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Abstract

The main reasons for the success of using chaos maps in meta-heuristic algorithms are fast optimization of non-linear and non-

convex problems. One of these cases is the control of the natural frequencies of structures to prevent the destructive and dangerous 

phenomenon of resonance. Natural frequencies have useful information about the dynamic behavior of structures, and by applying 

dynamic constraints, a significant improvement is achieved in the optimal design of structural weight. Applying frequency limits with 

traditional and gradient-based methods is very difficult and time-consuming, and in most cases, the calculation process stops at 

local optima. Recent research shows that chaos maps play a major role in escaping from local optima and reaching global optima. 

By combining these maps with meta- heuristic algorithms, while avoiding premature convergence, the access to global optima is 

accelerated and improved, and the ideal state of balance between the exploration and exploitation stages is realized. Today, chaotic 

algorithms are widely accepted by researchers and are considered as a challenging topic. In a recent research, six chaotic meta- 

heuristic algorithms have been investigated for the formation and improvement of results with the optimal design of truss structures. 

In this part the chaotic algorithms include Chaotic Water Evaporation Optimization (CWEO), Chaotic Tug-of-War Optimization (CTWO) 

and Chaotic Thermal Exchange Optimization (CTEO) are examined.
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1 Introduction
Truss structures have special features that cause their exten-
sive use in the field of engineering. This type of structures is 
a unique choice for covering large openings such as indus-
trial buildings and light structures such as telecommunica-
tion towers. In terms of behavior, they have unique capa-
bilities, such as the participation of most of the members 
in sustaining the load and not being destroyed due to the 
collapse of a limited number of members. Therefore, their 
popularity and variety in their use is more than impressive. 
Their use in important cases such as bridges, airplanes, 
ships, power transmission towers and astronaut structures 
has attracted the engineers to the optimization of this group 
of structures. In optimization with traditional gradient-based 
methods, the derivative of the objective function is formed 
and then the optimal answers are searched. Regarding opti-
mization with frequency limitation, we do not have a clear 
and direct relation of the objective function, so we have to 

investigate partial derivatives. Also, in a number of opti-
mization problems, the search space is discrete and it will 
not be practical to form their derivatives. The inefficiency 
of gradient-based methods reaches its peak when the num-
ber of decision variables become high. In recent decades, 
special categories of optimization methods have been born 
in the field of artificial intelligence, known as meta- heu-
ristic algorithms. These algorithms are based on decisions 
and principles of probabilistic and random search  [1]. 
In  these algorithms, the value of the objective function 
itself is evaluated instead of derivatives, and with inspira-
tion from natural phenomena, it gets an improving process 
in successive iterations. The main reason for this choice 
is the characteristics of natural phenomena that if there is 
a need for empowerment, nature does it in the best way. 
The first choice of researchers for inspiration is the genetic 
evolution of living things over millions of years from the 
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beginning of their life. In this evolution, the characteris-
tics of living things are improved by the act of crossing 
and mutation so that by adapting as much as possible to 
the surrounding environment, they win in the competition 
with other living things in the courtyard of life. Examples 
of these algorithms include Genetic Algorithms (GA) [2], 
Differential Evolution (DE) [3] and Evolutionary Strategy 
(ES) [4]. The second inspiration for meta- heuristic algo-
rithms is based on the swarm intelligence of animals and 
their nature in searching and accessing food. The compo-
nents of this inspiration include population, cooperation, 
communication, information exchange, information flow 
and self-organizing, which is evident in the collective life 
of birds, fish, ants and other animals. Examples of these 
algorithms include Particle Swarm Optimization (PSO) [5], 
Ant Colony Optimization (ACO)  [6], Artificial Bee 
Colony (ABC)  [7], Cyclical Parthenogenesis Algorithms 
(CPA) [8], Whale Optimization Algorithm (WOA) [9] and 
Gray Wolf Optimization (GWO) [10]. Inspired by physical 
laws, the third group of meta- heuristic algorithms forms. 
Examples of these algorithms include: Water Evaporation 
Optimization (WEO)  [11], Tug-of-war Optimization 
(TWO) [12], Thermal Exchange Optimization (TEO) [13], 
Charged System Search (CSS)  [14], Particle Colliding 
Bodies Optimization (CBO)  [15], Harmony Search 
(HS) [16], Vibrating Particles System (VPS) [17] and Big 
Bang-Big Crunch (BB-BC) [18]. Meta-heuristic algorithms 
with the origin of physical inspiration are more popular 
among researchers and have played a major role in improv-
ing the results of structural optimization. Today, the scope 
of inspiration has expanded on a wide level and has created 
remarkable successes in the state-of-the-art. Based on the 
traditional Nelder and Mead method, the Shuffled Complex 
Evolution (SCE-UA) [19] was proposed. In this algorithm, 
the geometric operators of contraction and reflection are 
inspired. This algorithm is the basis of the Shuffled Frog-
Leaping Algorithm (SFLA)  [20], which is classified as 
a memetic algorithm. Other algorithms, such as Imperialist 
Competitive Algorithm (ICA)  [21], Teaching-Learning-
Based Optimization (TLBO) [22] and Biogeography-Based 
Optimization (BBO) [23] respectively, are inspired by the 
political performance of emperors, the process of educa-
tion in the classroom and the migration process in wildlife 
habitats from various perspectives. They have gained inspi-
ration and significant improvement in engineering optimi-
zation. Despite the significant progress in meta-heuristic 
algorithms in the optimization of engineering problems, 
pests still threaten these algorithms. These pests can be 

things such as early maturity, falling into the trap of local 
optima and stopping the calculation process, etc. Research 
shows that by benefiting from chaos maps and replacing 
them in the exploration and exploitation stages, it greatly 
improves the weaknesses of the algorithms. Although there 
are no signs of random phenomena in chaos maps, their 
dynamic state leads to the emergence of very disordered 
behaviors in the environment. This behavior can be very 
useful to escape and jump from the trap of local optima. 
The salient features of a chaos function can be summarized 
in the following. These functions are sensitive to the ini-
tial conditions, their periodic rotation is dense, they have 
a quasi-random but non-periodic behavior, and finally, the 
rule governing their function is such that they do not have 
an inverse  [24]. In the recent research, chaos signals are 
distributed in scattered points of the decision space, and 
then the search is performed around their neighborhood, 
and if they are trapped in the local optima, they escape 
from them and jump to the global optima. In this way, the 
balance between the exploration and exploitation stages 
is provided and a significant improvement in the optimi-
zation results is achieved  [25]. In this research, Logistic 
and Gaussian chaos maps have been combined with three 
meta-heuristic algorithms and chaotic meta-heuristic algo-
rithms have been created. In order to access broad statisti-
cal communities and increase diversity in the search space, 
three scenarios have been considered. In the first and sec-
ond scenario, the chaos maps replace the exploration and 
exploitation phase of meta-heuristic algorithms, respec-
tively, and in the third scenario, they are applied simulta-
neously in both phases. Due to the wide statistical space of 
the answers, the global optimality cannot be far from the 
target of the chaotic algorithms, and eventually "absolute 
pseudo-optimal" answers are obtained. Chaotic algorithms 
can be developed for Topologies optimization in the case of 
probabilistic loading [26], Reliability based topology opti-
mization of thermoelastic structures [27], and elasto-plas-
tic limit analysis of reliability based geometrically  [28]. 
In these cases, the design with the limit of the minimum 
penalized weight is practical.

2 Formulation of the optimization problems
In this section, the dynamic analysis of the free vibration 
of the structure and access to natural frequencies is per-
formed first, and then the optimization model is presented 
with the formation of the objective function, constraints, 
penalty function and the combination of the objective 
function with the penalty function.
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2.1 Free vibration and natural frequencies
When a structure is affected by dynamic loads such as 
earthquakes or storms, in order to prevent the phenome-
non of resonance, the natural frequency should be limited 
to a certain range [29]. In order to apply this type of con-
straints, the natural frequencies of the structures contain 
all the required information about the dynamic behavior 
of the structures. In the low frequency vibration problems, 
the response of the structure depends on the basic fre-
quencies and mode shapes, and by applying the frequency 
constraints, the dynamic behavior of the structure can be 
easily controlled. In a number of optimization problems, 
the effects of some modes can be reduced by using these 
relations. For example, in the design of airplane wings, 
the effort is to reduce bending and torsion modes. To cal-
culate the natural frequencies of the structure, the matrix 
form of the free vibration equation of the multi-degree-
of-freedom system is investigated. In these relationships, 
M is the mass matrix, K is the stiffness matrix, Y is the 
displacement equation, φn is the shape vector of the nth 
mode, φn(t) is the time coordinate of the nth mode, An and 
Bn are the integration constants that are determined from 
the initial conditions. Dynamic relationships of free vibra-
tion are presented from Eqs. (1) to (5). 

M Y t K Y t� � � �( ) ( ) 0 	 (1)

Y t q t n Nn n( ) ( ); , ,...,� � �� 1 2 	 (2)

q t A t B tn n n n n( ) cos sin� �� � 	 (3)

Y t A t B tn n n n n( ) ( cos sin )� � �� � � 	 (4)

In these relationships, ωn and φn are unknowns which 
results in the placement of Y(t) in the free vibration differ-
ential equation.

K M K Mn n n� ��� �� � � � � � �� � �2 20 0 	 (5)

With the expansion of these determinants, the fre-
quency equation is obtained. This equation has N real 
and positive roots for ωn

2, which determines the N natu-
ral frequency of ωn. The roots of this characteristic equa-
tion are known as eigenvalues. Also, by reflecting on these 
equations, it is concluded that the design variables are not 
explicitly present in these equations and their presence 
is implicit. Therefore, if optimization is carried out with 
mathematical methods and implicit derivatives, one will 
encounter strongly non-linear and non-convex equations 
the Solution will be very difficult and time consuming. 

As a result, if we want to solve the frequency constraints 
in an optimization using traditional methods, we must 
perform a sensitivity analysis. Thus, the derivatives of the 
eigenvalues and eigenvectors must be calculated, and this 
usually encounters various approximations. In addition, in 
some cases, we will find repetitive amounts and repeti-
tive frequencies that are not distinguished by conventional 
investigations and can only be determined by directional 
derivatives. When analyzing the sensitivity of the struc-
tures, it is created by repetitive frequencies of particular 
complexity because it is mainly "unique in specific values. 
Another limit that greatly affect the traditional mathemat-
ical optimization methods is the choice of a good starting 
point. In cases where the starting point is not appropriate, 
these methods stop by reaching the local optimization, and 
there is no solution to escape these local optimists. Today, 
with the complication of issues and increasing the number 
of decision variables, the lack of accountability of classical 
methods is evident. Therefore, in order to overcome these 
challenges over the past decade, various types of powerful 
optimization methods have been invented, some of which 
have been optimized by frequency constraints. In most of 
these optimization methods, they are inspired by meta- 
heuristic techniques. Meta-heuristic algorithms are widely 
accepted by researchers and are considered as powerful 
tools for engineering optimization problems. The main 
features of these methods can be stated as the following: 
•	 These are based on the population. 
•	 These are independent of the specific problem. 
•	 These are inspired by natural phenomena. 
•	 These do not need any information about the gradient 

of the objective function and constraints. 
•	 The quality of the final solution does not depend on the 

starting point. 
•	 These are based on decisions and principles of random 

search.

In these algorithms, the value of the objective func-
tion itself is used instead of its derivatives, and these have 
global search capabilities, and are also suitable for com-
plex, non-linear, discrete and non-convex search spaces.

2.2 Formation of the objective function, constraints 
and penalty function
In optimization problems for the cross-sectional area and 
geometric shape of truss structures that are associated 
with frequency Constraints, the goal is to minimize the 
weight of the structure in such a way that the limitations 
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of a number of natural frequencies for vibration modes 
are met. The cross-sectional areas of the members along 
with the coordinates of some nodes are introduced as deci-
sion variables. These variables are selected as continuous. 
Upper and lower bounds are also determined for variables 
in some cases. These optimization problems are formu-
lated in mathematical form according to Eqs. (6):
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to imize

na ns� � �{ , }, { , ,..., }, { , ,..., }

:

1 2 1 2

min WW A S l S A

subjected to
i

i i
i

nm

i

i
L

i i
U

( , ) ( )

:

, , ,...,

� � �

� � �
�
��

� � �
1

1 2 nn
A A A j na

S S S k ns
j
L

j j
U

k
L

k k
U

�

� � �

� � �

�

�
�

�
�

, , ,...,

, , ,...,

1 2

1 2

	 (6)

where, X is the vector of decision variables, A is the vari-
able related to the cross-sectional area of the members, na 
is the symbol for represent the number of cross-sectional 
area variables, Ai is the value of the cross-sectional area of 
the ith variable, S is the variable related to the shape and 
arrangement, ns is the number of shape variables that have 
the same coordinates, Si is the numerical value of the ith 
shape variable, W expresses the weight of the truss, nm 
specifies the total number of members, ρi is the specific 
gravity of the materials belonging to the ith member of the 
truss, Li the length of the ith member which can be deter-
mined through the variables. The shape and initial shape 
of the structure should be determined, ωi represents the 
ith natural frequency of the truss, ϖi

L and ϖi
u respectively 

represent the lower limit and upper limit of the ith fixed 
base frequency, nω represents the sum of the total fre-
quency limits, Aј

L and Aј
u respectively represent the lower 

limit and upper limit of the jth variable of the cross section 
Aј, and similarly Sk

L and Sk
u, respectively, the lower limit 

and the upper limit of the kth shape variable Sk. Due to 
the fact that meta-heuristic algorithms are used for uncon-
strained problems, we use the penalty function to convert 
the constrained state to unconstrained in modeling. In this 
method, if there is no violation, the amount of the fine will 
be zero, and if there is a violation, the value of the penalty 
function is obtained from the following relationships:
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Fpenalty � � �( )1 1
2� � � 	 (9)

to imize Mer A S W A S Fpenaltymin ( , ) ( , )� � 	 (10)

In these relationships, y represents the set of violations 
and ε1 and ε2 are chosen based on the ratio of search and 
extraction. In this research, ε1 unit and ε2 are selected with 
incremental linear changes in the range of 1.3 to 3 at the 
end of the iteration. Finally, "Mer" is the merit function or 
the objective function after applying the penalty.

3 Meta-heuristic algorithms and applying the chaos 
functions
In meta-heuristic algorithms, two important stages of explo-
ration and exploitation are considered in order to converge 
towards optimal answers. In the exploration phase, one set-
tles on the points of the search space that have a privileged 
strategy, and in the exploitation phase, one carefully exam-
ines the area related to the neighborhood of the selected 
points. The Random Search algorithm (RS) is a fully explo-
ration algorithm, while the Hill Climbing algorithm (HC) 
and Tabu Search algorithms (TS) are fully exploitation. in 
order to expand and cover the search space in both stages, 
we will have to use random parameters. The distribution 
function related to these parameters is different according 
to the proposed algorithm and can include uniform, normal, 
logistic, levy, etc., distribution. Although the selection of 
these parameters is completely random, it has a significant 
effect on the efficiency of the algorithm. Random parame-
ters play a major role in increasing or decreasing the speed 
of convergence and escaping from the trap of local optima, 
and in some cases these key factors can control the balance 
between exploration and exploitation. Today, the random 
selection of these parameters is accompanied by doubts, 
and researches show that some of the ineffectiveness fac-
tors of meta-heuristic algorithms are random parameters, 
so dynamic chaos series, whose values are definite, will be 
a good alternative for these parameters. Chaotic series can 
accelerate the convergence towards global optima, and play 
a major role to avoid falling into the trap of local optima 
and premature convergence. The series created by chaos 
maps are similar to random processes, but their values are 
deterministic, non-linear, dynamic and non-repetitive and 
non-convergent towards a certain limit. We will not have 
inverse chaos functions and we can consider different sit-
uations to apply them [30]. In some cases, these functions 
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are suitable substitutes for the possible parameters related 
to the exploration, and in some other cases, we will gain 
improved results by replacing the parameters related to the 
exploitation part. Also, in a small number of algorithms, 
applying chaos functions in both cases simultaneously will 
lead to improved results. In order to reach the desired state, 
we have to examine the algorithms in three different sce-
narios. Which scenario works best for a particular algo-
rithm varies from example to example. In fact, the non-lin-
ear and non-convex behavior of the objective functions in 
the optimization of truss structures has created these con-
ditions for meta- heuristic algorithms. In  recent research 
to investigate the effects of chaos maps in improving the 
optimization results, first these algorithms are examined in 
a standard way and then the results will be compared with 
the three proposed scenarios.

3.1 Standard Water Evaporation Optimization (WEO)
The inspirations in this algorithm are based on the evap-
oration of tiny water molecules on the solid surface with 
different humidity states. This algorithm was presented 
by Kaveh and Bakhshpoori [11] and it is population-based 
like most meta- heuristic algorithms. In this algorithm, 
dynamic simulation is considered to model the molecular 
evaporation of water. Based on this simulation, the desired 
surface changes from the state of repelling to the absorb-
ing state of water, but the rate of evaporation does not 
decrease uniformly in this sudden change, but increases 
first and starts to decrease when it reaches a maximum 
volume. Also, when the moisture level of the desired layer 
is not enough, the water molecule becomes a spherical 
droplet. In cases where the moisture level of the desired 
layer is sufficient, the water molecule spreads and spreads 
as a single layer. This performance has been used in the 
water evaporation optimization.

3.1.1 Basic steps of the Water Evaporation 
Optimization
Step 1 Selecting the parameters of the algorithm, which 
are: determining the number of water molecules, which 
is the initial population nWM, maximum number of rep-
etitions of the "maxNITs" algorithm, minimum and max-
imum probability of evaporation of the single-layer state 
MEPmin and MEPmax, which we usually choose 0.03 and 
0.6, respectively, minimum and maximum probability of 
evaporation of droplet state DEPmin and DEPmax which 
we usually choose 0.6 and 1, respectively. This algorithm 
with n number of proposed answers which constitute 

the same water molecules is randomly selected from the 
search space and the matrix of molecules It forms water. 
Then, the responses are applied to objective functions and 
penalized objective functions, and the corresponding vec-
tors of those functions are formed.

Step 2 The formation of the evaporation phase based 
on the single-layer strategy of water, which is carried out 
in the form of Eq. (11) and the probability in the range of 
0.03 to 0.6.

if NFE
NFE if E i MEP

ifs
s ij sub ij

ij

� �
� � �

�
max exp( ( ))

exp(2

1rand
rand EE i MEPsub ij( ))� �

�
�
�

�� 0
	

(11)

The formation of the evaporation phase based on the 
water drop strategy, which is carried out in the form of 
Eq. (12) probability relations in the range of 0.6 to 1.

if NFE
NFE if J DEP

if J DEPs
s ij i ij

ij i ij

� �
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� �
max ( )

( )2

1rand
rand

�

� ��

�
�
�

�� 0

	
(12)

Step 3 Determining the range of step-size is determined 
according to Eq. (13).

Stepsize rand WM permute i j
WM permute i j
� �
�

( [ ( )( )]

[ ( )( )])

1

2
	 (13)

Step 4 The formation of new water molecules (off-
spring) that arise according to Eq. (14).

if NFE
NFE

newWM WM Stepsize MEP

if NFE
NFE

newWM

s
s

s
s
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� �

max

max

2

2
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�

�
��

�
�
�

WM Stepsize DEP

	

(14)

The new evaluated molecules are replaced if they are 
better than the previous answers.

Step 5 Termination conditions are checked and if neces-
sary, the operation from step 2 is repeated.

3.1.2 Chaos-Embedded Water Evaporation 
Optimization (CWEO)
In this algorithm, the formation of the evaporation phase 
is based on two important strategies, which include the 
single-layer and water droplet strategies. Therefore, these 
two steps will play an important role in exploration and 
exploitation. By replacing the chaos maps in the random 
selections related to these steps, we will witness a signif-
icant improvement in the performance of the algorithms. 
The suggested scenarios for this replacement are as follows:
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Scenario 1 - Replacing the chaos map in the evapora-
tion phase based on a monolayer strategy: In this case, 
the first chaos map CHM1 is replaced in Eq. (11) and the 
result of Eq. (15) is as follows:

if NFE
NFE if E i MEP

ifs
s ij sub ij

ij

� �
� � �

�
max exp( ( ))

exp(2

1CHM1
CHM1 EE i MEPsub ij( ))� �

�
�
�

�� 0

	

(15)

Scenario 2 - Replacing the chaos function in the evap-
oration phase based on the drip strategy: In this case, the 
second chaos map CHM2 is replaced in Eq. (12) and the 
result of Eq. (16) is as follows:

if NFE NFE if J DEP
if J DEPs

s ij i ij

ij i ij

� �
� � �

� �
max ( )

( )2

1CHM2
CHM2

�

� ��

�
�
�

�� 0

	

(16)

Scenario 3 Placing the chaos function in both steps 
simultaneously: In this case, two chaos maps are simulta-
neously replaced in Eqs. (11–12).

3.2 Standard Tug of War Optimization (TWO)
This algorithm was presented by Kaveh and Zolghadr [12]. 
In this algorithm, it is inspired by the game of tug-of-war 
and is based on the population. Like other meta- heuris-
tic algorithms, a set of initial answers is selected from the 
decision space and each solution is considered as a team, 
and all of them form a league. In each iteration of the algo-
rithm, the evaluation of the teams is determined and sorted 
based on merit. In this competition, the best team has the 
most weight and the worst team has the least weight. Both 
competing teams are pulling the rope, the light team loses 
the competition and moves to the heavy team.

3.2.1 Basic steps of the Tug of War Optimization 
Algorithm
Step 1 Determining the parameters of the algorithm: The 
parameters include the following. 
•	 The number of teams participating in the competition, 

which is represented by the symbol nT,
•	 the number of members of each team or T, which is 

known as the league matrix. 
In this way, in each step, it consists of evaluating the 

values of the vectors corresponding to the objective func-
tion and the penalized objective function.

Step 2 Determining the weights in the tug-of-war com-
petition: Each solution is known as a team from the league, 
and the numerical value of its weight in these competi-
tions is determined according to the Eq. (17):

W PFit PFit
PFit PFiti

i�
�
�

�
min( )

min( ) max( )
1 	 (17)

In this regard, the penalized objective function along 
with its maximum and minimum value is considered to 
determine the weight of each team. Based on this relation-
ship, the weight of each team is placed between 1 and 2. 
Numerical value 2 is the best and heaviest team.

Step 3 Competing between teams: Each team in the 
league competes with all other teams. To move to its new 
position in each period of repetition, the tensile force 
applied by each team is proportional to the frictional force 
at rest. In the modeling, the value of the coefficient of fric-
tion is assumed to be one, and the pulling force between 
the two teams i and j can be the maximum of the follow-
ing two values:

F W Wp ij i s j s, max{ , }� � � 	 (18)

Finally, the resulting force on team i in the face of 
heavier team j is obtained as follows:

F F Wr ij p ij i k, ,� � � 	 (19)

The amount of acceleration in the movement of team i 
towards team j results from the following equation:

a
F
W

g g T Tij
r ij

i k
ij ij j i� � �, ,

�
	 (20)

In this relationship, g is the acceleration constant 
of gravity, which is obtained from the difference of the 
position vector of the two teams. Also, the displacement 
amount of team i after competing with team j is deter-
mined according to the following relationship:

stepsize a T Lb Ubij ij� � �
1

2

2� ��� ( ) randn 	 (21)

The second term of this relationship considers random 
cases in the amount of team displacement. This term can 
consider that part of the search space that team i travels 
before being stopped by team j. The α coefficient gradually 
reduces the possible effects and is selected in the range of 
[0.99, 0.9]. Larger values for α slow down the convergence 
rate and give enough time for the proposed answers to 
fully explore the search space. Also, β is the scaling factor 
that can be selected in the range of [1, 0]. This parameter 
controls the steps of the proposed answers, and in cases 
where we need more accuracy for searching, the β param-
eter is selected with smaller steps. Also, Lb and Ub are the 
lower limit and upper limit of the search space and their 
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differences express the allowed range for design vari-
ables. The multiplication used is of member-by-member 
type and random values with standard normal distribu-
tion are selected for randn vector. In this relationship, the 
multiplication used is member-by-member type and a ran-
dom vector with normal distribution is selected. We can 
define ΔT time periods as 1. It should be noted that in 
cases where j is lighter than i, the values related to the dis-
placement of team i are considered zero. Finally, the total 
relocation of team i is summarized as follows:

stepsize stepsize i jij ij
j

nT

� �
�
�
1

, 	 (22)

The new position of team i is as follows:

T T stepsizei
new

i i� � 	 (23)

Step 4 Updating the position of league teams: After 
the competition of the league teams, the results should be 
updated. For this, the new results are replaced if they are 
better than the current values.

Step 5 The possibility of the results leaving the range 
of the control decision space and if in some cases the posi-
tions of the teams are out of this search range, it is recon-
structed based on the following relationship.

T bestT
NIT

bestT Tij j
s

j ij� � �( )( )
randn 	 (24)

In this equation, bestT is the best team so far and NITs 
is a repeat number.

Step 6 The termination conditions are checked and if 
necessary, the competition between the league teams is 
repeated.

3.2.2 Chaos-Embedded Tug of War Optimization 
(CTWO)
In order to determine the new position of the league teams, 
two exploration and exploitation strategies have been con-
sidered in the scale factor β and the search space limita-
tion. By replacing the chaos maps in the random selections 
related to these steps, we will see a significant improve-
ment in the performance of the algorithm. The suggested 
scenarios for this replacement are as follows:

Scenario 1 Replacing the chaos function in choosing 
the scale factor β: In this case, the first CHM1 chaos map 
is replaced in Eq. (21). The result will be as below:

stepsize a T Lb Ubij ij� � � � � �
1

2

2� � CHM1 ( ) randn	 (25)

Scenario 2 Replacing the chaos map in applying the 
search space limitation: In this case, the second CHM2 chaos 
map is replaced in Eq. (24). The result will be as below:

T bestT
NIT

bestT Tij j
s

j ij� � �( )( )
CHM2 	 (26)

Scenario 3 placing chaos functions in both stages: 
In this case, two chaos maps are simultaneously replaced 
in Eqs. (21–24).

3.3 Standard Thermal Exchange Optimization (TEO)
This algorithm was presented by Kaveh and Dadras [13], 
inspired by Newton's law of cooling. In this algorithm, the 
physical relations related to the thermal exchange between 
the object and the surrounding environment are used and 
it is based on the population. The use of this algorithm 
for structural problems has brought significant improve-
ment. Newton's law of cooling states that the rate of heat 
loss between an object and the surrounding environment 
is proportional to their temperature difference. Therefore, 
the population of heat exchanging particles is separated 
into two parts and the first half is placed in heat exchange 
with the second half.

3.3.1 Basic steps in Thermal Exchange Optimization
Step 1 Determining the initial values of the algorithm: 
The thermal exchange algorithm starts with the introduc-
tion of the initial proposed solutions. These solutions are 
selected within the scope of the search space. The num-
ber of elements selected for thermal exchange is equal 
to nTO. Then the objective functions and penalized objec-
tive functions corresponding to each of the solutions are 
determined.

Step 2 Creating groups: In order to carry out the thermal 
transfer process, first the introduced components are sorted 
in ascending form based on the penalized objective func-
tion and then they are classified into two groups with the 
same number of components. In this step, the components 
of the first group (i = 1, 2, ..., nTO/2) exchange thermal with 
the components of the second half (i = nTO/2 + 1, ..., n).

Step 3 thermal transfer and updating the position of the 
components: Based on the thermal exchange relationship 
of the elements with the surrounding environment, the 
final position of the elements is determined by the follow-
ing important heat exchange relationship.

newTO i envTO i TO i envTO i i t( ) ( ) ( ( ) ( ))exp( ( ) )� � � �� 	
(27)
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In this regard, newTO(i) expresses the new position 
after thermal exchange and envTO(i) expresses the ther-
mal position of the surrounding environment before ther-
mal exchange. Also, in order to apply the parameters of 
time and β, we use the following suggested relationships.

t NITs
NITs

i PFit i
PFit i

� �
max

, ( )
( )

max ( )
� 	 (28)

In these relationships, NITs and maxNITs express the 
number of iterations in each step and the maximum num-
ber of iterations, respectively. Also, PFit and maxPFit con-
sider the values of the penalized objective function and its 
maximum value.

Step 4 Applying possible conditions: Up to this stage, 
the calculations are based on specific and definite rela-
tionships. In order to escape the trap of local optima and 
premature maturity in the algorithm, two mechanisms of 
search and discovery in the thermal exchange of elements 
should be considered. In the following relations, this pos-
sible condition is provided by the parameters C, C1, C2 
and a choice of rand.

nevTO c TO� � �( )1 rand 	 (29)

C C C t� � � �1 2 1( ) 	 (30)

C round C round1 2= =( ), ( )rand rand 	 (31)

Step 5: Elitist thermal exchange algorithm: In order to 
achieve the elitism of the algorithm, memories are allo-
cated for the best results. For this purpose, the best ther-
mal exchange (TO-M) and the objective function (Fit-
M) and the corresponding penalized objective function 
(PFit-M) are compared with the previous periods in each 
period, and replaced if the results are improved.

Step 6: The termination conditions are checked and if 
necessary, the thermal exchange of the elements with the 
surrounding environment is repeated.

3.3.2 Chaos-Embedded Thermal Exchange 
Optimization (CTEO)
In order to determine the new position of the heat flow as 
a result of the heat exchange of each element with the sur-
rounding environment, two exploration and exploitation 
strategies have been considered in Eqs. (29–31).

By replacing the chaos functions in the random selec-
tions related to these steps, we will have a significant 
improvement in the performance of the algorithm. The sug-
gested scenarios for this replacement are as follows: 

Scenario 1 Replacing the chaos map in the exploration 
phase: At this stage, the first CHM1 chaos map replaces the 
random term in Eq. (29). The results of applying the chaos 
map will be as follows:

nevTO c TO� � �( )1 CHM1 	 (32)

Scenario 2 Replacing the chaos map in the exploita-
tion phase: In this stage, the second chaos map CHM2 is 
replaced to determine the values of C1 and C2 in Eq. (31). 
For this purpose, we have:

C round C round1 1= =( ), ( )CHM2 CHM2 	 (33)

Scenario 3 placing the chaos map in both stages: In this 
case, the chaos map is simultaneously applied to the ran-
dom selections of both stages.

4 Introduction of the Selected Chaos Map
In most of the meta-heuristic algorithms, the optimization 
results stagnate and stop when they reach the local optimal 
position, in such conditions premature convergence occurs. 
In order to escape from the trap of local optima, chaos func-
tions create suitable conditions that by creating disorder in 
the search space, it is possible to jump to most positions of 
the search space. Therefore, general optima will not have 
the chance to escape from the shooter of chaotic functions. 
These functions do not have any traces of random behav-
ior in them, but they cause the emergence of very irregular 
behaviors in the search space. One of the most important 
features of these functions is sensitivity to initial condi-
tions and non-periodic and ergodic behaviors, and these 
functions do not have an inverse. How to apply these func-
tions in meta-heuristic algorithms is presented in the flow-
chart of Fig. 1. Using chaotic series to evolve variables in 
COA meta-heuristic algorithms has significant advantages 
over other methods. In deterministic search, compared to 
random search, more speed and convergence towards the 
general answer is achieved  [31]. In this research, logistic 
and Gaussian chaos function has been chosen. In the logis-
tic chaotic function, the search space converges from the 
local minima to the global minimum with a very high prob-
ability. Therefore, this function is suitable for improving 
exploration conditions of algorithms. But the Gaussian cha-
otic function moves the search space towards local minima 
with a very high probability and is suitable for improving 
the exploitation conditions. Therefore, by choosing these 
chaos functions, the weakness of algorithms of any kind is 
improved. The numerical distribution of these chaos func-
tions for 100 iterations is presented in Fig. 2.
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4.1 Logistics chaotic map
This function appears in the non-linear dynamic behav-
iors related to the biological population [32]. The state-
ments of chaotic sequences are obtained in the logistic 
function according to the group of Eqs. (34):

CHM a CHM CHM

CHM CHM

CHM

k k k

k k

�

�

� � �

� �

�

1

1

0

1

0 1 0 1

0 0 25 0

( )

( , ); ( , )

( , . , .. , . , )50 0 75 1

	 (34)

In the studies conducted, a = 4 is considered.

Fig. 1 Flowchart for the chaos algorithm

Fig. 2 The chaotic value distribution during 100 iterations
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4.2 Gauss chaotic map
Using this function in nonlinear dynamic behaviors brings 
good result [33]. The statements of chaotic sequences in 
the Gaussian function are obtained according to Eq. (35):

CHM
CHM

CHM CHM
CHMk

k

k k
k

� �

�

�
�

�
�

�

�
� �

�

�
�

�
�

1

0 0

1 1
0

	 (35)

5 Numerical examples of Optimal Truss Design
In this research, in order to compare the efficiency of algo-
rithms in standard and chaotic mode, truss structures 
with oscillation frequency limit have been selected. This 
restriction is to avoid the destructive phenomenon of res-
onance and high vibration of the structure. In the opti-
mal design of the trusses, in addition to the cross-sectional 
area of the members, the geometric shape of the struc-
tures is also included in the objective function. In order to 
increase diversity and repair the weakness of exploration 
and exploitation in algorithms, different chaos maps with 
different scenarios have been formed. Also, in  order to 
reach the statistical population and introduce the optimal 

values for the weight, the average and the coefficient of 
variation of each of the examples have been examined 
20 times independently. In each table, the three chaotic 
modes are compared with the standard mode and the final 
optimal results for the optimal chaotic meta-heuristic 
algorithm are introduced. In another table, the compari-
son between the optimal chaotic algorithms is done and 
the best value among them is presented by introducing the 
assigned values for each cross section and unknown geo-
metric shape. Considering that each example is associated 
with 18 independent answers, therefore, the possibility of 
accessing optimal answers has increased.

5.1 A 52-bar dome-like truss
The dimensional specifications of the 52-bar dome-like 
truss are according to Fig. 3. In this truss, in addition to 
the optimization of the size of the members' sections, 
the optimization of the geometric coordinates of the nodes 
is also considered, and the geometric shape of the struc-
ture is designed during the optimization process. The deci-
sion variables related to the size of the section are classified 
into 8 groups according to the symmetry in the geometric 

Fig. 3 Schematic of A 52-bar dome-like truss
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shape. The geometric coordinates of all symmetrical free 
nodes can change by ±2 meters from the initial position 
along the coordinate axes. In this case, the number of deci-
sion variables related to the shape of the structure and the 
geometric coordinates of the nodes is limited to 5 variables, 
and the total number of variables, including shape and 
size, will be 13 variables. In all the free nodes, the lumped 
non-structural mass of 50 kg has affected all the free nodes. 
The mechanical specifications of the structure are: The den-
sity of the materials is 7800 kg/m3, the modulus of elasticity 
is 210000 MPa, the frequency limits of the structure are less 

than 15.916 Hz in the first mode and greater than 28.648 Hz 
in the second mode. For the cross-sectional area of the 
members, the lower bound is 1 cm2 and the upper bound is 
10 cm2. In order to form statistical samples, 20 independent 
surveys were conducted and the results related to the best 
weight, average value and coefficient of variation are pre-
sented in statistical Table 1. In Table 2, a comparison has 
been made between the chaotic meta-heuristic algorithms 
and the details of the cross-sectional area of the members in 
the optimal state for the states that have high efficiency are 
presented as the final result of the optimization.

Table 1 Statistical results for the 52-bar dome-like truss

Algorithms Statistical
Information

WEO
Standard

CWEO-21
Logist-1

CWEO-22
Logist-2

CWEO-23
Logist-3

CWEO-31
Gauss-1

CWEO-32
Gauss-2

CWEO-33
Gauss-3

1-WEO

Best 194.911 193.762 193.757 194.206 194.974 194.924 193.701

Mean 200.138 195.383 199.064 196.563 199.353 201.493 200.338

C.V(%) 2.2960 1.3182 5.8882 2.161 1.8123 1.9536 2.4699

Algorithms Statistical
Information

TWO
Standard

CTWO-21
Logist-1

CTWO-22
Logist-2

CTWO-23
Logist-3

CTWO-31
Gauss-1

CTWO-32
Gauss-2

CTWO-33
Gauss-3

2-TWO

Best 194.066 193.165 193.290 193.660 193.256 193.431 194.658

Mean 196.172 196.761 193.531 194.002 193.817 194.929 201.675

C.V(%) 1.0556 2.2447 0.1278 0.1285 0.2736 1.2944 4.2939

Algorithms Statistical
Information

TEO
Standard

CTEO-21
Logist-1

CTEO-22
Logist-2

CTEO-23
Logist-3

CTEO-31
Gauss-1

CTEO-32
Gauss-2

CTEO-33
Gauss-3

3-TEO

Best 193.886 193.260 193.428 193.303 193.994 193.367 193.373

Mean 197.065 194.078 196.369 194.269 196.148 194.325 194.242

C.V(%) 1.9229 0.4104 1.8252 0.8885 1.0123 0.8882 0.7835

Table 2 Optimal design comparison for the 52-bar dome-like truss

Decision Variable WEO Stand CWEO Gaus3 TWO Stand CTWO Logis1 TEO Stand CTEO Logis1

ZA (m) 6.139 5.846 6.225 5.945 6.080 5.900

XB (m) 2.112 2.104 2.313 2.265 2.140 2.268

ZB (m) 3.888 3.740 3.806 3.722 3.844 3.730

XF (m) 3.992 3.906 4.049 3.968 4.002 3.978

ZF (m) 2.501 2.500 2.500 2.500 2.500 2.500

A1 (cm2) 1.007 1.000 1.001 1.000 1.000 1.000

A2 (cm2) 1.221 1.264 1.122 1.118 1.209 1.107

A3 (cm2) 1.244 1.273 1.247 1.222 1.259 1.209

A4 (cm2) 1.212 1.510 1.369 1.437 1.356 1.481

A5 (cm2) 1.343 1.415 1.494 1.403 1.428 1.410

A6 (cm2) 1.002 1.001 1.000 1.000 1.000 1.000

A7 (cm2) 1.629 1.528 1.478 1.592 1.502 1.558

A8 (cm2) 1.436 1.406 1.400 1.371 1.433 1.397

Best Weight (kg) 194.9 193.7 194.1 193.1 193.9 193.2

Mean Weight (kg) 200.1 200.3 196.2 196.7 197.1 194.0

Coefficient Variation (CV) 2.296 2.469 1.056 2.245 1.923 0.410

NFE 24000 24000 27000 27000 28000 28000

ω1 (HZ) 12.92 10.82 11.62 11.52 10.87 11.65

ω2 (HZ) 28.65 28.64 28.65 28.65 28.64 28.64
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Also, for quick access to optimization information, 
the bar chart of each component is displayed in Fig. 4. 
The analysis of the optimization results for different com-
binations of algorithms with chaos functions and compar-
ing it with the standard mode shows a significant improve-
ment in reducing the weight of the 52-bar dome-like truss. 
The results of each algorithm are: In the optimization algo-
rithm based on Water Evaporation Optimization (WEO), 
the Gaussian chaos map with scenario 3 with a weight of 
193.701 kg has an optimal response. In the optimization 
algorithm based on the Tug-of-War Optimization (TWO), 
the Logistic chaos map with scenario 1 with a weight 
of 193.165 kg has an optimal response. In the optimiza-
tion algorithm based on Thermal Exchange Optimization 
(TEO), the Logistic chaos map with scenario 2 with 
a weight of 193.260 kg has an optimal response. In Table 2, 
all the results have been compared and among all the algo-
rithms and chaos maps under investigation, the meta-heu-
ristic algorithm based on the Tug-of-War Optimization 

(TWO), the Logistic chaos map with scenario 1 with 
a  weight of 193.165 kg has obtained the most optimal 
results. In this table, the details related to the cross section 
of the elements, the average weight and the coefficient of 
variation are provided. The diagram of the convergence 
history of the algorithms to compare the standard and cha-
otic mode is presented in Fig. 5.

5.2 A 120-bar spatial dome
The dimensional specifications of the 120-bar spatial dome 
are according to Fig. 6. This truss is a well-known bench-
mark problem regarding weight optimization with fre-
quency limitation. In this truss, only the optimization of the 
cross-section of the members is considered and the geomet-
ric shape of the structure is constant during the optimiza-
tion process. The decision variables related to the cross-sec-
tional area of the members are classified into 7 groups 
according to the symmetry in the geometric shape of the 
dome along the X and Y axes. Non-structural lumped mass 

Fig. 4 Optimization results in standard mode and selection of chaos map for the 52-bar dome-like truss

Fig. 5 The Convergence Histories for the 52-bar dome-like truss
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affects all the free nodes of the structure. Their values are 
3000 kg in node 1, 500 kg in nodes 2 to 13, and 100 kg in 
the rest of the nodes. The mechanical characteristics of the 
structure are: the density of the materials is 7971.81 kg/m3, 
the modulus of elasticity is 210000 MPa, the frequency lim-
its of the structure in the first and second modes are greater 
than 9 and 11 Hz, respectively. For the cross-section of 
members, the lower bound is 1 cm2 and the upper bound is 

129.3 cm2. In order to form statistical samples, 20 indepen-
dent surveys were conducted and the results related to the 
best weight, average value and coefficient of variation are 
presented in statistical Table 3. In Table 4, a comparison has 
been made between the chaotic meta-heuristic algorithms 
and the details of the cross-sectional area of the members in 
the optimal state for the states that have high efficiency are 
presented as the final result of the optimization.

Table 3 Statistical results for the 120-bar spatial dome

Algorithms Statistical
Information

WEO
Standard

CWEO-21
Logist-1

CWEO-22
Logist-2

CWEO-23
Logist-3

CWEO-31
Gauss-1

CWEO-32
Gauss-2

CWEO-33
Gauss-3

1-WEO

Best 8720.389 8712.838 8712.904 8715.883 8714.447 8715.201 8711.427

Mean 8745.468 8725.251 8727.114 8723.127 8741.696 8748.133 8718.489

C.V(%) 0.2454 0.1145 0.1778 0.0586 0.2539 0.3088 0.0763

Algorithms Statistical
Information

TWO
Standard

CTWO-21
Logist-1

CTWO-22
Logist-2

CTWO-23
Logist-3

CTWO-31
Gauss-1

CTWO-32
Gauss-2

CTWO-33
Gauss-3

2-TWO

Best 8715.187 8708.525 8724.610 8710.925 8710.711 8708.553 8709.415

Mean 8715.516 8709.419 8729.013 8714.213 8714.145 8709.620 8712.938

C.V(%) 0.0039 0.0089 0.0316 0.0329 0.0245 0.01165 0.0229

Algorithms Statistical
Information

TEO
Standard

CTEO-21
Logist-1

CTEO-22
Logist-2

CTEO-23
Logist-3

CTEO-31
Gauss-1

CTEO-32
Gauss-2

CTEO-33
Gauss-3

3-TEO

Best 8713.355 8714.335 8708.737 8716.217 8708.667 8724.145 8710.345

Mean 8715.417 8721.072 8710.306 8720.087 8709.095 8729.086 8711.405

C.V(%) 0.0222 0.559 0.0199 0.0633 0.0061 0.0495 0.0090

Fig. 6 Schematic of A 120-bar spatial dome
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Table 4 Optimal design comparison for the 120-bar spatial dome

Decision Variable WEO Stand CWEO Gaus3 TWO Stand CTWO Logis1 TEO Stand CTEO Logis1

A1 (cm2) 19.831 19.842 19.356 19.521 19.621 19.515

A2 (cm2) 39.735 39.556 41.014 40.295 39.892 40.512

A3 (cm2) 10.486 10.729 10.569 10.603 10.834 10.637

A4 (cm2) 20.546 21.226 20.923 21.120 21.057 21.068

A5 (cm2) 9.739 9.611 9.941 9.872 9.852 9.747

A6 (cm2) 11.529 11.568 11.862 11.821 11.496 11.746

A7 (cm2) 15.748 14.945 14.931 14.819 15.021 14.893

Best Weight (kg) 8720.4 8711.4 8715.2 8708.5 8713.4 8708.6

Mean Weight (kg) 8745.5 8718.4 8715.5 8709.4 8715.4 8709.0

Coefficient Variation (CV) 0.245 0.076 0.0038 0.0088 0.0222 0.0061

NFE 20000 20000 24000 24000 40000 40000

ω1 (HZ) 9 9 9 9 9.001 9

ω2 (HZ) 11 11 11.001 11 11.002 11

Also, for quick access to optimization information, 
the bar chart of each component is displayed in Fig. 7. 
The analysis of the optimization results for different com-
binations of algorithms with chaos functions and compar-
ing it with the standard mode shows a significant improve-
ment in reducing the weight of the 120-bar spatial dome. 

The results of each algorithm are: In the optimiza-
tion algorithm based on Water Evaporation Optimization 
(WEO), the Gaussian chaos map with scenario 3 with 
a  weight of 8711.427 kg has an optimal response. 
In  the optimization algorithm based on the Tug-of-War 
Optimization (TWO), the Logistic chaos map with sce-
nario 1 with a weight of 8708.525 kg has an optimal 
response. In the optimization algorithm based on Thermal 
Exchange Optimization (TEO), the Gaussian chaos map 
with scenario 1 with a weight of 8708.667 kg has an opti-
mal response. In Table 4, all the results have been com-
pared and among all the algorithms and chaos maps under 

investigation, the meta-heuristic algorithm based on the 
Tug-of-War Optimization (TWO), the Logistic chaos map 
with scenario 1 with a weight of 8708.525 kg has obtained 
the most optimal results. In this table, the details related to 
the cross section of the elements, the average weight and 
the coefficient of variation are provided. The diagram of 
the convergence history of the algorithms to compare the 
standard and chaotic mode is presented in Fig. 8.

5.3 A 200-bar planar truss structure
The dimensional specifications of the 200-bar planar truss 
structure are according to Fig. 9. This truss is a well-
known benchmark problem regarding weight optimi-
zation with frequency limitation. In this truss, only the 
optimization of the cross-section of the members is con-
sidered and the geometric shape of the structure is con-
stant during the optimization process. The decision vari-
ables related to the cross-sectional level of members are 

Fig. 7 Optimization results in standard mode and selection of the chaos map for the 120-bar spatial dome
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classified into 29 groups. The lumped non-structural mass 
in nodes 1 to 5 and in the amount of 100 kg affect the struc-
ture. The  mechanical specifications of the structure are: 
The density of the materials is 7860 kg/m3, the modulus 
of elasticity is 210000 MPa, the frequency limits of the 
structure in the first, second and third modes are greater 
than 5, 10 and 15 Hz, respectively. For the cross-sectional 
area of the members, the lower bound is 0.1 cm2 and the 
upper bound is 25 cm2. In order to form statistical samples, 

20  independent surveys were conducted and the results 
related to the best weight, average value and coefficient of 
variation are presented in statistical Table  5. In  Table 6, 
a comparison has been made between the chaotic meta-heu-
ristic algorithms and the details of the cross-sectional area 
of the members in the optimal state for the states that have 
high efficiency are presented as the final result of the opti-
mization. Also, for quick access to optimization informa-
tion, the bar chart of each component is displayed in Fig. 10. 

Fig. 8 The Convergence Histories for the 120-bar spatial dome

Fig. 9 Schematic of a 200-bar planar truss structure
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Analyzing the optimization results for different combina-
tions of algorithms with chaos functions and comparing it 
with the standard mode shows a significant improvement in 
reducing the weight of the 200-bar planar truss structure. 
The results of each algorithm are: In the optimization algo-
rithm based on Water Evaporation Optimization (WEO), 
the Gaussian chaos map with scenario 3 with a weight of 
2150.206 kg has an optimal response. In the optimization 
algorithm based on the Tug-of-War Optimization (TWO), 
the Logistic chaos map with scenario 1 with a weight of 
2072.411  kg has an optimal response. In the optimiza-
tion algorithm based on Thermal Exchange Optimization 
(TEO), the Gaussian chaos map with scenario 1 with 
a weight of 2005.036 kg has an optimal response.

In Table 6, all the results have been compared and 
among all the algorithms and chaos maps under investi-
gation, the meta-heuristic algorithm based on Thermal 
Exchange Optimization (TEO) with Gaussian chaos map 

and scenario 1 and weight 2005.036 kg has obtained the 
most optimal results. In this table, the details related to 
the cross section of the elements, the average weight and 
the coefficient of variation are provided. The diagram of 
the convergence history of the algorithms to compare the 
standard and chaotic mode is presented in Fig. 11. 

6 Discussions
In this research, samples have been selected from different 
groups of meta-heuristic algorithms and the reasons for 
the stagnation of algorithms in reaching overall optimal-
ity have been investigated. In general, for most meta-heu-
ristic algorithms, the imbalance between the exploration 
and exploitation stage causes the algorithm to stop at local 
optima, and premature convergence occurs for them. 
In a number of algorithms, by applying the mutation stage, 
it is tried to escape from the trap of local optima and move 
towards global optima. Today, researches have shown that 

Table 5 Statistical results for the 200- bar planar truss structure

Algorithms Statistical
Information

WEO
Standard

CWEO-21
Logist-1

CWEO-22
Logist-2

CWEO-23
Logist-3

CWEO-31
Gauss-1

CWEO-32
Gauss-2

CWEO-33
Gauss-3

1-WEO

Best 2184.383 2173.945 2157.010 2156.468 2158.276 2156.557 2150.206

Mean 2206.390 2200.830 2161.293 2156.502 2203.995 2157.002 2200.136

C.V(%) 1.1906 1.1570 0.3451 0.0012 1.7182 0.0184 1.5348

Algorithms Statistical
Information

TWO
Standard

CTWO-21
Logist-1

CTWO-22
Logist-2

CTWO-23
Logist-3

CTWO-31
Gauss-1

CTWO-32
Gauss-2

CTWO-33
Gauss-3

2-TWO

Best 2184.379 2072.411 2118.812 2089.843 2081.136 2112.734 2147.054

Mean 2412.920 2306.277 2273.443 2306.992 2354.293 2373.989 2382.391

C.V(%) 8.324 9.535 5.331 6.2002 7.541 7.675 11.079

Algorithms Statistical
Information

TEO
Standard

CTEO-21
Logist-1

CTEO-22
Logist-2

CTEO-23
Logist-3

CTEO-31
Gauss-1

CTEO-32
Gauss-2

CTEO-33
Gauss-3

3-TEO

Best 2158.103 2139.600 2018.500 2157.699 2005.036 2147.228 2141.909

Mean 2161.8002 2285.482 2411.276 2160.289 2179.738 2384.314 2317.831

C.V(%) 0.1871 3.8990 13.5340 0.1165 5.0617 8.6760 4.6620

Fig. 10 Optimization results in standard and the chaos map for the 200-bar planar truss structure
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Table 6 Optimal design comparison for 200- bar planar truss structure

Number
group

WEO
Stand

CWEO
Gaus3

TWO
Stand

CTWO
Logis1

TEO
Stand

CTEO
Gaus1

A1→1,2,3,4 0.342 0.390 0.320 0.699 0.316 0.322

A2→5,8,11,14,17 0.476 0.394 0.555 0.562 0.438 0.485

A3→19,20,21,22,23,24 0.164 0.125 0.100 0.100 0.100 0.100

A4→18,25,56,63,94,101,132,139,170,177 0.154 0.111 0.100 0.100 0.100 0.100

A5→26,29,32,35,38 0.456 0.714 0.595 0.609 0.514 0.564

A6→6,7,9,10,12,13,15,16,27,28,30,31,33,34,36,37 0.861 0.766 0.770 0.725 0.821 0.724

A7→39,40,41,42 0.187 0.127 0.100 0.120 0.100 0.100

A8→43,46,49,52,55 1.174 1.709 1.400 1.378 1.430 3.019

A9→57,58,59,60,61,62 0.177 0.464 0.100 0.100 0.100 1.639

A10→64,67,70,73,76 1.571 1.489 1.539 1.448 1.593 2.139

A11→44,45,47,48,50,51,53,54,65,66,68,69,71,72,74,75 1.322 1.206 1.034 0.978 1.140 0.995

A12→77,78,79,80 0.152 0.433 0.104 0.100 0.130 0.100

A13→81,84,87,90,93 2.903 2.892 2.945 2.819 2.979 2.799

A14→95,96,97,98,99,100 0.298 0.177 0.100 0.100 0.101 1.291

A15→102,105,108,111,114 2.801 3.155 3.713 6.776 3.244 2.890

A16→82,83,85,86,88,89,91,92,103,104,106,107,109,110,112,113 1.491 1.500 1.357 1.282 1.599 1.309

A17→115,116,117,118 0.401 0.349 0.198 0.100 0.297 0.379

A18→119,122,125,128,131 5.492 4.378 5.403 4.291 5.144 6.262

A19→133,134,135,136,137,138 0.154 0.497 0.240 1.541 0.102 3.517

A20→140,143,146,149,152 5.422 5.754 4.375 5.994 5.610 4.776

A21→120,121,123,124,126,127,129,130,141,142,144,145,147,148,150,151 2.010 2.071 1.812 1.789 2.081 1.815

A22→153,154,155,156 0.736 0.423 0.434 0.955 0.799 0.387

A23→157,160,163,166,169 8.089 8.895 10.57 11.646 7.716 6.454

A24→171,172,173,174,175,176 0.429 1.545 4.299 3.383 0.166 0.398

A25→178,181,184,187,190 8.400 8.038 7.403 10.357 7.791 7.632

A26→158,159,161,162,164,165,167,168,179,180,182,183,185,186,188,189 3.073 2.833 2.787 3.144 2.827 2.455

A27→191,192,193,194 9.275 9.879 10.51 5.245 9.980 7.176

A28→195,197,198,200 20.928 20.115 16.26 13.585 20.96 17.18

A29→196,199 12.133 10.466 21.49 17.626 11.77 12.35

Best Weight 2184.4 2150.2 2184. 2072.4 2158. 2005.

Mean Weight 2206.4 2200.1 2412. 2306.2 2161 2179

Coefficient Variation (cv) 1.191 1.534 8.324 9.535 0.187 5.062

NFE 26000 26000 31000 31000 33000 33000

ω1 (HZ) 5.002 5 5 5 5 5

ω2 (HZ) 12.645 13.187 12.58 14.69 12.31 12.81

ω3 (HZ) 15.009 15.268 15 15 15.01 15

in most algorithms, the mutational cases of the algorithm 
itself are not effective and sufficient, and the application of 
chaos maps provides suitable conditions that escape from 
the trap of local optima is accelerated. These maps provide 
access to most positions of the search space by creating 
disorder in the search space. In this way, the global opti-
mality will not have the opportunity to escape from the 
turmoil of chaotic functions.

It can be concluded that the most important role of 
chaos maps is to create a balance between the exploration 
and exploitation stage. By replacing these functions in the 
stages of exploration, exploitation or both, different sce-
narios for optimization are obtained. In this research, by 
applying chaos functions in several meta-heuristic algo-
rithms, a significant improvement has been achieved in the 
process of weight and shape optimization of trusses. Also, 
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in order to form statistical models and determine the best 
weight, the best average, and the best coefficient of vari-
ation, each structural model has been implemented with 
20 independent repetitions. To extract the final results, the 
processes related to the previous tables are combined and 
then the results are normalized. The following relationship 
is intended to combine and summarize the information to 
contribute the results of the entire examples.

Val
S

Val
Valcom

MV
MV

ii

S

� �
�
�1 1
1

( )
,min

	 (36)

Based on this relationship, the percentage of success of 
each of the 7 modes (standard mode along with 6 chaotic 
modes) is determined with the participation of all prob-
lems. With the participation of the results of all the exam-
ples in determining the efficiency of the standard mode 
and chaotic scenarios for each meta-heuristic algorithm, 
significant accuracy is achieved in introducing the most 
optimal scenario. In this regard, for each selected algo-
rithm, ValMv, Vali,min and Valcom

Mv respectively, the opti-
mal values of the statistical tables for each example in 
each of the standard and chaotic modes, the lowest value 
among the 7 modes for the same example and the final 
result of the combination All the results are for the same 
mode of the algorithm. Also, i and S are the number of 
optimized structural examples and the number of exam-
ples, respectively. This relationship is formed for all three 
characteristics including optimum weight, optimum aver-
age and optimum variation coefficient. Up to this point, 
the criterion for determining the best efficiency is related 
to the modes that have the lowest value, and the results 
have not been normalized yet. Therefore, for the con-
venience of determining the optimal modes, two other 
cases are also considered, firstly, the highest percentages 

should be allocated for the most optimal results, and sec-
ondly, the results should be normalized. By considering 
the inverse functions and determining the contribution of 
each mode to the total modes, these two cases are pro-
vided. In Eq. (37), both cases are considered.

Val Val

Val

nor
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MV

j com
MV

j

nopt� �
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�

1

1
100

1 ,
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In this regard, for each selected algorithm, Valcom
Mv, 

Valj,com
Mv, nopt and Valnor

Mv, respectively, the optimal values 
obtained for each of the 7 states from the previous rela-
tionship, the same values for applying summation, the 
total number of states, both standard and chaotic (This 
number here is 7) and finally, the optimal values are per-
centage and normalized. 

By applying Eqs. (36) and (37), the final normalized 
results with the participation of all examples are obtained, 
and these results are presented in Table 7. Also, in order to 
quickly access the final results of the best weight, the best 
average and the best coefficient of variation, pie charts are 
a suitable option. With the formation of these charts, the 
following results have been obtained:

6.1 Results of optimal design for best weight
Based on the final results, the optimal design for deter-
mining the best weight in the water evaporation optimi-
zation belonging to the Gaussian chaos map with the third 
scenario, the algorithm based on tug-of-war optimization 
and the algorithm based thermal exchange optimization 
together, belonging to the Gaussian chaos function with 
the first scenario. The final results of the optimal design 
for introducing the best weight are displayed in Fig. 12.

Fig. 11 The Convergence Histories for the 200-bar planar truss structure
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6.2 Results of optimal design for best mean 
Based on the final results, the optimal design for deter-
mining the best mean in the water evaporation optimiza-
tion belonging to the logistic chaos function with the third 
scenario, the algorithm based on tug-of-war optimization 
belonging to the logistic chaos function with the second 
scenario and the algorithm based on thermal exchange 
optimization belonging to the logistic chaos function with 
the third scenario. The final results of the optimal design 
to introduce the best average is displayed in Fig. 13.

6.3 Results of optimal design for the best coefficient of 
variation 
Based on the final results, the optimal design for deter-
mining the best coefficient of variation in the water evapo-
ration optimization algorithm belongs to the logistic chaos 
function with the third scenario. The algorithm based on 
tug-of-war optimization algorithm belongs to the standard 
mode, and the algorithm based on thermal exchange opti-
mization algorithm belongs to the logistic chaos function 
with the third scenario. The final results of the optimal 
design to introduce the best coefficient of variation are 
shown in Fig. 14.

7 Conclusions
Some of the considerable results in this research are as 
follows:
•	 In most cases, the combination of chaos functions 

with meta-heuristic algorithms have made a signif-
icant improvement compared to the standard mode. 
The main factor can be the effect of chaos functions in 
escaping from local optima and preventing premature 
convergence.

•	 In optimization problems based on frequency limitation 
and shape variables, chaos functions have caused sig-
nificant improvement. Comparing the results of chaos 
functions with the standard value confirms this.

•	 In scenario 1 and 2, chaos functions have replaced the 
exploration and exploitation steps, respectively. Based 
on this, algorithms can be classified into two groups.

•	 The first group includes algorithms whose explora-
tion phase is improved by applying chaos functions. 
Algorithms based on Tug-of-War Optimization (TWO) 
and Thermal Exchange Optimization (TEO) are from 
this group, and by applying chaos functions in the 
search phase, a significant improvement in the optimi-
zation results is achieved.

Table 7 Final normalized values with the participation of all the examples

Category Algorithms Standard Logistic 21 Logistic 22 Logistic 23 Gauss 31 Gauss 32 Gauss 33

Best Weight

WEO 5.001 6.918 8.484 9.082 12.49 8.736 49.293

TWO 3.176 24.362 8.685 10.392 40.02 7.147 6.217

TEO 4.675 7.295 32.007 6.858 34.21 7.391 7.563

Mean Weight

WEO 8.388 15.067 14.555 23.971 13.49 12.657 11.868

TWO 3.647 10.633 52.155 14.163 9.325 6.101 3.976

TEO 7.735 7.048 3.531 56.794 14.94 4.154 5.793

(CV %)

WEO 0.733 0.754 2.442 71.159 0.504 23.852 0.555

TWO 24.155 9.751 14.083 20.625 7.689 18.529 5.167

TEO 18.938 10.675 4.617 31.575 13.71 6.609 13.871

Fig. 12 The final results of the optimal design to determine the best weight
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Fig. 13 The final results of the optimal design to determine the best mean

Fig. 14 The final results of the optimal design to determine the best coefficient of variation

•	 The second group includes algorithms that have good 
exploration and exploitation conditions in the standard 
mode, but there is no balance between them, which can 
be achieved by applying chaos functions in both stages 
simultaneously. In this research, Water Evaporation 
Optimization (WEO) is from the second group.

•	 By using chaos functions, determining the regulatory 
parameters of algorithms and sensitivity analysis is 
significantly improved. In fact, choosing the starting 
sentence in chaos functions replaces complex settings. 
It should be noted that in most cases, finding suitable 
adjustment parameters for each algorithm is more dif-
ficult than the optimization itself. Therefore, by using 
chaos functions, complex engineering problems such as 
shape optimization can be solved without the need to 
find parameters.

•	 In order to check the conditions of stability and reliabil-
ity of the answers, the coefficient of variation, which is 
the dimensionless state of the standard deviation, has 
been used. In standard modes, the answers are uniform 

and have few changes, but in chaotic modes, the main 
factor to improve the results is to create sudden jumps 
to escape from local optima and move towards the 
global optimum, with these jumps, the diversity of the 
search space and the range of changes will increase. 
Therefore, in most chaotic situations, the improvement 
of the results is accompanied by an increase in the coef-
ficient of variation and the average.

•	 In order to choose the initial sentence in the series of 
chaos functions, before the main iterations, performing 
several initial iterations and choosing the appropriate ini-
tial sentence improves the results by leaps and bounds.

•	 Among the chaos functions, the Gaussian function with 
scenario 1 has provided the most improvement in the 
optimization results.

•	 Finally, it might be interesting to mention that the force 
method of structural analysis can be used in place of the 
displacement method with great benefits for structures 
with smaller degrees of indeterminacy than the kine-
matical indeterminacy [34–37].
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