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Abstract

The health monitoring and damage detection of structures are major scientific issues that the civil engineering discipline, which made 

great achievements in the 20th century, has bequeathed to the 21st century. Despite the installation of health monitoring systems 

in many large structures, implementing damage detection through finite element model updating is often time-consuming or even 

infeasible due to the size of the model and the presence of numerous uncertain parameters. To address this issue, this paper proposes 

a substructure-based model updating method. The entire structure is divided into substructures with reduced degrees of freedom, 

allowing for the simplification of the motion equation by employing only a small number of low-order modes from each substructure. 

Consequently, the analysis scale of the structure is effectively reduced. The discarded higher modes are compensated by residual 

modes to ensure the accuracy of structural response and sensitivity. Subsequently, a damage identification program substructure-

based model updating is developed, which is applied to component mode synthesis and damage identification for large structures. 

By  precisely detecting damage in critical areas, accurate diagnosis and evaluation of the global structural safety are achieved. 

The results validate the implementation, computational efficiency, and accuracy of the proposed substructure-based model updating 

method. This approach shifts the focus from model updating of the entire structure to model updating of substructures, with the 

aim of fundamentally resolving the technical challenge of accurate damage detection of large and complex structures. Furthermore, 

it provides theoretical support for the practical application of damage detection in large civil structures.
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1 Introduction
During the entire service life of structures, their structural 
performance gradually degrades over time due to environ-
mental influences, resulting in varying degrees of damage 
such as cracks and deformations. The traditional approach 
is to conduct maintenance after localized failure or dam-
age occurs in the structure, known as post-maintenance. 
However, carrying out post-maintenance on structures 
that have suffered significant damage and performance 
degradation will significantly increase maintenance costs, 
often with minimal benefit. By utilizing health monitoring 
technology to detect structural defects as early as possible, 
timely repairs can be undertaken before the structural per-
formance reaches its limit state. This proactive approach of 
"treating minor issues to prevent major problems" ensures 

structural safety, extends the service life, and facilitates 
predictive maintenance.

Health monitoring technology was first introduced 
in the field of civil engineering around 1970. Currently, 
numerous large-span bridges and buildings have been 
equipped with health monitoring systems, both domes-
tically and internationally. Examples include the Golden 
Gate Bridge in the United States [1], the Akashi Kaikyo 
Bridge in Japan [2], and in China, structures such as 
the Tsing Ma Bridge [3], the Guangzhou TV Tower [4], 
and the Shenzhen Ping-An Financial Center [5]. However, 
large structures like the Guangzhou TV Tower generate 
over 200,000 monitoring data in a single day and up to 
100  million in a year, making it extremely challenging 
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to diagnose structural safety conditions accurately and 
swiftly from such a vast amount of monitoring data [6–8].

In the past two decades, there has been significant 
interest in utilizing dynamic property changes for dam-
age detection [9–14]. The finite element model updating 
technique involves adjusting model parameters iteratively 
based on measured data, aiming to minimize the differ-
ences between theoretical and measured values. This 
iterative process aims to obtain a finite element model 
that closely represents the actual structure, treating it as 
an optimization problem. Shi et al. [15] proposed a sensi-
tivity-based model updating method to detect and quantify 
damage in two-dimensional truss structures using incom-
plete measurement modes. Wu and Li [16] conducted 
model updating for Nanjing TV Station using frequency 
and vibration mode analysis. Weber and Paultre [17] per-
formed experiments to identify damage in three-dimen-
sional towers using a sensitivity-based model updating 
method. These studies demonstrate that the damage iden-
tification method based on finite element model updat-
ing can achieve accurate damage localization and quan-
tification, making it one of the most direct and effective 
approaches for structural health assessment.

However, for large and complex engineering structures 
with finite element models consisting of thousands or even 
millions of degrees of freedom, traditional model updating 
methods result in a significant number of matrix operations, 
posing great challenges to the solution process. For instance, 
Papadimitriou and Papadioti [18] conducted a study on the 
Egnatia Odos highway bridge in Greece. The bridge's finite 
element model consisted of 562,101 degrees of freedom 
and 97,636 elements, and an intact structure was performed 
for modal updating, taking approximately one month and 
seven days to complete the computation. Xia et al. [19] 
carried out model updating for the Balla Balla Bridge in 
Western Australia, which had a finite element model with 
4,200 degrees of freedom and 1,200 elements. The conver-
gence required 155 iterations and approximately 420 hours 
to achieve. Duan et al. [20] developed a finite element model 
for the Tsing Ma Bridge, which included about 1.2 million 
degrees of freedom, and it took 5 hours to solve the first 
100 eigen solutions of the model. Despite the increasing 
computational power, which has created favorable condi-
tions for finite element model updating, achieving precise 
model updating and damage identification for large struc-
tures remains challenging in practical applications.

To address the challenges, this paper proposes the applica-
tion of the substructuring method for damage identification, 

employing a local-to-global analysis approach by dividing 
the entire structure into substructures for separate analysis. 
In comparison to the global structure, substructures exhibit 
higher sensitivity to local element damage, as well as fewer 
degrees of freedom and parameters requiring updated. 
This approach effectively reduces the computational scale 
and expedites the convergence of the optimization pro-
cess. By  analyzing and detecting individual substructures, 
the need for repetitive calculations on the entire structure 
is circumvented, thereby significantly reducing the compu-
tational burden associated with dynamic analysis and finite 
element model updating for large structures. Through the 
extraction of key information, the structural safety status 
can be accurately determined, providing an effective method 
for the health monitoring of large structures during service.

2 Free interface component mode synthesis method
The free interface component mode synthesis (CMS) 
method, developed by Craig and Chang [21], is based on 
the concept of dividing a complex structure into substruc-
tures with free interfaces. The method involves perform-
ing modal analysis for each substructure to extract their 
respective eigenmodes, which is then combined to repre-
sent the global structure. Take Fig. 1 as an example, where 
the global structure with degrees of freedom N is divided 
into two substructures a and b for illustration. The degrees 
of freedom of substructures a and b are Na and Nb, respec-
tively. For the purpose of this illustration, we will focus on 
substructure a. The undamped dynamic equation for sub-
structure a can be defined by:

M K x fxa a a a a� � � � � � � � � �� � . 	 (1)

In this paper, superscript "(a)" is used to denote the item 
corresponding to substructure a. The mass and stiffness 
matrices, denoted as M (a) and K (a) respectively, have a size 
of Na  ×  Na. The displacement and acceleration vectors, 
represented by x(a) and ẍ (a), respectively, have a size of 
Na × 1. The load vector, denoted as f  (a), contains the con-
necting loads from neighboring substructures. A coordi-
nate transformation relating physical coordinates to modal 
coordinates can be expressed as:

Fig. 1 Global structure and substructures
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x pa a a� � � � � �� �� , 	 (2)

where Φ (a) is the eigenvector matrix of the substructure, 
with a size of Na × Na ; p (a) represents the modal coordi-
nate. According to the lower and higher modes, Eq. (2) can 
be rewritten as:
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where ��l
a� �  and ��h

a� �  represents the lower and higher modes 
with a size of Na × Nal and Na × Nah.

To reduce the computational complexity while main-
taining the accuracy of modal synthesis, the method retains 
only a limited number of lower modes. The discarded higher 
modes can be compensated for using residual flexibility 
modes, with the interface force acting as the corresponding 
coordinate. This expression can be approximated as:
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where fJ
a� �  is the interface force with a size of NJ × 1 and 

NJ is the number of interface DOFs; �� h
a� �  is the residual 

flexibility, can be expressed as:
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Given that the flexibility matrix can be decomposed 
into lower and higher modes as:
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We define:
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where �� a
a� �  and �� h

a� �  represent the contributions of the 
lower and higher modes to the flexibility matrix, respec-
tively. �� h

a� �  can be calculated as:

�� ��h
a a

a
a� � � � � �� �G . 	 (8)

If a substructure is floating, then the inverse of K (a) is 
unavailable. In such case, the rigid-body modes ��R

a� �  are 

disregarded. The derivation of the equation mentioned 
here is quite complex and cannot be fully explained in 
this context. Detailed information can be found in [21] 
for a comprehensive understanding. The flexibility matrix 
with rigid-body modes can be written as
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When Eq. (4) is substituted into Eq. (1) and pre-multi-
plying both sides by ��l

a
h
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The size of the equations presented above is ( Na + NJ ). 
Ωl and Ωh are eigenvalue matrices for the lower and higher 
modes, respectively; I is the identity matrix; B(a) is the 
Boolean matrix; MG

a� �  and KG
a� �  are the residual mass and 

residual stiffness matrices, respectively. They are com-
puted as:
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To assemble two substructures together for represent-
ing the dynamics of the entire structure, it can be block-di-
agonally assembled as:
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Similarly, the superscript "(b)" represents the item 
associated with substructure b. Substructures a and b 
are connected at the common interface. The compati-
bility of displacements and equilibrium of perpendicu-
lar normal forces at the interface between substructure a 
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and substructure b. And they can be expressed through 
Eqs. (15) and (16):

x xJ
a

J
b� � � �� , 	 (15)

f fJ
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J
b� � � �� � . 	 (16)

Given x B xJ
a a a� � � � � ��  and x B xJ

b b b� � � � � �� ,  by substitut-
ing Eq. (4) into Eq. (15), we have:
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By combining Eqs. (16) and (17), the interface force can 
be determined as follows:
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Hence, the modal coordinates of substructures can be 
transformed into the modal coordinates associated with 
the lower modes as follows:
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where T is the transformation matrix of size ( Nal + Nbl + 
2NJ ) × ( Nal + Nbl ) and q represents the modal coordinate 
associated with the lower modes of the two substructures, 
with a size of ( Nal + Nbl ) × 1. Substituting Eq. (19) into 
Eq. (14) and pre-multiplying both sides by T T, we obtain:

M K qp* *
 � � 0 ,	 (21)

where:
M T MT K T KT* *= =T T

 , . 	 (22)

Equation (21) is the final eigensystem equation of the 
assembled global structure with a size of ( Nal + Nbl ). Since 
the interface forces always appear in pairs when there is 
no external force, the right-hand term of Eq. (21) is zero. 
Assuming that its eigensolutions are Ω* and Φ*, the eigen-
values of the original system are Ω* and the eigenvectors 
can be transformed as:
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where superscript 'p' denotes the diagonal assembly of the 
substructural matrices. Since only a few lower modes of 
each substructure are included, the size of the reduced eigen-
equation ( Nal + Nbl ). is much smaller compared to the global 
eigenequation with size N. This allows us to avoid solving 
the large eigenequation, leading to computational efficiency.

3 Finite element model updating method based on 
substructure
Structural damage cause variations in structural responses 
and identifying damage by detecting variations in struc-
tural dynamic properties is a typical approach to solv-
ing inverse problems. The finite element model updating 
method uses structural parameters as the updating vari-
ables and employs iterative optimization to reproduce the 
actual dynamic properties of the structure. It is exten-
sively employed in engineering for solving inverse prob-
lems [22]. The relationship between structural responses 
and structural parameters can be established through 
a first-order Taylor expansion, given by:

R R S r re o u o� � �� � , 	 (24)

where Re and Ro are the experimental and analytical 
responses of the structure, respectively; ru and ro rep-
resent the corresponding structural parameter vectors. 
The matrix S is a sensitivity matrix that relates the change 
in the structural parameters to changes in the vibration 
properties. It can be obtained by calculating the deriva-
tives of the structural responses with respect to the struc-
tural parameters. In practical structures, damage typically 
affects the stiffness matrix, in the subsequent derivations, 
it is assumed that damage causes a reduction in the stiff-
ness of one or more elements in the structure.

During the optimization process, the elemental param-
eters in the analytical model are iteratively modified to 
match the experimental vibration properties. When the 
structure has a large number of degrees of freedom, tradi-
tional model updating methods based on the system matri-
ces of the global structure can become computationally 
challenging. In each iteration, it is necessary to recalcu-
late the eigensolutions and eigensensitivity matrix of the 
analytical model, which can be time-consuming and com-
plex. The sensitivity matrix of the element level damage 
identification for more precise damage localization and 
quantification can be obtained by using the substructuring 
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method. According to Eq. (21), the eigenequation of the 
i-th mode (i = 1, 2, …, N) representation as:

K M* * *�� � ��i i�� 0. 	 (25)

Differentiating Eq. (25) with respect to parameter r one 
obtains:
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K M* * *�� � ��i i�� 0  and ( K * − M * λi ) is symmetric. 
Hence, Eq. (27) can be simplified as:
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Considering that the normalization property of ΦΦi
*
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the derivative of eigenvalue λi can be expressed by:
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According to Eq. (23), the i-th eigenvector of the global 
structure can be written as:
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Differentiating Eq. (30) with respect to parameter r one 
obtains:
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where ∂Φp / ∂r is the derivative of the eigenvector of the 
substructure that contains parameter r, and it can be calcu-
lated within the substructure. ∂Φ* /  ∂r can be expressed by 
following Nelson's method [23] as:
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where ci is the participation factor. By substituting Eq. (32) 
into Eq. (26), we have:
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Given that K M* * *�� � ��i i�� 0,  Eq. (33) can be simpli-
fied as:
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Vector vi can be solved using Eq. (34). The solution of 
ci can be calculated from the orthogonal condition of the 
eigenvector:
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Differentiating Eq. (36) with respect to r yields:
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By substituting Eq. (32) into Eq. (37), given ∂M* / ∂r = 0, 
yields Eq. (38):
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The participation factor ci can be obtained as:
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The final form for the first-order derivative of ΦΦi
*  with 

respect to parameter r is expressed by Eq. (40):

�
�

� � � � � � ��
�

�
�

��
�� ����i

i i
T

i i

T

i ir

*

* * * * *v v M M v1

2
. 	 (40)

4 Numerical simulation of component mode synthesis
4.1 Numerical example
A numerical study of a large-scale frame structure is con-
ducted, as depicted in Fig. 2. This structure consists of 
12 floors, each with a height of 2.9 m. It features 4 spans 
in the X-direction, with each span measuring 8.4  m, 
as well as 3 spans in the Y-direction, with each span hav-
ing a length of 5.7 m. The node numbers indicated in 
Fig. 2 correspond to the global structure, which comprises 
260 nodes. The bottom 20 nodes are fixed supports, result-
ing in a total of 1440 degrees of freedom. The total num-
ber of components is 612. The beam and column compo-
nents are I-beams, where the cross-section parameters of 
the beam are h = 0.4 m, b = 0.2 m, and t = 0.02 m, and the 
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cross-section parameters of the column are h = 0.4 m, 
b = 0.4 m, t = 0.02 m. The elements are constructed from 
Q235 steel, and their nonlinear material behavior is char-
acterized by a bilinear kinematic hardening model along 
with the Von Mises yield criterion. The slope of the elastic 
segment is taken as the elastic modulus of the steel mate-
rial, and the slope of the strengthening segment is taken 
as 1/100 of the elastic segment. Specifically, the mate-
rial properties of the steel are defined as follows: Young's 
modulus  =  2.1  ×  105  MPa, Mass  density  = 7800 kg/m3, 
Poisson's ratio v = 0.3.

The stiffness matrix and mass matrix of both the frame 
model and the substructures are established using the 
MATLAB [24] code. This preparation enables further 
CMS and model updating. To validate the results obtained 
from MATLAB [24], modal analysis is performed using 
the finite element model in ANSYS [25], and the first 
3 mode shapes are depicted in Fig. 3.

To evaluate accuracy, the relative change Diff of fre-
quency f and the modal assurance criterion (MAC) are uti-
lized. A MAC value of 0 implies that two sets of modes 
ϕ are completely unrelated, while a value of 1 indicates 
complete correlation between vibration modes. The spe-
cific formula is as follows:

Diff f f
f f
fi

d
i
o i

d
i
o

i
o, ,� � � � 	 (41)
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d
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d o
T

o

, .� � �
2
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Fig. 2 Large-scale frame structure (unit: mm)

Fig. 3 The first 3 mode shapes of the FE model for the structure 
(unit: m); (a) Mode 1; (b) Mode 2; (c) Mode 3

(a)

(b)

(c)
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Table 1 lists the corresponding frequencies and MAC val-
ues, obtained from both MATLAB [24] and ANSYS [25]. 
A comparison between the two sets of data reveals that the 
modal analysis conducted using MATLAB [24] is highly 
accurate. The maximum discrepancy among the first 
10 modal frequencies is only 0.9451%, and the MAC val-
ues for each mode are nearly equal to one, indicating that 
MATLAB [24] accurately replicates its structural dynamic 
behavior of the system.

4.2 Effectiveness of component mode synthesis
In order to accurately capture the global modal parame-
ters, it is essential to establish a reasonable criterion for 
modal truncation to select the relevant modes of the sub-
structure. By substituting Eq. (3) into Eq. (1) and pre-mul-
tiplying both sides by (Φ(a))T, we obtain Eq. (43):

I p B fph
a

h
a

h
a

h
a

h
a T a T

J
a� � � � � � � � � � � � � �� � � � � � �� �� . 	 (43)

For example, the subsystem vibrates at frequency ω and 
amplitude b, that is, ph = b sin(ωt) and p̈ h = −ω2b sin(ωt). 
The first term in Eq. (41) is much smaller than the second 
term, thus it can be concluded as:

� � � �2 2b t b thsin sin ,� � �� � � 	 (44)

� ��� h . 	 (45)

Based on the derivation, it can be inferred that the 
discarded higher-order eigenvalues of the substructures, 
which must be significantly larger than the eigenvalues to 
be solved for the global structure.

To facilitate the analysis, the global structure is evenly 
divided into three substructures, as depicted in Fig. 4. 
Following to the CMS method, the global structure is 

divided into substructures and all interface constraints 
are removed. This decomposition of the entire structural 
system into several independent substructures enables 
entirely independent research on the dynamic analysis of 
each substructure. In Fig. 4, the substructure 1 is fixed and 
constrained at the bottom, while the substructures 2 and 
3 are floating and unconstrained at the interfaces 1 and 2. 
Detailed information regarding the global structure and 
each substructure can be found in Table 2.

In this example, the first 10 modes of the global struc-
ture are of interest. Through modal analysis of the global 
structure, it has been determined that the 10th eigenvalue 
is 705.388 rad2/s2. To assess the impact of the number of 
reserved modes on the CMS, three schemes of retained 
modes have been selected. Each scheme preserves eigen-
values of the substructures that are 10, 20, and 50 times 
greater than the eigenvalues to be solved for the global 

Table 1 Frequency and MAC of the FE model and MATLAB model

Mode No.
Frequency (   f   )

MAC
ANSYS (Hz) MATLAB (Hz) Diff (%)

1 1.3518 1.3498 0.1480 1.0000

2 1.4823 1.4858 0.2361 0.9999

3 1.4923 1.4897 0.1742 0.9999

4 1.9382 1.9480 0.5056 0.9996

5 1.9501 1.9655 0.7897 0.9994

6 2.5076 2.5313 0.9451 0.9992

7 2.9625 2.9847 0.7494 0.9998

8 2.9871 3.0144 0.9139 0.9995

9 4.0046 4.0013 0.0824 1.0000

10 4.2131 4.2270 0.3299 0.9997

Table 2 The information of the global structure and substructures

Structural information Global 
structure Sub 1 Sub 2 Sub 3

Number of nodes 260 100 100 100

Number of DOFs 1440 480 600 600

Number of elements 612 204 204 204

Number of interface nodes 20 40 20

Number of 
retained modes

Scheme 1

1440

49 68 68

Scheme 2 76 97 97

Scheme 3 96 137 137

Fig. 4 Substructures
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structure. These schemes are presented in Table 2 as 
Schemes 1, 2, and 3, respectively.

Figs. 5 and 6 illustrates the modal error between the 
reconstructed structural calculation results obtained using 
the free interface CMS method and the calculation results 
of the complete finite element model. It is evident that as 
the reserved modal order of the substructure increases, 
the calculation accuracy after synthesis improves sig-
nificantly. Most frequency relative errors for the three 
modal retention schemes are below 10−2, demonstrating 
good accuracy. When the number of reserved modes is 
increased to Scheme 3, the maximum frequency relative 
error is only 8.778 × 10−5. Regarding vibration modes, 
Scheme 1 exhibits a minimum MAC value of 0.9837 for 
the 7th order vibration mode. The first 10 orders of MAC 
in the other two schemes are greater than 0.9957, while 
Scheme 3 attains a minimum MAC value of 0.9996. These 
results indicate that the reconstructed structure obtained 
through the free interface CMS method aligns closely 

with the calculation results of the original global struc-
ture, ensuring the accuracy of the proposed CMS method 
in calculating eigensolutions.

Referring to Table 2, it can be observed that compared 
to the number of degrees of freedom in the global model, 
the restructuring of the structure using the CMS technique 
significantly reduces the number of degrees of freedom. 
Scheme 3, which retains the highest number of modes, 
accounts for only about 25.7% of the original structure, 
while maintaining high calculation accuracy. This reduc-
tion in degrees of freedom will greatly facilitate the practi-
cal application of the proposed sub-structuring method in 
finite element model updating.

4.3 Impact of local damage on eigenparameters
To investigate the sensitivity of the eigenparameters of 
the global structure and substructures to local damage, 
damage is simulated by reducing the bending stiffness 
of the element. The specific damage scenarios are listed 
in Table 3, and the detailed location is depicted in Fig. 2. 
Fig. 7 presents the variations in eigenparameters of the 
global structure and substructures as the damage degree 
increases from 50% to 80% at the same damaged element 
for both Case 1 and Case 2.

Based on the calculation results, it can be observed that 
the degree of change in structural eigenparameters is sig-
nificantly positively correlated with the extent of damage. 
For instance, when the damage degree is 50%, the rela-
tive change of the first 10 frequencies of the global struc-
ture does not exceed 0.015, and the average of the first 
20 MAC values of eigenvectors is 0.997. As the damage 
degree increases to 80%, the maximum relative change of 
the first 10 frequencies is 0.033, and the average of the first 
20 MAC values of eigenvectors decreases to 0.735. These 
findings demonstrate that as the damage degree increases, 
the eigenparameters exhibit a higher rate of change, indi-
cating greater sensitivity to damage. However, the over-
all amplitude of change in the global eigenparameters by 
local damage is not significant.

The analysis reveals that local damage leads to relatively 
minor changes in the global eigenparameters, while the 

Fig. 5 Relative error of frequency

Fig. 6 Error of MAC

Table 3 Simulated damage scenarios

Case Damaged element Reduction of bending rigidity

1 No. 33~35 −50%

2 No. 33~35 −80%

3 No. 85 −50%

4 No. 103 and 347 −50%, −60%
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same predetermined damage induces significant changes in 
the substructural eigenparameters. When the damage degree 
is at 50%, the relative change of the first 10 frequencies of 
the substructure generally falls around 0.02, with a maxi-
mum of 0.0221. The average of the first 20 MAC values of 
eigenvectors is 0.886. As the damage degree increases to 
80%, the maximum relative frequency change of the sub-
structure reaches 0.105, which is approximately 3.2 times 
higher than that of the global structure. The average of the 
first 20 MAC values of eigenvectors is 0.484.

From the analysis of the two damage conditions, 
it  becomes evident that the eigenparameters of the sub-
structure are more sensitive to damage compared to the 
global structure. Furthermore, the magnitude of change in 
eigenparameters caused by preset damage surpasses the 
error introduced by component mode synthesis, as shown 
in Scheme 3 of Fig. 5. Consequently, the proposed sub-
structuring method exhibits significant advantages in 
damage identification for large-scale structures.

5 Numerical simulation of structural damage 
identification
5.1 Damage identification program
Establish the initial model and damage model using the 
MATLAB code [24], and write a damage identification 
program of substructure-based model updating. The pro-
gram defines the Young's modulus of the structure as the 
updating parameter during the finite element model updat-
ing process. The specific steps are as follows:

1.	 Step 1: Structural decomposition:
To effectively detect early structural damage and 
identify hidden risks, it is crucial to prevent local 
minor damages from being obscured by noise. This 

enables a comprehensive identification of structural 
damage and direct evaluation of its performance. 
One approach to achieve this is by employing the 
substructuring method, which involves divid-
ing the entire structure into several substructures, 
as  depicted in Fig. 3. The Stiffness matrix K and 
Mass matrix M of each substructure are assembled 
to analyze the modal properties of each substructure, 
such as the eigenvalue λ, the lower order modes φl, 
and the residual flexibility ψ.

2.	Step 2: Substructure-based model updating:
Model updating is performed on the substructure 
by considering the first-order partial derivatives of 
the eigenvalues λ and eigenvectors φ with respect to 
the updating parameter r, as described by Eqs. (29) 
and (40). These calculations contribute to the forma-
tion of the substructure sensitivity matrix S. Since 
each substructure operates independently, parallel 
computation can be employed. Moreover, the updat-
ing parameter r is solely associated with the stiff-
ness and mass matrices of the substructure that 
contains it, remaining unaffected by other substruc-
tures. Consequently, during the computation of the 
sensitivity matrix S, substructures not containing 
the updating parameter r are assigned a sensitivity 
value of zero. By localizing damage and focusing 
on specific substructures, the number of unknown 
variables is significantly reduced, leading to a sub-
stantial improvement in model updating efficiency. 
The  updating parameters are then reassembled, 
and  the model properties of the substructure are 
recalculated following the modal updating process.

3.	 Step 3: Component mode synthesis:
The modified substructures are assembled into diag-
onal blocks following Eq. (14), and the eigenparam-
eters of the reorganized global structure are subse-
quently calculated using Eq. (21). Component mode 
synthesis technology is employed to reduce the anal-
ysis scale while preserving the modal properties of 
the structure. The frequency of a structure provides 
insight into its overall performance, while the modal 
shape reveals spatial and local information about the 
structure's vibration. Therefore, the objective func-
tion is formulated by considering the residuals of 
eigenvalue and eigenvector.

4.	 Step 4: Damage Identification:
By performing multiple iterative operations, the struc- 
tural parameters are continuously adjusted to mini- 

Fig. 7 Sensitivity of eigenparameters of global structure and 
substructure (Case 1 and 2)
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mize the objective function. If the convergence con-
ditions are not met, the substructure-based model 
updating program is revisited for further optimiza-
tion until convergence is achieved. This iterative pro-
cess enables the determination of the damage loca-
tion and severity.

5.2 Damage identification based on substructure
The proposed substructure-based model updating method 
and the traditional model updating method are compared 
using measurement points arranged at each node, as indi-
cated in Fig. 2. Damage identification is performed using 
the first 10 frequencies and modes, aiming to match the 
modal data of the updated model with the modal data of 
the damaged mode. The mode shapes are determined at 
the x and y direction of the nodes in Fig. 2. In the case 3, 
which the bending stiffness of element 85 (located in 
the first substructure) is reduced by 50%, the identified 
damage result is obtained by using the traditional global 
method after 64 iterations, as shown in Fig. 8. It suc-
cessfully identified the preset damaged element 85, with 
a damage identification degree SRF of 44.02%.

On the other hand, the proposed substructure-based 
model updating method requires 132 iterations to reach 
convergence, and the identification results are presented in 
Fig. 9. The stiffness parameters of element 85 are reduced 
by 45.65%, and the reduction position of the stiffness 
parameters corresponds to the preset damage position. 
The relative error compared to the preset damage degree 
of 50% is only 8.7%, indicating a high level of accuracy 
in the identification process. The maximum SRF value for 
the remaining undamaged positions is only 2.62%, indi-
cating a strong anti-interference capability. These results 
verify the successful identification of the location and 
degree of preset damage elements using the proposed 

substructure-based model updating method. Additionally, 
it was demonstrated that when employing scheme 3 based 
on the criterion of modal truncation, the error caused by 
CMS was negligible, and the proposed substructuring 
method proved effective in the model updating process.

In the fourth case, beam element 103 (located in the first 
substructure) and column element 347 (located in the sec-
ond substructure) are preset to be damaged, with a reduc-
tion of 50% and 60% in their bending stiffness, respec-
tively. The damage identification results are presented in 
Fig. 10 and Fig. 11. Both the proposed substructure-based 

Fig. 8 Damage identification by global method (Case 3)

Fig. 9 Damage identification by substructuring method (Case 3)

Fig. 10 Damage identification by global method (Case 4)

Fig. 11 Damage identification by substructuring method (Case 4)
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method and the traditional method successfully detect 
damage, with the identified damage degree closely match-
ing the preset damage degree. This further confirms 
the effectiveness of the proposed method. Table 4 com-
pares the frequency and MAC values before and after the 
updated of Case 4. The results indicate that the modal data 
of the finite element model, modified based on the sub-
structuring method, closely aligns with the data of the 
damaged structure. The relative differences in frequencies 
between the modified structure and the damaged structure 
are significantly reduced, with all values being less than 
0.15%. The 2nd order MAC has increased from 0.8617 to 
0.9923, indicating the accuracy of this method.

5.3 Computational efficiency
Table 5 presents the computational workload of the dam-
age identification process and compares the matrix size, 
computational time, and number of iterations between the 
proposed substructure-based method and the global struc-
tural model updating method. The time required to calcu-
late the eigenparameters using a complete finite element 
model is 47.3ms. In contrast, the calculation time of the 
eigenparameters based on the substructuring method is 

29.3  ms, which is approximately 62% of the calculation 
time of the former. This indicates that the substructur-
ing method can significantly improve the calculation effi-
ciency while ensuring accuracy.

Regarding the efficiency of the model updating cal-
culation, in case 3, the model updating method based 
on the global structure converges after 64 iterations and 
4522.104  seconds, while the substructure-based model 
updating achieves convergence in only 1053.342 seconds, 
which is 23% of the time consumed by the former method. 
It is important to note that the matrix size based on the 
global structure is 1440, whereas the proposed substruc-
turing method reduces the matrix size to 370. Therefore, 
compared to traditional methods, the substructuring 
method achieves a significant reduction in computational 
workload while maintaining model accuracy.

6 Conclusion
The iterative optimization algorithm used in finite element 
model updating often involves solving the eigensolutions 
of the global structural model multiple times. However, 
when dealing with large-scale finite element models that 
have a high number of degrees of freedom, a significant 

Table 4 Frequencies and mode shapes before and after updating by substructure-based method (Case 4)

Mode No. Damaged Freq.
Before updating After updating

Freq. (Hz) Diff (%) MAC Freq. (Hz) Diff (%) MAC

1 1.3401 1.3498 0.7238 0.9998 1.3407 0.0448 1.0000

2 1.4646 1.4858 1.4475 0.8617 1.4662 0.1092 0.9923

3 1.4719 1.4897 1.2093 0.8884 1.4733 0.0951 0.9951

4 1.9360 1.9480 0.6198 0.9997 1.9352 0.0413 0.9999

5 1.9576 1.9655 0.4036 0.9998 1.9563 0.0664 0.9999

6 2.5246 2.5313 0.2654 1.0000 2.5257 0.0436 1.0000

7 2.9479 2.9847 1.2483 0.9958 2.9516 0.1255 0.9989

8 3.0092 3.0144 0.1728 0.9999 3.0104 0.0399 1.0000

9 3.9703 4.0013 0.7808 0.9982 3.9742 0.0982 0.9997

10 4.1861 4.2270 0.977 0.9966 6.2657 0.1166 0.9989

Table 5 Comparison of computational efficiency

Computational efficiency Simulated Damage Scenarios
Modal updating

Global method Substructuring method

Size of eigensolutions 1440 370

Time consumed of eigensolutions (ms) 47.3 29.3

Iterations of modal updating
Case 3 64 132

Case 4 92 172

Time consumed of modal updating/s
Case 3 4522.104 1053.342

Case 4 6361.224 1442.483
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