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Abstract

A new approach to performing the α-level optimization in the fuzzy analysis of structural systems is developed in this study. The method 

uses a simple global optimizer, the Jaya algorithm, together with an innovative dimension reduction technique. The  dimension 

reduction technique aims to transform the original large α-level optimization problem into a low-dimension one by making use of the 

monotonic behavior of the system output with respect to the input variables. Then, the Jaya algorithm is applied to solve the reduced 

max/min α-level optimization problems to determine the bounds of the fuzzy output. Two numerical examples, including a 2D truss 

and a 3D truss, with a relatively large number of fuzzy input variables are analyzed and the fuzzy displacements under static loads are 

predicted. It is demonstrated that the proposed approach can save a significant computational amount and also estimate the fuzzy 

displacement with high accuracy.
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1 Introduction
The structural analysis should be based on informa-
tion about the structure, the effects on the structure, etc. 
In practice, this information often contains randomness, 
uncertainty, and inaccuracy (uncertain information). 
Besides probabilistic methods based on uncertain infor-
mation modeled as random quantities with given distribu-
tion functions, the non-probabilistic approach for analysis 
and evaluation of structural systems by fuzzy model [1] 
has also attracted many studies [2, 3].

In structural analysis by fuzzy model, the α-cut method 
is often applied, in which all input fuzzy variables are dis-
crete according to some similar membership levels (the 
α-cuts). Corresponding to each α-cut of the input vari-
ables, the interval of the fuzzy response (or the α-cut of 
the fuzzy output) is determined through the interval anal-
ysis. To determine the interval of the fuzzy response, two 
main approaches are commonly used: 1) interval arith-
metic and 2) optimization. In particular, the optimization 
approach gives accurate results (in theory), is convenient in 
implementation and can be combined with available com-
putational tools, for example, finite element analysis pro-
grams [2]. Some early studies on fuzzy structural analysis 

according to the optimization approach can be mentioned 
such as Möller et al. [4] with Modified Evolutionary Algo- 
rithm, Degrauwe et al. [5] with the gradual α-level decreas-
ing(GαD) optimization algorithm, Farkas et al. [6] with 
reduced global optimization method.

In [4], the modified evolution strategy combines Monte 
Carlo Method, gradient search, and evolutionary algo-
rithm. The algorithm allows us to find the global optimal 
solution, regardless of the type or behavior of the objec-
tive function. One disadvantage of the algorithm is that its 
structure is quite complex.

The GαD developed in [5] also allows for finding 
a globally optimal solution without using special charac-
teristics of the objective function. The algorithm searches 
from the highest α level and gradually moves down to the 
lower α levels. At each level α, the extreme of the objec-
tive function is searched in the vicinity of the extremes 
defined at the previous α level. Depending on the problem, 
the algorithm can lead to different levels of computational 
complexity. In the case of multiple local extremes (multi-
modal problem), GαD will generate many search direc-
tions which increase the computational cost.
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The reduced global optimization approach [6] based on 
the monotonic behavior of the output with some input vari-
able can reduce the number of function evaluations com-
pared to conventional optimization. This method works on 
the principle of "blocking" the input variables at the lower/
upper bound values if they have a monotonic effect on the 
output. Just like in the Modified Evolutionary Algorithm 
in [4], the analysis results at a level α will be saved so 
that they can be reused if needed when performing opti-
mization at a lower α level, avoiding the need for re-anal-
ysis. However, to identify whose input variables can be 
"locked", the algorithm requires determining the objective 
function at 3n samples (n is the number of input variables) 
before performing the optimization. Thus, the computa-
tional volume increases exponentially with the number of 
fuzzy variables. In addition, the use of 3n samples which is 
a combination of the values of the lower bound, the upper 
bound, and the midpoint also does not completely guar-
antee the accurate determination of the monotony of the 
objective function according to the input variable.

A new strategy for fuzzy structural analysis is the com-
bination of the α-cut method with a metaheuristic algo-
rithm [7–9]. Thanks to the advantage of metaheuristics, 
this approach can be suitable for many different types of 
problems, regardless of the behavior or type of the objec-
tive function, and has high reliability (the ability to find 
the exact bounds of the fuzzy response). In addition, meta-
heuristic algorithms are quite easy to implement and com-
bine with existing analysis tools [10]. The major obstacle 
is that metaheuristics often require a large volume of com-
putation due to the huge number of function evaluations.  
Some techniques have been applied to reduce the num-
ber of function evaluations compared to using the tradi-
tional corresponding metaheuristics, such as the α-level 
subspace technique and the nearest neighbor comparison 
techniques in [7], reuse of samples and information within 
the sublevels in [9]. However, the amount of computation 
to be performed is still large [11–13]. Furthermore, expert 
knowledge of setting algorithm-specific parameters is 
often required for metaheuristics.

There are various metaheuristic algorithms available in 
the literature, such as those in [14]. In this study, Jaya algo-
rithm [15], an algorithm-specific parameter-less algorithm 
is considered. Due to its simplicity and effectiveness, the 
algorithm has been widespread among the optimization 
research community [16, 17]. There have been successful 
applications of the Jaya algorithm and its variants to solve 
different problems in engineering, such as energy [18, 19], 

electrical engineering [20], fracture mechanics [21, 22], 
structural engineering [23-29], and environmental engi-
neering [30, 31].

Recently Jaya has been applied successfully by the 
author for determining fuzzy displacements of a 2D truss 
structure [32]. In [32], Jaya was integrated with the α-level 
subspace technique and the nearest neighbor comparison 
techniques in [7] to reduce the number of structural analy-
ses in solving α-level optimization problems.

In this paper, the Jaya algorithm is integrated with 
a dimension reduction technique to significantly save the 
computational cost, while ensuring the accuracy of the 
obtained fuzzy response of a structure. The effectiveness 
of the proposed Jaya-algorithm-based fuzzy procedure is 
investigated by the fuzzy static analysis of a planar truss 
and a space truss involving a relatively large number of 
fuzzy inputs.

The remaining part of the paper is organized as follows. 
Section 2 presents the proposed methodology for fuzzy 
structural analysis, with an emphasis on a dimension 
reduction technique. Section 3 gives a brief description of 
Jaya algorithm. Section 4 shows the numerical results and 
discussions of the case studies. Finally, Section 5 provides 
some conclusion remarks.

2 Fuzzy structural analysis
2.1 The α-level approach
According to the α-level optimization method [4], the 
bounds of the α-cut of the fuzzy output , are determined 
by solving two optimization problems:
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where xi,i = 1...n, are n fuzzy input variables; Xi,α is the α-cut 
of the fuzzy variable xi; yα and y̅α are the lower and upper 
bounds of the α-cut of the fuzzy output y, respectively.

In theory, the α-level optimization method gives accu-
rate results but often requires a large amount of computation 
because of many function evaluations (model analyses). 
Researches to overcome this limitation can be divided into 
two ways: 1) Using a simpler alternative model (The most 
commonly used method is the response surface method), 
and 2) Reducing the number of model analyses required 
when performing the optimization. The advantage of the 
former method is that there is no need to perform analyses 
on the original complex model. However, the accuracy of 
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this strategy completely depends on the accuracy of the 
replacement model. For the latter way, researches focus on 
building suitable optimal algorithms, with the requirement 
of reducing the number of model analyses while ensuring 
the accuracy of the optimal results.

2.2 Dimension reduction strategy
One way to lower the number of function evaluations in 
optimization, especially when applying metaheuristics, 
is to reduce the dimension of the problem by "locking" 
the input variables at the lower/upper bound values if they 
have a monotonic effect on the output. In this study, we 
propose an effective way to reduce the problem dimension 
when performing the α-level optimization in fuzzy struc-
tural analysis. The method uses partial derivatives to iden-
tify the monotony of the output. The strategy is presented 
as follows.

Step 0: At the nominal value of the fuzzy input (value 
with α = 1), evaluate the output and its partial derivatives. 
The partial derivative of the output is approximated by the 
central difference method as follows:

��
�� � � �� �

f
f x x f x x

xi
i i i i

i

� �
�2

,	 (3)

where δxi is the variation of the fuzzy variable xi, taken as 
0.001*xi. Then, at each level α:

Step 1: Let the interval (α-cut) Xi,α of xi corresponding to 
the level α is bounded by the lower bound xi,α and the upper 
bound x̅ i,α. Two input value sets are determined as follows:

- Value set for the lower bound, Cα: if fi' at the lower-ex-
treme point of the previous α-level is greater than zero, xi,α 
is included in Cα, otherwise x̅ i,α is used.

- Value set for the upper bound, C̅α: if fi' at the upper- 
extreme point of the previous α-level is greater than zero, 
xi,α is included in Cα, otherwise xi,α is used.

Calculate the new partial derivatives at Cα and C̅α, i.e.,  
fi'(Cα) and fi'(C̅α) by using Eq. (2).

Step 2: Compare the signs of the new partial derivatives 
calculated at Step 1 with the signs of the corresponding 
partial derivatives at the previous α-level. 

For all the partial derivatives fj' having a different sign, 
the output is non-monotonic with respect to xj. Then, the 
α-level optimization will be performed with respect to xj to 
find the extrema (lower bound or upper bound ) of the output. 
The other variables are locked by the values in Cα and C̅α. 

By locking all the variables having a monotonic effect 
on the output, the dimension of the α-level optimization 
problem to be solved is reduced. Thus, the optimization 
process can converse faster. 

It is noted that if there is no difference in signs of the 
new partial derivatives, the output behaves monotonically, 
Cα and C̅α will give the actual extrema for the current 
α-level, and there is no need to perform optimization.

Step 3: Compare the extrema obtained at this α-level by 
with those of the previous α-level to assure global optima. 
Move to the lower α-level and repeat Step 1.

3 Jaya algorithm
The Jaya algorithm is a parameter-less meta-heuristic algo- 
rithm and has a very simple structure. The briefs of the 
algorithm are presented below.

Initially, a population of NP solution candidates, 
xp,p = 1...NP, is randomly generated from the search space 
(the reduced search space in this context). Then, each can-
didate in the population will be updated in the optimi-
zation process through a survival selection based on the 
objective function value.

First, for each candidate, a new variant xp
new is created 

through the mutation as follows:

x x r x x r x xp
new

p best p p worst� � �� � � �� �� �1 1 ,	 (4)

in which xbest and xworst are the best and the worst candi-
dates in the current population, respectively; xp is the p-th 
candidate; r1 and r2 are two vectors of uniformly distrib-
uted random numbers in the interval [0, 1].

The new alternative xp
new is compared with the old one xp, 

and it will replace xp in the population if its objective func-
tion value is better than that of xp. The entire population will 
be updated through many iterations until a stopping condi-
tion is satisfied. The best solution in the final population 
will be selected as the optimal solution for the problem.

In this study, the Jaya algorithm is used to solve the 
reduced α-level optimization at Step 2 (if required). The out- 
comes of Jaya optimization are the lower and upper bounds 
of the α-cut of the fuzzy output.

4 Numerical application
To demonstrate the effectiveness of the proposed fuzzy 
structural analysis procedure, two truss structures with 
fuzzy parameters are examined in this section. Jaya algo-
rithm is utilized to find the extreme values of the structural 
response at each α-level in both cases: with and without the 
dimension reduction (DR) strategy. The parameter setting 
for Jaya is given in Table 1. The search process will stop 
when the relative error, defined as e = fmean/fbest – 1|, where 
fmean is the average value of the objective functions in the 
current population, and fbest is the smallest objective func-
tion value, reaches 10–6.
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The displacement and internal force are determined 
by the finite element method. All codes for the numeri-
cal analysis are implemented in MATLAB by the authors.

4.1 2D truss
The truss is adapted from [33]. The structure consists of 
31 members as depicted in Fig. 1. The fuzzy parameters 
include the Young's modulus of materials Ei (i = 1,…, 31), 
the cross-section areas Ai (i = 1,…, 31) and the applied load 
Pj ( j = 1,…, 5), whose membership functions are shown in 
Fig. 2, respectively. Therefore, the total number of fuzzy 
parameters is 67. The displacements at node 8 are con-
sidered, including horizontal displacement u8 and vertical 
displacement v8.

Fig. 3 illustrates the membership functions of u8 
obtained by different methods, including the direct optimi-
zation using Jaya (JAYA), the reduced optimization using 
Jaya (R-JAYA), Taylor's approximation-based method 
(TAM) [11, 12], and Taylor's expansion with extrema 
management (TEEM) [34]. It is seen that the result of 
R-JAYA is the same as that of JAYA. That means R-JAYA 
can estimate the fuzzy displacement with high accuracy. 
The advantage of R-JAYA in comparison with JAYA is that 
it requires much fewer function evaluations. In this case, 
R-JAYA needs only 2030 structural analyses, while JAYA 
calls 55001 analyses, i.e., R-JAYA saves more than 96% 

computational cost. On the other hand, methods like TAM 
and TEEM are approximation methods that can somewhat 
predict the behavior of the structural response. The advan-
tage of TAM and TEEM is their computation efficiency (in 
this example, TAM uses 141 and TEEM uses 1449 struc-
tural analyses). However, they cannot capture the "true" 
fuzzy membership function as shown in Fig. 3.

In Fig. 4, the membership functions of v8 are shown. 
In this case, all methods TAM, TEEM, JAYA, and R-JAYA 
give similar results. In this case, v8 is monotonic with 
respect to the fuzzy parameters. The numbers of struc-
tural analyses required by JAYA, R-JAYA, TEEM, and 
TAM are 43701, 945, 945, and 141, respectively.

The extreme values, including the lower bound (LB) 
and the upper bound (UB), of the fuzzy displacements 
obtained by TAM, TEEM, JAYA, and R-JAYA are shown 
in Table 2. The results for u8 by R-JAYA are the same as 
those by JAYA, and better than those by TAM and TEEM.

4.2 3D truss 
The second example is a space truss structure as shown in 
Fig. 5. The structural model consists of 160 bar elements. 
The fuzzy parameters include the elastic modulus of the 

Table 1 Parameter setting for Jaya

w/o DR with DR

Population size (NP) 50 20

Max. iteration (Tmax) 300 300

Relative error 10–6 10–6
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Fig. 1 The layout of 31-bar planar truss
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Fig. 2 Membership functions of modulus of elasticity, cross-section 
area, and load
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Fig. 3 Membership functions of u8 by different methods
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material of each bar, the cross-sectional areas of the bars, 
and the loads acting at nodes 25, 28, 37, and 52. Assume 
the maximum variation of the elastic modulus ±0.5%, the 
dimension ±5%, and the load ±10%, from the confidence 
(nominal) values. All fuzzy variables are assumed to have 
triangular membership functions with the nominal data 
given in Table 3. Thus, the problem has a total of 328 fuzzy 
variables and can be considered a large-scale problem.

By using JAYA, R-JAYA, TAM, and TEEM, the mem-
bership functions of the displacements at node 52 are 
obtained as shown in Figs. 6, 7, and 8. The results obtained 
by R-JAYA and JAYA are quite similar and enclose those 
of TAM and TEEM. 

Table 4 gives the extreme values of the fuzzy displace-
ments at node 52 according to TAM, TEEM, JAYA, and 
R-JAYA. The results show that the bounds obtained by 
R-JAYA are wider than those determined by the other 
methods. That means R-JAYA can capture the non-mono-
tonic behavior of the displacement responses effectively. 

Table 2 The extreme values of fuzzy displacements of node 8 for the 
31-bar truss obtained by different methods

Output TAM TEEM JAYA R-JAYA

u8 (mm)
LB
UB

-0.1072
0.1271

-0.1219
0.1319

-0.1413
0.1413

-0.1413
0.1413

v8 (mm)
LB
UB

-8.5664
-3.4618

-8.5664
-3.4618

-8.5664
-3.4618

-8.5664
-3.4618

28

52

37

25

Fig. 5 The layout of 3D truss structure

Table 3 Nominal values of the fuzzy parameters for the 3D truss

Parameters Nominal value

Elastic modulus Ei (kgf/cm2) 2.047e+6

Cross-section Ai (cm2) 10.0

Node 25
Fx (kgf)
Fz (kgf)

-1091
-546

Node 28
Fx (kgf)
Fz (kgf)

-1091
-546

Node 37
Fx (kgf)
Fz (kgf)

-996
-546

Node 52
Fx (kgf)
Fz (kgf)

-868
-491
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Fig. 6 Membership functions of x52 by different methods
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Fig. 7 Membership functions of y52 by different methods
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Fig. 8 Membership functions of z52 by different methods
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The results of TAM and TEEM are worse than those of 
R-JAYA. It is noted that JAYA can not find the bounds of 
R-JAYA within the given iteration (300 iterations). This is 
due to the large-scale problem considered.

In terms of computational efficiency, Table 4 also lists 
the number of function evaluations (FEs) called by these 
methods. Compared with JAYA, R-JAYA is much more 
efficient since R-JAYA reduces up to 90% computational 
cost. TAM is the most efficient method which uses 663 
analyses. However, TAM cannot capture the non-mono-
tonic behavior of the displacements.

From the two numerical examples above, it is deduced 
that the proposed strategy can save significant computa-
tional costs in solving the α-level optimization by Jaya. 
The accuracy of the obtained fuzzy outputs is maintained 
well by the reduced α-level optimization.

5 Conclusion
An efficient approach for fuzzy structural analysis has 
been presented. The method is based on the α-cut strategy 
and the Jaya algorithm. Instead of solving α-level optimi-
zation problems directly, Jaya has been suggested to com-
bine with the dimension reduction strategy to reduce the 
computational volume. The technique can "freeze" those 
parameters having a monotonic effect on the output so that 
it transforms the original large α-level optimization prob-
lem into a low-dimension one. Numerical examples with 
a relatively large number of fuzzy variables have shown 
that the proposed methodology can capture the mem-
bership function of non-linear structural response with 
high accuracy. The Jaya when combined with the pro-
posed dimension reduction technique saved significant 
computational volume compared with Jaya in the case of 
direct optimization. The Jaya-based optimization method 
does not require prior knowledge of the problem as well 
as the user's setting for algorithm-specific parameters. 
Therefore, the proposed method can ease the practice of 
fuzzy analysis of structures with non-monotonic behavior 
and many fuzzy variables.
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Table 4 The extreme values of fuzzy displacements of node 52 for the 
160-bar truss obtained by different methods

Output TAM TEEM JAYA R-JAYA

x52(cm)
LB
UB
FEs

-9.5713
-6.8928

663

-9.5713
-6.8928

7744

-9.5685
-6.8971
82751

-9.5713
-6.8928

8646

y52 (cm)
LB
UB
FEs

-0.4119
0.4873

663

-0.4582
0.4889
8213

-0.5013
0.4848
90301

-0.5044
0.4905
9441

z52 (cm)
LB
UB
FEs

-0.0702
-0.0010

663

-0.0718
0.0002
7690

-0.0731
0.0013
90301

-0.0735
0.0014
8804
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