the experimental structure, the lowest MAE loss 
between reconstructed feature vectors and with original 
ones was obtained by setting the bottleneck size to 64 
or 1024. Based on these results, one sets the bottleneck 
size to 64. Similarly, it was observed that setting the num-
ber of Encoder/Decoder layers to 3 provided good MAE 
loss values for different problems and maintained a rea-
sonable model complexity. 

For supervised learning with the lightLGBM model, typi- 
cal key hyperparameters of tree-based models are the num-
ber of trees (n_estimators), the maximum number of leaves 
per tree (n_leaves), and the tree depth (max_depth) [35]. 
The corresponding parametric results for all three examples 
of interest are demonstrated in Fig. 7. We found that it could 
not apply the same set of hyperparameters to different prob-
lems because their effects vary significantly across prob-
lems. For example, setting a max_depth between [15, 20] 

Fig. 6 Parametric results showing the effects of activation functions, bottleneck size and the number of layers in the Encoder/Decoder 
on the self-learning Auto-Encoder model



Dang
Period. Polytech. Civ. Eng., 67(3), pp. 875–889, 2023|885

provide high F1 scores for the two first examples but leads 
to markedly low scores for the third example. On the other 
hand, using a n_estimator of around 100 results in a rela-
tively high F1-score of 0.8, but the recommended values for 
the first and second examples are around 200 and more than 
1000, respectively. The same observation about the fluctu-
ation of the hyperparameter effect also holds for n_leaves. 
Hence, the adopted sets (max_depth, num_leaves, n_esti-
mators) for the 5-dof system, 2D numerical frame, and 3D 
experimental structure are (15, 50, 200); (15, 125, 1000) 
and (8, 9, 90), respectively.

3.5 Robustness study
Finally, the designed AutoBoost-SDD method is tested 
with various vibration signals contaminated with different 
types and degrees of perturbations. Fig. 8 shows an exam-
ple of a vibration signal and its contaminated variants, 
along with the extracted and reconstructed features using 
the AutoBoost-SDD framework. Qualitatively, extracted 
features from the contaminated signals are different from 
those from the original vibration signal, whereas recon-
structed features resemble the original ones to some 
extent. Quantitatively, the robustness study results are 
demonstrated in Fig. 9, where the subfigures in the first, 
second, and third rows correspond to the 5 dof system, 2D 

frame structure, and 3D experimental structure, respec-
tively. The results for missing data are placed on the left, 
noisy data in the middle, and anomalous data on the right. 
Since perturbations are introduced randomly, calcula-
tions for each perturbation case are repeated ten times, 
and the mean and standard deviation values are reporte-
dIn each subfigure, there are three curves where the solid 
black curve corresponds to SDD results with clean data, 
the dash-dotted line refers to the SDD results with recon-
structed data, and the dashed line presents results for per-
turbed data. For missing data, the missing rate ranges 
from 1% to 15%; for noisy data, the NSR ratio is from 0.01 
to 2.0; and for anomalous data, the number of anomaly 
points is within the range [1, 100]. Clearly, the greater the 
level of perturbation in the signals, the lower the f1 scores 
and the poorer the detection performance. However, the 
effects of different types of perturbations are not equal. 
Noisy and anomalous data cause more degradation in the 
model performance compared to missing data. The reduc-
tion in f1 score is approximately proportional to the noise 
ratio, whereas only a few anomaly points could cause 
a considerable decrease in the score. On the other hand, 
the reconstructed data clearly improve the SDD results, 
as the corresponding curves lie close to those of the orig-
inal data. For example, in the case of perturbed data with 

Fig. 7 Parametric results showing the effects of the tree depth, number of leaves and the number of trees on the LightGBM classifier performance
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100 anomaly points, the f1-score reduces from around 
80% to 47%, but using reconstructed data, the f1-score 
remains around 64%. It is also observed that the vertical 
bars denoting the standard deviation of reconstructed data 
are shorter than those of perturbed data, which means 
results obtained with reconstructed data are more reliable. 
These results qualitatively and quantitatively reaffirm the 
robustness of the proposed AutoBoost-SDD framework 
against vibration signals polluted by various unfavorable 
issues with different contamination levels.

4 Conclusions
The present study develops a robust two-stage method 
for structural damage detection that can provide reliable 
detection results even with contaminated data and reduced 
computational resources. Over the course of the paper, 
ones described the main idea, the overall working flow, and 
the details of main components such as the vibration fea-
ture extractor, unsupervised auto-encoder, and supervised 

LightGBM have been described. Furthermore, specific 
values of hyperparameters, implementation details, and 
the credibility of the proposed method are demonstrated 
throughout three case studies, including numerical data, 
and experimental data. The obtained results reaffirm that 
the AutoBoost-SDD significantly improves the SDD perfor-
mance in the presence of various types of perturbation, i.e., 
it achieves higher detection accuracy compared to super-
vised counterparts by a clear margin. Furthermore, one 
investigates the AutoBoost-SDD framework from differ-
ent perspectives through different studies, including com-
parison, parametric and robustness studies, to gain more 
understanding of its underlying mechanism and the impact 
of each hyperparameter on the model's performance. Such 
understanding is useful for fine-tuning the framework to 
achieve better performance and facilitate its adaptability to 
tackle new problems with varying complexities.

For the next step of the study, one will include a proba-
bilistic component into the AutoBoost-SDD framework so 

Fig. 8 Representative examples of a vibration signal and its contaminated variants (leftmost), extracted features (middle) 
and reconstructed feature (rightmost)
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Fig. 9 Robustness results showing the performance of the proposed AutoBoost-SDD framework against various signal contaminations 

that the method can estimate associated confidence inter-
vals of detection results, making the decision more con-
servative when accounting for uncertainty in the model 
behaviors and input data. Another interesting direction 
is to extend the proposed method to an online learning 
framework that can evolve with human feedback and new 
vibration data corresponding to new types of damage. 

This could be realized by combining the AutoBoost-SDD 
framework with reinforcement learning or game theory 
algorithms.
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