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Abstract

Different point cloud technologies such as Terrestrial Laser Scanners (TLS), Airborne Laser Scanners (ALS), Mobile Mapping Systems 

(MMS), and Unmanned Aerial Vehicles (UAV) have become increasingly more common in land surveying and geoinformatics over 

recent years. Thanks to these modern tools, experts can survey large areas cost-effectively with either high resolution or high accuracy. 

However, processing the point cloud, which consists of millions of points, can be a massive challenge. Manual processing of these large 

datasets can often be very time-consuming and hardware-demanding, and most of the time, only a limited part of the point cloud is 

used to derive the final products. The solution can be to automate the process as much as possible. Several advanced mathematical 

methods, especially Machine Learning (ML) algorithms, allow efficient automated processing of point clouds. This paper presents 

a processing chain to detect and separate building points from large-scale photogrammetry-based point clouds. The processing is 

based on the combination of Random Sample Consensus (RANSAC) and Machine Learning (ML) algorithms like Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) and Multi-Layer Perceptron (MLP). Presented methods were trained and tested on 

established and open available Heissigheim 3D (H3D) dataset to separate roof and vegetation points with over 90% accuracy in order 

to enhance the separation of building points on large-scale point clouds.
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1 Introduction
Unmanned Aerial Vehicle (UAV) photogrammetry-based 
measurements have become popular in the last two 
decades. There are several applications, from geosci-
ence to engineering, where UAVs' utility has been firmly 
proven. With drones' flexibility and relatively low costs, 
experts can efficiently develop maps of large areas with 
high speed and resolution [1]. One of the many applica-
tions is updating land registry maps, where Unmanned 
Aerial Vehicles can supply fast and affordable solutions 
without entering private properties. In the literature, there 
are several examples where UAV photogrammetry-based 
point clouds were used to update old analog maps. 

One of the first attempts was in the Netherlands 
in 2013 [2], where UAV photogrammetry-based point 
clouds and true-orthophotos were derived from high-
re solution photos to identify property boundaries. As a 
result of the test, it was found that the required accuracy of 
land registry mapping is achievable. GNSS measurements 

were applied to check the reliability of the final product, 
and it proved to be below 10 cm. Similar  studies were 
obtained in Albania [3] and Poland [4] to support land 
registration and improve the quality of existing maps. 
These studies have produced equivalent results.

While UAV-based photogrammetry is a prominent method 
for generating point clouds with the required accuracy, drones 
deployed with Light Detection and Ranging (LiDAR) are also 
increasingly prevalent in mapping applications. A study by 
He and Li [5] illustrated that LiDAR sensor-based campaigns 
could also be used in land registry mapping with 5–10 cm of 
accuracy. A comparable investigation was conducted in the 
Czech Republic [6], where an experiment was also carried out 
to compare the results of photogrammetry- and LiDAR-based 
UAV measurements. The results showed that both technolo-
gies achieved the required level of accuracy.

As the conclusion of the aforementioned articles, it can 
be stated with full confidence that point cloud techniques 
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can be used to update and renew land registry maps. 
However, the presented solutions are primarily based on 
manual processing. This paper will examine how automa-
tion is possible and how automation can support the pro-
duction of 2D maps and 3D models.

Working on point clouds, several segmentation meth-
ods, such as edge-based, region-growing, attribute-based, 
model-based, and Machine Learning can support data 
processing. Grilli et al [7] demonstrated that by combin-
ing these techniques, efficient filtering can be achieved 
and used to segment groups of points from point clouds. 
Furthermore, augmenting these techniques with advanced 
mathematical methodologies enables high-level point 
cloud classification tasks.

Aerial Laser Scanning (ALS) campaign results were 
widely used to detect separate parts of point clouds. 
For instance, Shao et al [8] showcased that combining Cloth 
Simulation Filtering (CSF) and region growing can effec-
tively detect building roofs in large areas. Another approach 
entailed fusing region growing with elevation histogram 
analysis to separate roof points from point clouds [9]. 
Szutor [10] proposed a combination of two clustering meth-
ods and that the Fast Fourier Transform (FFT) can also be 
used for point cloud classification.

Nowadays, the application of machine learning algo-
rithms for different tasks, such as point cloud processing, is 
inescapable. Combining other segmentation methods with 
machine learning can be effective during point cloud clas-
sification tasks. Zeybek [11] demonstrated that UAV-based 
dense point clouds can be classified with the Random Forest 
ML algorithm according to their geometric characteristics 
and radiometric features. The overall accuracy of the clas-
sification was achieved at 96%. Chen et al. [12] applied 
a Support Vector Machines-based solution on ALS-based 
campaign's result, where combined features including the 
coordinates, the RGB values, normalized elevations, stan-
dard deviations of heights, and elevation differences of 
point cloud were used with overall classification accura-
cies of 97.69% and 99.13% for two test areas.

In addition to Machine Learning, it is unavoidable to 
involve Deep Learning (DL) methods. Unlike conventional 
Machine Learning approaches, where feature engineering 
is typically a manual and time-consuming task, DL models 
have the ability to directly extract significant features from 
raw data. In the case of point clouds, it can be completed 
on voxels [13], regions [14], or in a certain radius [15].  

This article introduces a potential application of a Multi-
Layer Perceptron algorithm to enhance the efficiency of 

point classification in large-scale UAV photogrammet ry-
based point clouds. The training data for the neural net-
work was meticulously crafted by human intervention. 
The trained model was applied to three test areas, mainly 
with detached houses, to separate roof and vegetation 
points on pre-segmented point clouds. Building points 
were separated and classified in the point clouds using the 
separated roof points.

2 Materials and methods
The application and combination of segmentation methods 
offer a large variety of tools during point cloud processing. 
In the following, an efficient workflow from data collection 
to segmentation is presented to separate building points.

2.1 Field measurements
Before delving into the processing, it's imperative to ensure 
the input data meets requisite quality standards. Therefore, 
it is essential to lay down the parameters of campaigns. 
Focusing on buildings, UAV mission's flight parameters can 
significantly influence the number of points mapped on roofs 
and walls (Fig. 1). The best result could be achieved with a 
double grid mission and oblique camera at 20–30 degrees. 
To reach an accuracy of 10 cm, 2 cm of Ground Sample 
Distance (GSD) is required. 

Ground Control Points (GCPs) are also required to 
improve the accuracy of the point cloud It is enough to 
measure GCPs position by RTK GNSS technique in order 
to have residuals at the GCPs around 1 cm.

2.2 Pre-processing
Working on large-scale point clouds, it is essential to 
pre-process the original point cloud to decrease the num-
ber of points before the main processing. Applying noise 
removal (e.g., Statistical Outlier Removal) is necessary 
but not enough.

Fig. 1 Large-scale point cloud of Barnag settlement



Hrutka
Period. Polytech. Civ. Eng., 68(4), pp. 1021–1030, 2024|1023

The simplest way would be to use a subsample, which 
can yield to lose even valuable points. Focusing on build-
ing points, the processing can be narrowed down to off-
ground points. In practice, there are several algorithms. 
One of these is the Cloth Simulation Filter (CSF) algo-
rithm [16], which can effectively separate ground and non-
ground points regardless of point cloud origin. In case of 
settlements where detached houses are typical, the origi-
nal point clouds' size can be reduced by nearly 70–80% 
without losing relevant data on buildings [17]. 

Another crucial aspect is a significant difference 
between the number of points generated on roofs and on 
other building parts, such as walls. Approximately the 
number of points generated on roofs is four times the num-
ber of wall points. Fig. 2 shows these differences by color-
izing the calculated point density in a sphere of a specified 
radius (r = 0.30 m).

Dealing with the classification of building points on 
large-scale photogrammetry-based results, a method 
that considers this difference during processing should 
be used. During later process steps, rough separation 
of the roof and wall points is required, where using the 
points' relative height can be effective. Therefore, a Digital 
Terrain Model (DTM) can be generated using the sepa-
rated ground points. By computing vertical differences 
of the non-ground points from the DTM, a Normalized 
Digital Surface Model (nDSM) can be created (Fig. 3). 

2.3 Voxelization and segmentation of possible roof and 
wall points
By assuming that the roofs and walls of buildings mainly 
consist of planar surfaces, the processing can be focused 
on finding points that fit a plane within a specific thresh-
old. A practical solution to this problem is offered by 
Sequential Random Sample Consensus (RANSAC) [18].
Rather than applying RANSAC across the entire area, the 

point cloud can be subdivided into voxels to enhance the 
algorithm's efficiency. Sequential RANSAC can be used 
to find significant planar surfaces with more details in a 
voxel. Another advantage of voxelization is that the pro-
cess can be parallelized, which makes the processing more 
efficient on large-scale point clouds [17]. 

Utilizing the relative heights and parameters of the 
planes detected during the process, another filtering can 
be implemented to separate possible roof and wall points 
based on height values and the orientation of the normal 
vectors of the identified planes.

Majority of the noise and vegetation points can be fil-
tered out thanks to robust model-based filtering, but there 
are specific cases where voxel-based RANSAC is less 
effective (Fig. 4). This limitation arises from RANSAC's 
failure to account for the spatial continuity of points on a 
plane. In these cases, the application of different ML algo-
rithms could be practical. 

2.4 Applying machine learning algorithms
Machine Learning (ML) methods are becoming increas-
ingly widespread over the last few decades. There are 
hundreds of applications that can be solved by using 

Fig. 2 Normalized point cloud colorized by surface density values 
(lower density is blue, medium density is green and high density is red)

Fig. 3 Vertical sections of original and normalized point clouds

Fig. 4 Extreme case, where sequential RANSAC 
does not work efficiently
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ML algorithms. In the following, I will expand on these 
by presenting a possible application of Multi-Layer 
Perceptron (MLP) and Density-Based Spatial Clustering 
of Applications with Noise (DBSCAN) algorithms for 
point cloud processing.

2.4.1 Prepare training data
In general, preparation is essential before applying 
Machine Learning algorithms, such as the MLP. This typi-
cally involves the creation of training, testing, and valida-
tion of data. Since my aim is to separate vegetation points 
from roof points, the classes are predefined. Through a 
manual process, these data can be assigned to each class. 
In Fig. 5, an example of colorized training data is shown. 

2.4.2 3D feature calculation
Some preparatory steps are also required for the training data. 
Machine Learning algorithms often rely on indirectly defined 
values, known as features, to classify data effectively.

In the case of point clouds, these features can be derived 
from attributes such as eigenvalues (normal, sum, omni-
variance, eigentropy, anisotropy, planarity, linearity, sur-
face variation, sphericity), spectral (RGB, intensity), and 
geometrical features (different coordinate components, 
area, local point density) [19]. Values used during training 
usually depend on the input data and task. Identifying the 
necessary attributes (Fig. 6) is predicated on evaluating 
how effectively separation can be achieved.

Therefore, before training, each possible eigenva lue-
based and geometric feature was computed within a spec-
ified radius sphere and visualized [20]. The most relevant 
attributes can be selected from these values, according to 
which can be used to separate different parts in a UAV pho-
togrammetry-based point cloud. The chosen features for 
training are summarized in Table 1 with their equations:

2.4.3 Multi-Layer Perceptron
Following the selection and preparation of training data, 
Multi-Layer Perceptron (MLP) algorithm can be used to 
train, and a model can be created to separate possible roof 
points from vegetation points in a pre-segmented norma-
lized point cloud. 

MLP is a neural network architecture widely used in 
machine learning for regression and classification tasks. 
MLPs are usually arranged in three layers:

• input layer 
• hidden layer(s)
• output layer.

Input and output layers are connected through neurons 
within the hidden layer (Fig. 7). MLP models may have 
one or more hidden layers depending on the complexity 
of the task.

Table 1 Eigenvalue in decreasing order (λ1 > λ2 > λ3), geometric, and 
spectral-based features for point cloud classification

Feature Equation

Relative height Normalized Z-coordinate

Color values R, G, B

Omnivariance � � �
1 2

3

3
� �

Anisotropy
� �
�
1 3

1

�� �

Planarity
� �
�
2 3

1

�� �

Surface variation
�

� � �
3

1 2 3
� �� �

Sphericity
λ
λ
3

1

Number of neighbors N

Surface density
N

V
sphere

Normal change rate
�

� � �
1

1 2 3
� �� �

Fig. 6  Normalized point cloud segment colorized by eigen-based 
planarity values (lower density is blue, medium density is green, and 

high density is red)

Fig. 5 Manually segmented training data of roofs (red) and 
vegetation (green)
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A special feature of ML algorithms is that the rela-
tionship between the input and output data is unknown. 
The connection is established during the training process, 
whose main purpose is to find a correlation between the 
input and output through the hidden layers' neurons. 

In each node (or neuron) of the hidden layer, an acti-
vation function ( fa) can be found. Depending on the task, 
a wide range of activation or transfer functions (such as 
linear, sigmoid, polynomial, softmax, and rectified linear 
unit, so-called ReLu) can be utilized.

Each activation function (neuron) relates to inputs (xi) 
and is characterized by their weight (wij). The input is split 
into components, multiplied by the corresponding weight, 
and summed. An optional bias can be added to this sum-
mation. At the end of the process, a resultant sum is fil-
tered by different activation functions ( fa), and output is 
produced (Fig. 8). In MLP, these outputs (hjk) can also be 
inputs of another hidden layer. 

Since the input and output values are known during the 
training process, the optimization step aims to determine 
the weight and bias values. This calculation is performed 
iteratively, facilitated by the utilization of a loss function.

The role of the loss function is to assess the disparity 
between the target and predicted results. By iteratively 
adjusting the weights and biases based on this assessment, 
the model endeavors to minimize the loss, thereby opti-
mizing its predictive capability.

L y yi ii
� ��1
2

2
Predicted Target . (1)

Using the result of loss function (L), gradients can be cal-
culated to update weight values, and in the following iter-
ation step, weights can be updated until a given threshold 
is reached. Through training, the neural network strives 
to converge towards an optimal set of weights, and the 
result is saved as a model for regression or classification 
tasks [21–23]. 

Multi-Layer Perceptron can be used to separate vege-
tation and roof points. Different formulas based on eigen-
values can be used as features to classify points with the 
MLP method. 

2.4.4 Performance metrics
To ensure the performance of the model, different perfor-
mance metrics can be utilized via validation and test data. 

Among the many metrics used to describe the created 
model, accuracy stands out as a fundamental measure of 
the model's effectiveness. Accuracy is computed as the 
ratio of the number of correct predictions (Ncorrect pred. ) to 
the total sample (Ntotal pred. ):

Accuracy
correct pred.

total pred.

=
N
N

. (2)

While accuracy provides a straightforward measure of 
the model's overall correctness, other metrics offer deeper 
insights into its performance. These metrics are often 
encapsulated in a confusion matrix, which comprises four 
key elements:

• True Positive (TP): number of correctly predicted 
true cases

• True Negative (TN): number of correctly predicted 
false cases  

• False Positive (FP): number of falsely predicted true 
cases (Type I Error)

• False Negative (FN): number of falsely predicted 
false cases (Type II Error).

Fig. 7 Architecture of a Multi-Layer Perceptron (MLP) network with 
one hidden layer and fi activation functions

Fig. 8 Schematic representation of a neuron with input features (xi), an 
activation function ( fa) and output (y)
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From elements of the confusion matrix, additional met-
rics can be calculated to describe the model performance 
from different points of view. One of these metrics is recall 
or sensitivity, which describes how many times the model 
mistakenly diagnosed a positive element as negative:

Recall �
�
TP

TP FN
. (3)

Precision or specificity is the opposite of recall. It shows 
from the predicted positives how many were positive: 

Precision �
�
TP

TP FP
. (4)

To summarize the performance of the classifier with a 
single metric, F–score can be calculated as the harmonic 
mean of the precision and recall:

F � �
� �

�
score

Precision Recall

Precision Recall

2 . (5)

These performance metrics provide valuable feedback 
about the model's efficacy. 

On the one hand, by applying the trained model to the 
test data, we can get an overview of the performance of 
the model.

Relying solely on training and test data to evaluate the 
model's performance may lead to overfitting. To mitigate 
this issue, validation data is used to provide examples that 
the model has not seen before. After each training epoch 
or a certain number of training iterations, the mo del's 
performance is evaluated using the validation data. 
Presented metrics such as loss, accuracy, precision, or 
recall can be calculated on the validation set to gauge the 
model's performance. This process allows practitioners to 
monitor the model's progress during training, tune hyper-
parameters, and detect potential issues such as overfitting.

2.4.5 DBSCAN
After applying MLP to segment the roof and vegetation points, 
the next step is to separate the roof by buildings. There are a 
wide variety of clustering methods, such as k-Means, Mean-
shift, Spectral clustering, Density-Based Spatial Clustering 
of Applications with Noise (DBSCAN), Ordering Points to 
Identify the Clustering Structure (OPTICS), and Balanced 
Iterative Reducing and Clustering using Hierarchies (BIRCH) 
providing the possibility to separate groups of points from 
each other [21]. In most of these methods, the number of clus-
ters needs to be predefined, but in the case of point clouds, the 
number of clusters is usually unknown.

In many cases, Density-Based Spatial Clustering of 
Applications with Noise [24] emerges as a viable choice. 
The main idea (Fig. 9) of the algorithm is to search 
high-density areas surrounded by low-density ones.

DBSCAN algorithms rely on two parameters: 
• ε – defines the maximum distance (radius) between 

two neighbors.
• nmin – defines how many surrounding points are nec-

essary to define a core.

The procedure is mainly based on a metric func-
tion (usually the Euclidean distance). For each sample 
xi, the algorithm checks the distance to other xj samples. 
The number of neighboring points within the ε radius is at 
least nmin, the sample is identified as a core point:

N d x x ni j, ,
min� � �� � �� . (6)

From a core point, other xj points' distances can be checked:

d x xi j,� � � � . (7)

In that way, the size of the core points is expandable until the 
samples do not meet the requirements. If there are no more core 
points for a group, a cluster is found, samples can be labeled, 
and the search for other clusters can be continued. Points that 
are not part of any cluster are considered as noise [23]. 

DBSCAN algorithm can be effectively utilized to segment 
roof points into distinct groups corresponding to individual 
buildings. It is also a valuable tool for removing outlier points 
that may have persisted from previous processing steps.

2.5 Building point detection
Clustering the roof points, the lower part of the normal-
ized point cloud can be analyzed to potentially separate 
wall points. This can be achieved by constructing the 

Fig. 9 Visualization of the DBSCAN method
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convex hull for each clustered roof, essentially creating 
bounding polygons around each roof.

Once these convex hulls are established as bounding 
polygons, the wall points can be filtered based on their 
proximity to these polygons. Points falling within the con-
vex hulls represent the walls of the buildings.

This approach can automatically process the point 
cloud data to produce separated point clouds for indivi-
dual buildings. (Fig. 10). 

For a concise overview, refer to summary flowcart of 
Fig. 11, which illustrates the key steps and processes dis-
cussed in the study.

3 Measurements and processing
The methods and algorithms described were implemented and 
evaluated across three distinct test areas [17]. During the cam-
paigns, the photos were taken in each area by a DJI Phantom 
4 Pro UAV, and Ground Control Points (GCPs) were mea-
sured by RTK GNSS technique. Standard photogrammetric 
processing was carried out to derive dense point clouds. [25]. 
The residuals on the GCPs were below 1 cm. The parameters 
of each flight are summarized in Table 2.

On each test area, nDSM was generated, voxel-based 
sequential RANSAC was applied, and possible roof and 
wall points were separated by between 0.3 and 2 meters of 
relative heights and normal directions.

To train Multi-Layer Perceptron (MLP) neural network, 
training dataset of 1 million points was created manually 
from a small part of the Barnag test area (Fig. 12).

Eigenvalue-based formulas were calculated and applied 
in the range of 30 cm around each point. The features 
in Table 1 were transformed by scaling between zero 
and one. Thus, a 12-element feature vector was used in 
the input layer to differentiate roof and vegetation points 
from each other. During the training (Fig. 13), ReLu acti-
vation function was applied with a batch size of 1024. 
Adaptive Moment Estimation (ADAM) [22] method was 
used as a solver for weight optimization, and the learning 
rate was set to 0.001. The MLP architecture comprised a 
single hidden layer consisting of 15 neurons. 

To ensure that overfitting does not affect the results, 10% 
of the training data was reserved for validation during model 
training. By comparing the training and model loss (Fig. 13), 
it can be seen that training loss and validation loss values are 
nearly the same. This means that a simple neural network can 
effectively separate datasets with well-selected features.

To finalize the processing pipeline, DBSCAN was 
employed with the ε value of 0.3 m and the minimal points 
of 100 to separate roofs by buildings. Wall points were 
derived by using each roof cluster's bounding polygon. 
Thus, at the end of the process, separated building points Fig. 10 Clustered building points colorized by random colors and 

vegetation with red color

Fig. 11 Flowchart of the proposed point cloud processing

Table 2 Flying parameters on each test area

Barnag Üllő Sződ

Mission type Simple grid Double grid Double grid

Above Ground Level 
(AGL) [m] 55 m 55 m 70 m

Image overlap [%] 80 80 80

Oblique angle [°] 0 and 25 25 20

Ground Sample 
Distance (GSD) [cm/
pixel]

1.5 1.5 1.9

Number of photos 1400 and 890 805 799

Number of points 452 million 116 million 221 million

Fig. 12 Training data compared to the full Barnag test area
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were generated by combining the point cloud segmenta-
tion methods and machine learning techniques. 

4 Results
When evaluating the results of the processing, particu-
lar attention should be paid to the performance of Multi-
Layer Perceptron model. The overall accuracy of the 
model is 97.4%. This accuracy can be further under-
stood by examining the elements of the confusion matrix 
(Fig. 14), which reveals that both Type I (false positive) 
and Type II (false negative) errors are minimal relative to 
the total number of training data.

Additional metrics can also be derived from the con-
fusion matrix elements (Table 3). The performance of the 
created MLP model is summarized as follows:

These performance metrics affirm the effectiveness 
of the model in classifying roof and vegetation points. 
Consequently, the MLP model was applied to the entire 

Barang, Üllő, and Sződ test areas. The results of the 
extrapolated application of the model are depicted in the 
following figures with false-color displays (Fig. 15). 

Using the DBSCAN algorithm, roof patches were clus-
tered by buildings, as illustrated in Fig. 16.

Utilizing the bounding polygons of the segmented roofs, 
potential wall points were also discerned by filtering the 

Fig. 13 Model accuracy during the training

Fig. 14 Confusion matrix

Table 3 Performance of the created MLP model

Precision Recall F1-score Num. of 
samples

Roofs 0.98 0.98 0.98 675818

Vegetation 0.96 0.97 0.96 381484

Accuracy - - 0.97 1057302

Macro avg. 0.97 0.97 0.97 1057302

Weighted avg. 0.97 0.97 0.97 1057302

Fig. 15 Result of MLP-based classification at Üllő test area. Vegetation is 
represented by green, while roof points are represented by red.

Fig. 16 Building clusters at Üllő test area
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remaining points located between 0.3 and 2 meters from 
the ground within each test area, as shown in Fig. 17. 

MLP feature-based model achieved 93.5% accuracy on 
classifying roof and vegetation points on the Hessigheim 
3D (H3D) benchmark dataset [26]. With the help of the 
process pipeline from the 23 975 119 building points 
21 679 889 (90.4%) points were found on the dataset. 
Number of false detections was 1 648 546.

5 Conclusions
The primary objective of the study was to separate build-
ing points from UAV photogrammetry-based point clouds 
to develop 3D models and large-scale maps. To achieve 
this, voxel-based Random Sample Consensus and Machine 
Learning algorithms, such as Multi-Layer Perceptron and 
Density-Based Spatial Clustering of Applications with 
Noise were combined in an automated way.

The processing pipeline began with a normalization 
step by applying a Cloth Simulation Filter. Utilizing the 
normalized Digital Surface Model, a combination of 
height filtering and a voxel-based sequential RANSAC 
algorithm was applied to detect and separate possible roof 
and wall points from each other.

Due to the specificity of the UAV photogrammet ry-
based point clouds, the processing has focused on sepa-
rating roof points. Thus, machine learning techniques, 
namely MLP and DBSCAN were combined to extract roof 
points from the pre-segmented off-ground points.

For the MLP approach, a training dataset was established 
using measurements from one of the test areas (Barnag), with 
two labels: roof and vegetation points. After that, point cloud 
features were selected and computed at each point. A Multi-
Layer Perceptron neural network model was trained to separate 
roof and vegetation points following voxel-based RANSAC 
segmentation. The resulting model achieved an overall accu-
racy of 97.4%, facilitating the separation of roof points.

Finally, a crop operation was executed using the bound-
ing polygon of roofs to get the wall points of these roof 
clusters. Thus, the wall points were generated from the 
rest of the non-ground points, which were filtered out by 
the previous steps. At the end of the process, the building 
points have been produced for each building.

These methods were applied to test measurements from 
three different areas, yielding consistent results.

Data Availability Statement 
The dataset used in this study is available upon request 
from the corresponding author.
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Fig. 17 Final result of the fully automated processing
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