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Abstract

Functionally graded materials are innovative composites of hybrid ceramics and metals that exhibit excellent mechanical performance 

in harsh temperature environments and under various external loads. In this study, the free vibrations of Timoshenko circular arches, 

made of functionally graded materials in the axial direction, are investigated. The material properties of Young's modulus and mass 

density of the arch vary according to a symmetric quadratic function along the arch axis. Differential equations governing the free 

vibration of the arch including the rotatory inertia and shear deformation, called the Timoshenko arch, are derived. A novel numerical 

solution method is developed to calculate the natural frequencies and mode shapes of the arch. Parametric studies of the modular 

ratio, shear correction factor, shear modulus ratio, and slenderness ratio on the natural frequencies are conducted, and the results 

are reported in the tables and figures.
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1 Introduction
The arch is one of the most important conventional struc-
tural members because it is visually appealing and offers 
excellent structural performance as a compression mem-
ber. In particular, arches are widely used as frame struc-
tures in many engineering fields such as civil, aerospace, 
and shipbuilding engineering, etc. because they can be 
used in wide working spaces under arch clearance [1].

The dynamic load generates a member that weakens 
the structure owing to the resonance condition of the free 
vibrations. Therefore, free vibration characteristics are an 
important research topic in the field of structural analysis, 
from the design stage of structures to the health monitor-
ing of public facilities [2].

Functionally graded materials (FGMs) are innova-
tive materials whose material properties, such as Young's 
modulus and mass density, change progressively with 
the dimensions [3]. In addition, FGMs have the ability to 
withstand harsh environmental conditions, and have the 

structural performance to support axial and bending loads. 
Because they are synthesized from hybrid materials, they 
possess various axial strength and bending stiffness prop-
erties [4]. FGMs have been used in almost all fields of 
engineering since 1984, when FGMs were conceptualized 
in Japan. Many papers related to FGMs have been pub-
lished, especially on the structural analysis of FGMs sup-
porting various load systems. Some typical topics deal-
ing with various types of FGMs were introduced: FGMs 
with temperature-dependent properties [5]; FGMs via 2D 
and quasi-3D refined shear deformation theories [6]; com-
posite sandwich structures combined with the influence of 
porosity [7]; and ceramic-metal FGMs in a hygrothermal 
environment [8, 9].

FGMs are divided into two main categories accord-
ing to their grade direction: axially functionally graded 
material (AFGM) and laterally functionally graded mate-
rial (LFGM). For the AFGM, the material properties were 
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graded along the axial direction. The material properties 
for LFGM are graded along the lateral direction of the 
beam axis. In this study, the focus was mainly on AFGMs.

Considering that the focus of the study is on free vibra-
tions of the FGM arch, the research trends of free vibra-
tions in uniform (conventional) material and the FGM 
arches are reviewed. The free vibration solutions of the 
arch can be divided into exact and approximate solutions. 
The exact form solution was investigated by Tufekci and 
Ozdemir [10], Lü and Lü [11], and others but the result of 
the study is very rare because the solution is very compli-
cated. The approximate-form solution was obtained using 
numerical methods to calculate the mode shape by numer-
ically integrating the differential equations and the eigen-
value of the natural frequency using the determinant search 
method [12]. These include studies by Lee and Lee [12], 
Joo et al. [13], Huynh et al. [14], Bozyigit and Acikgoz [15], 
Nieh et al. [16], Malekzadeh et al. [17], Shin et al. [18], 
and Noori et al. [19]. Because it is important to select a 
proper arch shape in the design of an arched structure, var-
ious shaped arches have been investigated, such as the cir-
cular arch by Tufekci and Ozdemir [10], Lü and Lü [11], 
Malekzadeh et al. [17] and Shin et al. [18], parabolic 
arch by Joo et al. [13] and Oh et al. [20], elliptical arch 
by Nieh et al. [16] and Rajasekaran [21], catenary arch by 
Wilson and Lee [22], sinusoidal arch by Rajasekaran [21] 
and elastica arch by Perkins [23]. The AFGM arch consid-
ered in this study is a circular arch.

Other issues considered in literature include the variable 
cross-section by Tufekci and Ozdemir [10], Shin et al. [18] 
and by Noori et al. [19], material properties by Lü and 
Lü [11] and Malekzadeh et al. [17] and multi-span arches 
by Riedel and Kang [24], etc. As mentioned above, free 
vibration studies of arches are still being actively con-
ducted owing to the various applications of arch-framed 
structures. Studies on AFGMs include papers on stabil-
ity analysis by Nieh et al. [16] and Ranganathan et al. [25]; 
nonlinear behavior analysis by Horibe and Mori [4]; sta-
bility optimization by Lee and Lee [26]; foundation 
structure by Sofiyev [27]; mechanical response of FGM 
beams by Boumezbeur et al. [28]; static bending-torsion 
of FG cantilever beams by Guendouz et al. [29]; and bend-
ing-torsion of 1D/3D beams based on the Saint-Venant's 
solution and taking into account the edge effects by 
Guendouz et al. [30].

Another important issue to be considered in free vibra-
tion analysis is whether to include or exclude the effects of 
rotatory inertia and shear deformation in the theoretical 

analysis. Ordinary beam theory excludes both rotatory 
inertia and shear deformation, whereas Timoshenko beam 
theory includes both [31, 32]. This study focuses on the 
Timoshenko beam theory.

According to the Timoshenko beam theory, the dis-
placement of structures increases; thus, the effect degrades 
the natural frequency [33, 34]. Many studies have dealt 
with the Timoshenko beam theory since 1921, when 
Timoshenko published his paper. Li [35] investigated a 
unified model for analyzing the static and dynamic behav-
iors of FGM Timoshenko beams. Shahba et al. [36] studied 
the free vibration of FGM Timoshenko beams with non-
classical boundary conditions. Huang et al. [37] analyzed 
the free vibration of FGM tapered Timoshenko beams. 
Deng et al. [38] studied the free vibration of a doubly func-
tionally graded Timoshenko beam resting on a Winkler 
foundation and Şimşek [39] investigated the stability of 
Timoshenko beams made of two-dimensional FGMs with 
different boundary conditions. For the free vibration of 
the FGM arch, Javania et al. [32] studied arbitrarily thick 
FGM deep arches using the unconstrained higher-order 
shear deformation theory based on the Timoshenko beam 
theory. There are many studies dealing with free vibration 
of arches considering the Timoshenko beam theory, for 
example, the studies by Caliò et al. [40] and Kim et al. [41]. 
Although the literature surveyed by the authors maybe 
limited, there is only one paper by Javania et al. [32] on the 
FGM Timoshenko Arch. Studies on the free vibration of 
FGM arches based on Timoshenko beam theory are rare. 
Furthermore, the study by Javania et al. [32] was also con-
cerned with the LFGM arch, and not the AFGM arch con-
sidered in this study.

Based on the literature reviewed, this study addresses 
the free vibration behavior of the AFGM Timoshenko 
circular arch. The differential equations governing free 
vibration are derived based on the Timoshenko beam the-
ory, which involves rotatory inertia and shear deforma-
tion. The differential equations are solved numerically to 
compute the natural frequencies with their mode shapes. 
Because the arch structure must maintain the axial force 
and bending moment, it is desirable to include the tangen-
tial displacement due to the axial force in the arch analysis, 
and this study includes this tangential displacement effect.

2 Graduation of material properties of AFGM
Fig. 1 (a) represents the problem statement, considered 
in this study, of the free vibration of a uniform, symmetric 
circular arch with radius r and opening angle α. The arch 
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axis can be defined in polar coordinates (r, θ) with datum 
line ao , or using Cartesian coordinates (x, y) with ori-
gin a. The arch is made of an axially functionally graded 
material. The material properties of the AFGM, namely, 
the Young's modulus E and mass density ρ are graded 
functionally along the angular coordinate θ as shown in 
Fig. 1 (b). The E and ρ at the left end a(θ = 0), are denoted 
by Ea and ρa , respectively, and at the arch crown c(θ = α/2), 
E = Ec and ρ = ρc . At the right end b(θ = α), Eb = Ea and 
ρb = ρa because the geometry of the arch is symmetric with 
respect to the arch crown c.

To determine the graded function of (E, ρ) for the 
AFGM arches, the modular ratio m is defined as 
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E
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c
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In general, the graded function of (E, ρ) in Fig. 1 (b) 
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where f is a nondimensional function of θ defined as 
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For example, for the profile of the graduation f in Eq. (3), 
its variation curves are illustrated in Fig. 1 (c) in angu-
lar coordinates, from which a suitable graduation f can be 
adopted by choosing m for engineering purposes.

3 Mathematical modeling of free vibration of AFGM 
circular arch
3.1 Governing differential equations
In the geometry of the arch shown in Fig. 1 (a), the left 
end a is hinged or clamped, and the right end b was 
hinged, clamped, or free. Thus, four types of arch-end con-
straints are combined: Hinged–hinged, Hinged–clamped, 
Clamped–clamped, and Clamped–free ends.

When the arch is under free vibration, the positive radial 
and tangential displacements, w and v, and the positive 
total rotation ϕ(= ψ + γ) of the cross-section consisting of 
the bending rotation ψ and shear deformation γ are shown 
in Fig. 1 (a) in polar coordinates (r, θ). The displacements 
w and v also cause stress-resultants from the axial force N, 
shear force Q and bending moment M at the cross-section.

As shown in Fig. 2, the small element of the vibrating 
arch defines the positive directions of N, Q and M, where 
the element of the arch has mass, resulting in a radial inertia 
force Pr , tangential inertia force Pt , and rotatory inertia T.

(a)

(b)

(c)

Fig. 1 (a) Problem statement of free vibration of AFGM circular arch; 
(b) Graded function of material properties of (E, ρ) along angular 

coordinate θ; and (c) Example of profile of graduation f

Fig. 2 Forces subjected to small arch element
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The inertia forces and the rotatory inertia treated as 
equivalent static quantities; therefore the three equations 
for "dynamic equilibrium" are set as [20, 43] 
dN
d

Q rPt�
� � � 0 , (4)

dQ
d

N rPr�
� � � 0 , (5)

1
0

r
dM
d

Q T
�
� � � .  (6)

The total rotation of cross-section ϕ(= ψ + γ) with 
respect to w and v [1] is 
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r
w v , (7)

from which γ can be obtained as 
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r
w v r , (8)

where (') denotes the differentiation operator, that is 
(') = d/dθ.

The equations that relate N, Q and M to w and v are [43] 
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where A and I are the cross-sectional area and moment 
of inertia of the plane area, respectively; and E and G are 
the Young's modulus and shear modulus, respectively. 
Here, E of the AFGM arch is defined as E = Ec f in Eq. (2) 
and is substituted into Eqs. (9)–(11). In Eq. (10), k is the 
shear correction factor for a given cross-sectional shape. 
For the circular cross-section, k = 0.9 and for the square 
cross-section, k = 0.833 [44].

The shear modulus G for a given Poisson's ratio v is 
expressed as [45] 

G E E f G fc
c�

�� � � �� � �2 1 2 1� �
, (12)

where Gc is the shear modulus at the arch crown c.
Combining Eq. (10) and Eq. (12) yields 

Q kAG
r

f w v rc� � � �� �� .  (13)

The arch is assumed to be in harmonic motion, or 
each dynamic coordinate is proportional to sin(ωi t), for 

example, w(θ, t) = wsin(ωi t), where ωi is the natural fre-
quency with the integer mode number i = 1, 2, 3, …, and t 
is time. The inertia loadings are then [46]:

P A w A fwr i c i� � � �� � � �2 2 , (14)
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where ρ of the AFGM arch has already been defined as 
ρ = ρc f in Eq. (2) and is substituted into Eqs. (14)–(16). 
In Eq. (16), Ri is the rotatory inertia index whose value is 
dependent on whether the rotatory inertia T is excluded or 
included in the theory.
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Differentiating Eqs. (9), (13), and Eq. (11) once gives the 
following derivatives:
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where the first derivative f' is obtained from Eq. (3): 
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By substituting the stress-resultants N, Q, and M with 
their derivatives in Eqs. (4)–(6) yield 
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To facilitate the numerical studies, the following dimen-
sionless system variables are introduced: 
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where (δ, λ) are the normalized displacements, μ is the 
shear modulus ratio, s is the slenderness ratio, and Ci is the 
frequency parameter.

By substituting the system variables in Eqs. (25)–(29) 
into the dimensional form of Eqs. (22)–(24) the dimen-
sionless differential equations that govern the free vibra-
tion of the AFGM circular arch, considering the rotatory 
inertia and shear deformation, are obtained as follows: 
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where, once again, k is the shear correction factor for 
a given cross-sectional shape in Eq. (10), and f and f' are as 
defined in Eq. (3) and Eq. (20), respectively. Note that Ci is 
the eigenvalue of the governing differential equations to be 
determined using appropriate numerical solution method.

3.2 Boundary conditions
Now consider the boundary conditions. For the hinged 
ends (θ = 0 and θ = α), w, v, and M in Eq. (11) are zero. 
The dimensionless forms are expressed as follows: 

� � �� � � �0 0 0, , .  (33)

For the clamped end (θ = 0 and θ = α), w, v, and ψ are 
zero, that is 

� � �� � �0 0 0, , .  (34)

For the free end (θ = α), N, Q and M (Eqs. (9)–(11)) are 
zero, that is, 

� � � � � �� � � � � � � � �0 0 0, , .  (35)

3.3 Numerical solution methods
In the differential equations Eqs. (30)–(32), the arch param-
eters are: end constraint; opening angle α; radius of cir-
cular arch r; cross-sectional area A; moment of inertia of 
the plane area I; material properties ( Ea , ρa ) and ( Ec , ρc ); 
shear correction factor k; and Poisson's ratio v. According 
to these arch parameters, the modular ratio m, shear mod-
ulus ratio μ and slenderness ratio s, which are the param-
eters required by Eqs. (30)–(32), can be obtained. Then, 
a numerical integration method, such as the Runge-Kutta 
method [47], is used to integrate Eqs. (30)–(32) for calcu-
lating the mode shape of (δ, λ)i , subject to boundary con-
ditions of Eqs. (33)–(35), based on the selected end con-
straint. The determinant search method combined with 
the Regula-Falsi method [47], which is one of the solu-
tion methods for nonlinear equations, is used to determine 
the eigenvalue Ci . This type of solution method for initial 
and boundary value problems with eigenvalues has fre-
quently been used in the literature [21, 26, 41]. The numer-
ical solution method is as follows: 

1. Input the arch parameters of the end constraint and 
( m, μ, s, α, Ri , Si ).

2. Set a trial frequency Ci . The starting value of the 
trial frequency Ci is Ci = 0.

3. Integrate Eqs. (30)–(32) subject to the boundary con-
ditions in Eq. (33)–(35) at θ = 0, according to the given 
end constraint using the Runge-Kutta method. Then, 
the trial deformation (δ, λ) is obtained in 0 ≤ θ ≤α.

4. In executing the above step, evaluate the determi-
nant D of the boundary conditions at θ = α, using 
Eq. (33)–(35), and consider the following conver-
gence criterion: 

D � � �
1 10

8 . (36)

When the criteria in Eq. (36) is satisfied, stop calcu-
lating and output Ci with (δ, λ).

5. Otherwise, increment the frequency by Δ from the 
value just before the trial Ci and go to Step 2 with a 
new forward trial frequency Ci (←Ci + Δ).

6. Check whether the sign of Da × Db is negative during 
Steps 2–5, where Da and Db are D values correspond-
ing to the previous and current trials, respectively.

7. If the sign of Da × Db becomes negative, the solu-
tion Ci is between Ci,a and Ci,b . An advanced trial 
Ci,c to solution Ci is calculated using the Regula-Falsi 
method as follows: 
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8. Once Step 7 is completed, iterate the above steps 
until the following criterion is satisfied: 
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9. When the criterion given by Eq. (38) is satisfied, stop 
calculating and output Ci,c with (δ, λ).

The algorithm for the numerical solution methods 
developed in this study was self-coded using FORTRAN, 
which includes a subroutine program that calculates (E, ρ) 
along the arch axis, as described in Section 2.

Before running the numerical experiments, it is import-
ant to determine the step size ∆θ in the Runge-Kutta 
method to efficiently integrate Eqs. (30)–(32). A conver-
gence analysis was performed by varying the step size 
∆θ, and the results are shown in Fig. 3, where the arch 
parameters are listed. The solutions C1 for the four end 
constraints give good convergence with the number of 
dividing elements α/∆θ = 10. Fig. 4 shows that, for the 
Hinged–hinged end, the trial solution C1 = 0.1728 for 
α/∆θ = 10 convergences sufficiently to the target solu-
tion C1 = 0.1725 for α/∆θ = 100 with a convergence rate of 
0.998 (= 0.1725/0.1728). For further numerical calculations 
in this study, α/∆θ = 50 is used, where the trial C1 goes 
to C1 = 0.1725 with 4–digit accuracy. All solutions with 

α/∆θ = 50 are calculated on a PC with graphics capability 
(Samsung DM530AFA-L78A 8GB, M.2 512GB), with a com-
putation time of 0.03 s per problem.

4 Numerical experiments and discussion
The first numerical experiment compared the values of 
natural frequencies ωi in this study with those available 
in literature to validate the theories and numerical meth-
ods employed in this study, and the results are listed 
in Table 1. The arch parameters considered are: α = π/2; 
k = 0.9 for a circular cross-section with diameter = 0.1 m 
(A = 7.854 × 10−3 m2 and I = 4.909 × 10−6 m4); r = 2 m; 
v = 0.3; Ea = 70 GPa, ρa = 2700 kg/m3 for pure aluminum 
(Al); and Ec = 140 GPa, ρc = 5400 kg/m3 for the zirconia 
( ZrO2 ). From these arch parameters, the remaining param-
eters are obtained as m = 2, μ = 0.385 and s = 80. The val-
ues of Ci calculated by solving Eq. (30) and Eq. (32) are 
converted into ωi = 2545.9 Ci rad/s using Eq. (29). For the 
finite element method (FEM) solutions, ADINA soft-
ware was chosen, where the AFGM arch was modeled as 
50 stepped-beam elements with varying material proper-
ties (E, ρ) according to Eq. (2). In Table 1, for the first three 
natural frequencies of ωi=1,2,3 in rad/s, the two results are 
in good agreement, with an average error of 0.47%, and 
a maximum error of 0.82%. The results validate the the-
oretical and numerical methods developed in this study.

Now a parametric study of the arch parameters ( k, m, μ, 
s, α, Ri , Si ) with end constraints on the frequency parame-
ters Ci=1,2,3 and mode shape (δ, λ)i is performed and results 
are reported in Tables 2–5 and Figs. 4–7.

Table 2 illustrates the effects of the end constraint 
on Ci=1,2,3 . The arch parameters are listed in Table 2. 
Irrespective of mode i, the largest and smallest Ci values 
were achieved for the Clamped–clamped and Clamped–
free ends, respectively. The value of Ci varies significantly 
depending on the end constraint. For Ci , that is, i = 1, 
Ci at the Clamped–clamped end is 9.48 times greater than 
Ci at the Clamped–free end. It is clear that a greater fixa-
tion of the end constraint of the arch provides higher fre-
quencies. For example, Ci at the Clamped–clamped end is 
greater than Ci at the Clamped–hinged end, even though 
the left ends of the two arches are equal to the clamped 
end. Therefore, it can be concluded that the end constraint 
is one of the most important parameters for determining 
the natural frequency.

The influence of the rotatory inertia T on Ci for the 
Hinged–clamped end is presented in Table 3 along with 
that of the slenderness ratio s. The remaining parameters Fig. 3 Convergence analysis for Runge-Kutta method
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(a) (b)

(c) (d)

Fig. 4 Frequency curves of Ci as function of modular ratio m: (a) Hinged–hinged; (b) Hinged–clamped; (c) Clamped–clamped; and (d) Clamped–free 
end for k = 0.9, μ = 0.385, s = 80, α = π/2, Ri = 1 and Si = 1

are listed in Table 3. If T is included in the theory (Ri = 1), 
Ci decreases. This is because T increases the struc-
tural displacement; consequently, the natural frequency 
decreases when T is included. The percentage difference 
for i = 3 was the least at 0.114% and the highest at 0.676%. 
In addition, the effect of T was more prominent for smaller 
s. For example, for i = 1, the effect of T for s = 40 was 
5.17 (= 0.445/0.086) times greater than that of T for s = 80.

Table 4 shows the effect of shear deformation γ on Ci for 
the Hinged–clamped end with slenderness ratio s. The arch 
parameters are the same as in Table 3 except μ = ∞ when 

Si = 0. For μ = ∞, γ = 0, which means that the effect of γ is 
excluded, that is, Si = 0 [39]. Therefore, the value of μ for 
Si = 0 becomes μ = ∞, whereas the value of μ for Si = 1 remains 
constant at μ = 0.385. Including γ in the theory, that is Si = 1, 
suppresses Ci . This is because γ represents the increasing 
effect on structural displacements, so when γ is included, the 
natural frequency decreases as a result. The percentage dif-
ference for i = 3 has the lowest value of 1.090%, and the 
largest value of 2.532%. The effect of γ is more dominant 
for smaller s. For example, for i = 1, the effect of γ at s = 40 
is 3.62 (= 0.934/0.258) times greater than that at s = 160. 
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Particularly at smaller s and higher i, the effect of γ should 
not be excluded. According to the Timoshenko beam theory, 
the indices are Ri = 1 and Si = 1 so, Ci with Si = 1 in Table 4 
represents the Timoshenko beam theory.

Table 5 lists the effects of the shear correction factor 
k on Ci . The value of k depends on the cross-sectional 
shape. In this study, the effect of k is shown by select-
ing circular and square cross-sections, which are among 

the most practical cross-sections for arch structures. 
Here, k = 0.9 and k = 0.833 for the circular and square 
cross-sections, respectively [38]. The value of Ci for the 
square cross-section was always greater than that for the 
circular cross-section. This implies that Ci for a smaller k 
is greater than that for a larger k. In Table 5, Ci for square 
cross-sections is on average approximately 2% greater 
than for circular cross-sections.

The frequency curve of Ci as a function of modular 
ratio m is shown in Fig. 4. The remaining parameters are: 
k = 0.9; μ = 0.385; s = 80; α = π/2; Ri = 1; and Si = 1. In gen-
eral, Ci tended to increase with m. The rate of increase is 
very moderate, and for m > 2, the effect of m is almost 
negligible because the frequency curve converges to 
a horizontal asymptote.

The frequency curve of Ci as a function of the slen-
derness ratio s is shown in Fig. 5. The remaining param-
eters are: m = 2; k = 0.9; μ = 0.385; α = π/2; Ri = 1; and 

Table 1 Comparison* of natural frequency ωi between this study and FEM

End constraint Data source
Natural frequency ωi (rad/s)

i = 1 i = 2 i = 3

Hinged–hinged
This study 439.10 1053.75 1938.06

FEM 437.68 1049.68 1926.69

Hinged–clamped
This study 589.06 1232.83 2185.39

FEM 587.23 1228.24 2192.71

Clamped–clamped
This study 769.34 1403.27 2441.19

FEM 765.66 1409.61 2453.90

Clamped–free
This study 46.31 221.49 722.14

FEM 46.08 222.88 728.06
* See the text for arch parameters.

Table 2 Effect* of end constraint on frequency parameter Ci

End constraint
Frequency parameter Ci

i = 1 i = 2 i = 3

Hinged–hinged 0.1725 0.4139 0.7612

Hinged–clamped 0.2314 0.4842 0.8584

Clamped–clamped 0.3022 0.5512 0.9589

Clamped–free 0.0182 0.0870 0.2836
* Arch parameters: m = 2; k = 0.9; μ = 0.385; s = 80; α = π/2; Ri = 1; 
and Si = 1.

Table 3 Effect of rotatory inertia index Ri on frequency parameter Ci*

s Index Ri

Frequency parameter Ci

i = 1 i = 2 i = 3

40

0 0.4518 0.8340 1.1016

1 0.4498 0.8303 1.0942

Devi. (%)** 0.445 0.446 0.676

80

0 0.2316 0.4854 0.8622

1 0.2314 0.4842 0.8584

Devi. (%) 0.086 0.247 0.443

120

0 0.1551 0.3287 0.5849

1 0.1551 0.3283 0.5837

Devi. (%) 0. 0.122 0.206

160

0 0.1165 0.2478 0.4407

1 0.1165 0.2476 0.4402

Devi. (%) 0. 0.081 0.114
* Arch parameters: Hinged–clamped end, m = 2; k = 0.9; μ = 0.385; 
α = π/2; and Si = 1.
** Deviation %

, ,
� � � �� ��� �C Ci R i Ri i0 1

1 100

Table 4 Effect of shear deformation index Si on frequency parameter Ci*

s Index Si

Frequency parameter Ci

i = 1 i = 2 i = 3

40

0 0.4540 0.8443 1.1219

1 0.4498 0.8303 1.0942

Devi. (%)** 0.934 1.686 2.532

80

0 0.2329 0.4899 0.8761

1 0.2314 0.4842 0.8584

Devi. (%) 0.648 1.177 2.062

120

0 0.1556 0.3303 0.5922

1 0.1551 0.3283 0.5837

Devi. (%) 0.322 0.609 1.456

160

0 0.1168 0.2487 0.4450

1 0.1165 0.2476 0.4402

Devi. (%) 0.258 0.444 1.090
* Arch parameters are the same as in Table 3 except μ = ∞ for Si = 0.
** Deviation %

, ,
� � � �� ��� �C Ci S i Si i0 1

1 100

Table 5 Effect of shear correction factor k on frequency parameter Ci*

End constraint Sectional 
Shape

Factor 
k

Frequency parameter Ci

i = 1 i = 2 i = 3

Hinged–hinged
Circular 0.9 0.1725 0.4139 0.7612

Square 0.833 0.1764 0.4229 0.7774

Hinged–clamped
Circular 0.9 0.2314 0.4842 0.8584

Square 0.833 0.2365 0.4943 0.8747

Clamped–clamped
Circular 0.9 0.3022 0.5512 0.9589

Square 0.833 0.3088 0.5616 0.9621

Clamped–free
Circular 0.9 0.0182 0.0870 0.2836

Square 0.833 0.0186 0.0890 0.2899
* See the text for arch parameters.
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(a) (b)

(c) (d)

Fig. 5 Frequency curves of Ci as function of the slenderness ratio s: (a) Hinged–hinged; (b) Hinged–clamped; (c) Clamped–clamped; and 
(d) Clamped–free end for m = 2, k = 0.9, μ = 0.385, α = π/2, Ri = 1 and Si = 1

Si = 1. Ci decreases as s increases. For a smaller s, that 
is, approximately s < 50, the rate of decrease is relatively 
higher than at s > 50 and its effect is prominent. When 
s is small, s < 50, the reduction rate is relatively higher 
than at s > 50, and its effect is significant. In Fig. 5 (a) and 
Fig. 5 (c), for the Hinged–hinged and Clamped–clamped 
ends, respectively, the two frequency curves intersect such 
that a double root exists at a single coordinate marked with 
a red dot, and two mode shapes are possible at a single fre-
quency. For example, the Hinged–hinged end in Fig. 5 (a) 
has a double root such that C1 = C2 = 0.969 at s = 11.88. 

The two different types of mode shape change before and 
after this double root indicated by red dots. For example, 
in Fig. 5 (a), when s < 11.88, the mode shape for i = 1 is MB 
and for i = 2, it is MA . The two mode shapes MA and MB 
are shown in Fig. 5 (a). However, when s > 11.88, the mode 
shape changes from MA for i = 1 to MB for i = 2. Similarly, 
at coordinates (61.82, 0.973) marked with a red dot, two 
frequency curves of i = 3 and i = 4 have a double root. 
In Fig. 5 (a), the mode shape of the MA is anti-symmetric, 
whereas the mode shapes of the MB and MC are symmetric. 
Thus, for the first mode, i = 1, before s = 11.88, the mode 
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shape is symmetric ( MB ), and after s = 11.88, the mode 
shape is anti-symmetric ( MA ). Similarly, at s = 61.82, 
the mode shape for i = 3 changes from type of MD (not 
shown) to the symmetric mode shape of MC . As shown 
in Fig. 5 (b), the frequency curve of the Hinged–clamped 
end constraint approaches but does not intersect, exhibit-
ing the so-called veering phenomenon [48].

Fig. 6 shows the frequency curve of Ci as a function of 
the opening angle α. The remaining parameters are: m = 2; 
k = 0.9; μ = 0.385; s = 80; Ri = 1 and Si = 1. Ci decreases 
as α increase. For small α, the reduction rate is relatively 

higher, and its effect is more significant than for large 
α. In Fig. 6 (a) and Fig. 6 (c) for the Hinged–hinged and 
Clamped–clamped end, respectively, the double roots 
indicated by the red dot exist as in Fig. 5 (a) and Fig. 5 (c). 
For the Hinged–clamped end in Fig. 6 (b), a veering phe-
nomenon does not exist, as shown in Fig. 5 (b).

Fig. 7 (a) shows the detailed mode shapes of MA , MB 
and MC displayed already in Fig. 5 (a). Also, Fig. 7 illus-
trates typical first three mode shapes of ( ξm , ηm )i at 
Cartesian coordinates (ξ, η) corresponding to Ci=1,2,3 , and 
the arch parameters are listed. The coordinates (ξ, η) of 

Fig. 6 Frequency curves of Ci as function of the opening angle α: (a) Hinged–hinged; (b) Hinged–clamped; (c) Clamped–clamped; and (d) Clamped–
free end for m = 2, k = 0.9, μ = 0.385, s = 80, Ri = 1 and Si = 1

(a) (b)

(c) (d)
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Fig. 7 First three mode shapes: (a) Hinged–hinged; (b) Hinged–clamped; (c) Clamped–clamped; and (d) Clamped–free end for m = 2, k = 0.9, 
μ = 0.385, α = π/2, Ri = 1 and Si = 1

(a) (b)

(c) (d)

the undeformed arch axis, normalized by the span length 
l = 2rsin(α/2), are expressed as 

� �� �
�

� � �
x
l

t t
t

y
l

t tcos sin

tan
, cos sin ,2 3

1

2 3
 (39)

where t1 = (α − θ)/2, t2 = α/2 − θ, and t3 = (π − α)/2.

From the undeformed arch axis (ξ, η) in Eq. (39), the 
deformed arch axis ( ξm , ηm ), i.e. mode shape of vibrating 
arch, is computed by combining (δ, λ) as 

� � � � � � � �m mt t t t� � � � � �cos cos sin sin, ,
2 4 2 4

 (40)

where t4 = (π − α)/2 + θ.



456|Lee et al.
Period. Polytech. Civ. Eng., 68(2), pp. 445–458, 2024

The typical mode shapes ( ξm , ηm )i corresponding to 
Ci=1,2,3 are shown in Fig. 7 where the arch parameters are 
listed. The boundary conditions expressed in Eqs. (33)–(35) 
are well implemented in ( ξm , ηm )i at the left and right ends. 
To avoid resonance due to external dynamic excitation by 
mechanical devices, this type of mode shape provides par-
ticularly useful data in arch design, representing the relative 
amplitude, position of maximum amplitude, and position 
of the nodal point. The types of mode shape of MA (Anti-
symmetric), MB (Symmetric) and MC (Symmetric) already 
shown in Fig. 5 (a) are additionally presented in Fig. 7 (a) 
for reader's convenience. In Fig. 7 (b) and Fig. 7 (d), the 
mode shapes are neither symmetric nor anti-symmetric 
because the end constraint is not symmetric.

5 Conclusions
In this study, the free vibration of an axially functionally 
graded Timoshenko circular arch is investigated. The arch 
cross-section is uniform. The arch is supported at the left 
end by a hinged or clamped end and at the right end by 
a hinged or clamped or free end.

In the first part of this paper, material properties of the 
Young's modulus and mass density of the AFGM arch are 
defined as symmetric quadratic functions along the arch 
axis using the modular ratio.

In the second part of the study, the differential equa-
tions governing the free vibration of the AFGM circular 
arch are derived based on the dynamic equilibrium equa-
tions of the small arch element in harmonic motion in the 
free vibration state. In addition, relevant boundary condi-
tions for the hinged, clamped, and free ends are derived. 
In the governing differential equations, the influences of 
rotatory inertia and shear deformation for the Timoshenko 
arche, which have an important effect on the natural fre-
quencies, are considered.

In the third part of this study, numerical methods for 
solving differential equations are developed. To inte-
grate the differential equations, the Runge-Kutta method, 
a direct integration method, is used, and to calculate the 
natural frequency as an eigenvalue of the differential 
equations, the Regula-Falsi method, which is a numerical 
method for nonlinear equations, is used. A convergence 
analysis of the Runge-Kutta method is performed to effi-
ciently integrate the differential equations.

Finally parametric studies on the natural frequen-
cies are conducted. The natural frequencies obtained in 
this study and the FEM solutions are in good agreement. 
The results of the parametric studies of the end constraint, 
modular ratio, shear correction factor, shear modulus 
ratio, slenderness ratio, and opening angle on the natural 
frequencies are reported in the tables and figures. The first 
three typical mode shapes of an AFGM arch with four end 
constraints are illustrated in Cartesian coordinates.

Finally, the concluding remarks summarizes the con-
tents of the paper.

In the future, it will be necessary to study the free 
vibration of the arch by considering the rotatory inertia 
and shear deformation, which allows variable curvature 
and cross-section for functionally graded materials in the 
axial and lateral directions.
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