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Abstract

The utilization of recycled iron in durable concrete production has gained attention for enhancing sustainability and resource 

efficiency. Simultaneously, incorporating nanoparticles as supplementary cementitious materials (SCMs) offers significant benefits. 

Introducing nano-sized iron particles (Fe2O3) into the cement paste results in a compact microstructure, improving strength, and 

durability. In this study, we investigate the bending behavior of concrete slabs reinforced with Fe2O3 nanoparticles using the non-local 

quasi-3D shear deformation theory based on Eringen's non-local differential constitutive relations. To characterize the elastic material 

properties of the nanocomposite, we employ Eshelby's homogenization model. In order to extend the applicability of our findings, 

we assume that the concrete plate rests on Kerr's foundation, which includes a shear layer connected to upper and lower springs. 

By deriving the equations of motion using the principle of virtual work, we establish a comprehensive framework for analyzing the 

bending of the concrete plate. To solve the equilibrium equations for a simply supported concrete plate, we present Navier's analytical 

solutions. Our investigation considers various influential parameters, such as the concentration of Fe2O3 nanoparticles in the concrete 

matrix, the elastic constants of the soil medium, different types of bending loads, and size-dependent nonlocal parameters. One of 

the most captivating findings of this study is that the incorporation of 30 wt% of iron nanoparticles in concrete leads to a remarkable 

improvement of 60% in the elastic properties of the material. Additionally, this same amount of iron nanoparticles has shown the 

potential to reduce the deflection of thin plates by over 60%.
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1 Introduction
In recent years, the application of various types of 
nano-reinforcements in concrete mixtures has emerged 
as a compelling topic, capturing the interest of numer-
ous researchers and motivating them to develop advanced 
concrete with distinctive physical and chemical proper-
ties. Traditional materials like silica fume (Micro silica) 
and fly ash are being substituted with nano-sized compo-
nents to fulfill specific mechanical requirements. Through 
the incorporation of carefully determined proportions of 
specific nanoparticles such as iron (Fe2O3), silica (SiO2), 
titanium (TiO2), nano-clays (NCs), and aluminum (Al2O3) 

as reinforcements in a concrete matrix, the material's 
properties and performance can be enhanced in terms of 
strength, durability, and resistance to cracking, [1, 2].

For instance, Priyadarshana and Dissanayake [3] con-
ducted an experimental investigation to compare the effect 
of nano-silica (nano-SiO2), micro-silica (micro-SiO2) and 
fly ash on the chemical resistance of concretes. They con-
cluded that adding optimum proportions of combined 
nano and micro-silica can moderate the chemical resis-
tance of the concrete, becoming therefore more resistant 
to the attacks of sulphatic environment. Furthermore, 
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additional research has addressed the mechanical and ther-
mal implications of employing SiO2 as reinforcements in 
concrete. In this respect, Mondal et al. [4], Rong et al. [5], 
Behzadian and Shahrajabian [6], Bidgoli and Saeidifar [7], 
have all deduced that adding nano-SiO2 to concrete matri-
ces resulted in improved compressive, tensile, flexural, 
and thermal resistance properties of the concrete. Besides, 
due to their nano scaled size in the range of 1–500 nm, 
nano-silica, have consequently produced shorter setting 
time and water permeability, allowing the concrete matrix 
to acquire a dense structure that leads to a strong resis-
tance to chemical attacks. Therefore, nano-silica rein-
forcements can constitute parts of many concrete struc-
tures that we observe today. Recently, Harrat et al. [8] 
and Chatbi et al. [9] have investigated the analytical static 
behaviour of concrete beams and plates impregnated 
with silicon dioxide (SiO2) nanoparticles by taking into 
account the agglomeration effect of nano-silica. Their 
studies revealed that incorporating SiO2 nanoparticles in 
concrete leads to enhanced mechanical strength, result-
ing in reduced bending deflections. In the dynamic aspect, 
Jassas et al. [10] examined the forced vibration of con-
crete slabs reinforced with agglomerated SiO2 nanoparti-
cles using numerical methods. They employed the Mori-
Tanaka model to determine the material properties of the 
nano-composite structure and account for agglomeration 
effects. Their findings indicate that increasing the volume 
percentage of SiO2 nanoparticles up to 0.37 results in an 
increased linear frequency of the structure and a decreased 
maximum dynamic deflection. Furthermore, Rashmi and 
Padmapriya [11] have scrutinized the structural behaviour 
of a reinforced concrete beam that has been strengthened 
using nano silica of various proportions (1%, 2%, 3%, 
4%, and 5%) along with other larger proportions of man-
ufactured sand (25%,40%, 50%,75%, and 100%). In this 
respect, they figured out that the use of nano silica and 
manufactured sand in the beam specimen upsurge the 
flexural ultimate load, and eventually, enhance the flex-
ural property of the concrete.

Other types of nanoparticles reinforcements are used 
in cement manufacturing, mortars and concrete mixtures. 
For instance, Nazari et al. [12] studied strength assess-
ments and coefficient of water absorption of a high per-
formance self-compacting concrete that contains different 
proportions of ZrO2 nanoparticles. Likewise, Aly et al. [13] 
have launched a laboratory study of the properties of 
nano clay and waste-glass powder (NC/WGP) cement 
composites. The microstructure ASR, fracture energy, 

compressive and flexural properties of cement mor-
tars containing WGP as a cement replacement with and 
without NC were investigated and compared with a pure 
cement matrix. The results of their investigation showed 
that the incorporation of glass powder has a strengthen-
ing effect on the mechanical properties of cement mortars 
after 28 days of hydration. The results have also revealed 
that the mechanical properties of the cement mortars with 
a hybrid combination of glass powder and NC were all 
better than those of a plain mortar after 28 days of hydra-
tion. Moreover, the photo catalytic activities of TiO2 dip-
coated self-compacting glass mortars (SCGMs) in terms 
of air pollutant removal were investigated and compared 
by Guo et al. [14]. In addition, the weathering resistance 
of TiO2-coated cement mortars was evaluated. The results 
of their work suggest that the TiO2 retained in the poros-
ity of the dip-coated SCGM can still contribute to the 
elastic properties of the nano composite. Feng et al. [15] 
have tested the flexural strength of the prepared cement-
based composites. Consequently, the flexural strength of 
the nano modified TiO2 Portland cement paste reached the 
highest value with a dosage of 1.0 mass %. More impor-
tantly, the SEM observation shows that admixing the TiO2 
nano particles has largely decreased the quantity of inter-
nal micro cracks in the cement paste. By means of making 
many experiments, Joshaghani et al. [16] studied and com-
pared the effects of different incorporated nanoparticles, 
namely nano-Al2O3 and nano-TiO2, on the performance 
of self-consolidating concrete (SCC) in terms of fresh, 
mechanical, and durability properties. Subsequently, the 
findings of their experiments demonstrated that the work-
ability of the mixture have improved slightly with the addi-
tion of 3% only of nanoparticles, while increasing the value 
to 5% tend to minimize its workability. In fact, the incor-
poration of nanoparticles into the mixture tends to increase 
water demand as the nanoparticle content increases, result-
ing therefore in a reduced workability. Amoli et al. [17] 
investigated the nonlinear dynamic response of a concrete 
plate retrofitted with aluminum oxide (Al2O3) under both 
seismic load and magnetic field conditions. The study uti-
lized analytical modeling employing Mori-Tanaka's model 
to determine the composite material properties while con-
sidering the agglomeration effect of Al2O3 nanoparticles. 
Their results indicated that with an increasing volume per-
centage of nanoparticles, the dynamic deflection decreases.

In particular, Ferric oxide (Fe2O3) is often used as 
a replacement of cement in a concrete matrix in order 
to increase the strength and reduce the shrinkage of the 
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concrete over time. This is because ferric oxide is able to 
form a dense nano structure within the concrete matrix, 
which helps to improve the strength and durability proper-
ties of the concrete. Hence, ferric oxide helps to improve 
the chemical resistance of the concrete and reduce per-
meability; making it more resistant to corrosion, 
Nazari et al. [18]. Experimentally speaking, it is worth 
noting that few researches have investigated the effect 
of ferric oxide (Fe2O3) on concrete properties. For exam-
ple, Nazari et al. [19] dissected the effects of incorporat-
ing Fe2O3 nanoparticles on tensile and flexural strength of 
the concrete. On the other hand, Salemi et al. [20], have 
conducted various experiments to study the effect of iron 
nanoparticles on frost durability of concretes. Moreover, 
Nouri [21] investigated the stability of concrete pipes 
mixed with nanoparticles conveying fluid. Instead of 
cement, the Fe2O3 nanoparticles are rather used in the con-
struction of the concrete pipes. In the prospect, it was con-
cluded in light of those studies that the partial replace-
ment of cement with nano phase Fe2O3 particles is likely 
to improves the split tensile and flexural strength of the 
concrete, but it tends to decrease its setting time. As far as 
analytical analyses of the concrete structures reinforced 
with iron nanoparticles are concerned, a wide range of 
knowledge gap was found in the literature despite the 
great attraction and the advantages that can be brought by 
modelling nano-composites regarding the extravagancy of 
manufacturing those types of materials. 

Furthermore, the mechanical analyses of reinforced con-
crete structures like plates can be established by using shear 
deformation plate theories. The non-local elasticity theory 
was firstly proposed by Eringen [22, 23]. The theory was sub-
sequently developed by several researchers as a response to 
the inability of local elasticity so that to handle elastic prob-
lems with sharp geometrical singularities. For further read-
ing, a synopsis of different non-local models can be found 
in Bažant and Jirásek [24]. Unlike its classical counterparts, 
the non-local theories contain internal material length scale 
parameters that can capture size effects at the nano scale 
Peddieson et al. [25], Sudak [26] and Amara et al. [27].

In view of the great practical importance of advanced 
composite materials, researchers like Bouiadjra et al. [28], 
Bessaim et al. [29], Yahia et al. [30], Attia et al. [31], 
have all presented various plate theories to investi-
gate mechanical behaviors namely bending, buckling 
and vibration of functionally graded (FGM's) struc-
tures. Additionally, Mantari [32] presented a closed-form 

solution of a generalized hybrid type quasi-3D high 
order shear deformation theory for the mechanical bend-
ing analysis of shells made of functionally graded mate-
rial. Tounsi and his colleagues; Meziane et al. [33], and 
Beldjelili et al. [34], have developed a new refined and 
robust plate theory to analyze the free vibration of FGM 
as they proposed new refined plate theory with only four 
variables. Sayyad et al. [35] investigated the flexure of 
cross-ply laminated plates using an equivalent single layer 
trigonometric shear deformation theory while varying 
the mechanical bending loads. Mahjoobi and Bidgoli [36] 
proposes a mathematical model to analyze the dynamic 
response of a sandwich concrete plates attached with 
nano-fiber reinforced polymer (NFRP) layers, and sub-
jected to blast loads. It considers the effects of parame-
ters such as blast load, soil foundation, structural damp-
ing, and the volume fraction of carbon nano-fibers on the 
dynamic deflection of the structure. Results indicate that 
the NFRP layer improves the resistance of the concrete 
foundation against blast loads. Shahsavari et al. [37], 
on the other hand studied the free vibration of porous 
FG plates resting on Winkler/Pasternak/Kerr foundation 
using a novel Quasi-3D hyperbolic theory.

In this investigation, we aim to examine several vari-
ables influencing the bending performance of concrete 
slabs. These variables included the quantity of ferric oxide 
nanometric entities used as reinforcements, the geometric 
parameters of the plate, the effects of the surrounding soil 
medium, and the non-local parameters, focusing on iden-
tifying the optimal conditions for integrating these rein-
forcements into concrete matrices. By doing so, we aimed 
to unleash their full potential in improving the mechanical 
properties of the resulting composite material. To accom-
plish this, we adopt Eshelby's homogenization approach, 
which enables the determination of the elastic properties 
of the nano composites. Furthermore, we employ non-local 
Quasi-3D shear deformation theory to model the structure. 
Throughout our analysis, the concrete slab is subjected to 
various bending load patterns, with its support assumed to 
rest on the elastic foundation of Winkler-Pasternak-Kerr 
model. The primary objective of this study is to address 
the pressing issue of industrial iron waste, a notorious 
environmental pollutant, by exploring its potential utili-
zation in concrete mixtures. Through recycling and inte-
grating these waste materials into concrete formulations, 
we aim to assess and highlight their efficacy in enhancing 
the mechanical strength of the resultant concrete material.
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2 Theory and formulations
In this section, analytical formulations are presented to 
simulate concrete plates impregnated with ferric oxide 
Fe2O3 nanoparticles, based on the kinematical and phys-
ical assumptions. Simply supported reinforced concrete 
plates are considered in this investigation, with dimen-
sions: length a, width b and total thickness h.

The incorporated Fe2O3 nanoparticles are assumed to 
be randomly placed in the concrete matrix as illustrated in 
Fig. 1. The named coordinate system (x, y, z) is also shown 
in Fig. 1 at which Eq. (1): 

0 0 2 2� � � � � � �x a y b h z h; ; . (1)

2.1 Refined plate theory
In this analysis, we have incorporated various shear 
deformation theories for the purpose of comparison. 
Alongside the non-local quasi-3D shear deformation the-
ory, we have also utilized the refined higher order defor-
mation theory (RPT) proposed by Thai and Choi [38]. 
This comprehensive approach enables us to evaluate and 
compare the outcomes obtained from different theoretical 
perspectives. The RPT displacement field for a material 
point positioned at coordinates (x, y, z) within the plate 
can be expressed as follows in Eq. (2): 
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u1, u2, and u3 are displacements within the x, y, z direc-
tions, u0 and v0 are displacements in mid-plane, wb and ws 
are the bending and shear components of the transverse 
displacement along z direction respectively. The f(z) rep-
resents a shape function describing the distribution of the 
transverse shear strains and stresses along the thickness of 
the concrete slab [39] in Eq. (3).

f z z z
h

� � � �
�

�
�

�

�
�

1

4

5

3

2

3
 (3)

The displacement field of the classical plate theory 
(CLPT) can be obtained easily by considering f(z) = 0. 
The displacement of the first order shear deformation plate 
theory (FSDPT) can be obtained also by setting f(z) = z.

2.2 Refined Quasi-3D deformation plate theory
In the current formulation of the refined quasi-3D shear 
deformation plate theory, the displacement field is obtained 
on the basis of the following assumptions:

• The total transverse displacement u3 in z direction 
is divided into 03 components, bending ( wb ), shear 
( ws ), and thickness stretching effect ( wst ). In this 
respect, the bending and shear components are func-
tions of coordinates x and y only, and the stretching 
part is the functions x, y and z.

• The in-plane displacements (u1 and u2) in the coordi-
nates x and y are considered to be divided into exten-
sion, bending and shear parts. It is shown that the 
in-plane displacements are functions of x, y and z in 
which the bending parts are alike to those presented 
by CPT, and shear parts of that are in relation with 
the hyperbolic variations of shear strains across the 
slab thickness.

Based on the above assumptions, the applicable dis-
placement field can be defined as following in Eq. (4) [40]: 
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At this point, u0 and v0 signify the displacement func-
tions of the mid surfaces of the plate. The f(z) is the shape 
function that expresses the distribution of transverse shear 
stress across the plate thickness. In addition, the thickness 
stretching term can be expressed as Eq. (5):

w x y g z w x yst z, ,� � � � � � �  (5)

where Eq. (6):
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Fe2O3-reinforced concrete
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The linear strains associated with the Quasi-3D dis-
placement equations can be denoted by Eq. (7):
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in which Eq. (8): 
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2.3 Non-local elasticity theory
By taking into account the inter-molecular attractions of 
the composite material, the theory of non-local that con-
siders the scale effect proposed by Eringen [22] indicates 
that the stresses at the reference point x in the material 
body depend not only on the deformations at x, but also on 
the deformations at all points of the body. Therefore, the 
constitutive stress-strain relations based of the non-local 
theory of the nano-composite can be defined as Eq. (9):
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At this juncture, CT
ij tensor denotes the stiffness ten-

sor of the reinforced concrete while μ = (e0a)2 is the non- 
local parameter, which depends on the appropriate mate-
rial constant e0 , whereas a represents the internal char-
acteristic length. The term ∇2 is the Laplace operator in 
(x, y) dimensional Cartesian coordinates. This latter term 
is expressed as Eq. (10):

� � �2

2

2

2

2

d
dx

d
dy

.  (10)

2.4 Homogenisation procedures
In order to assess the elastic properties of concrete rein-
forced with ferric oxide (Fe2O3), the application of 
Eshelby's homogenization model [41] appears to be more 
suitable. This model, primarily used for ellipsoidal inclu-
sions in an infinite matrix [42], allows for the determina-
tion of equivalent properties of the plate. In the present 
study, the iron nanoparticles are assumed to be randomly 
distributed and possess a spherical shape. The stiffness 
tensor CT for the reinforced plate can be expressed in 
matrix form as follows in Eq. (11):
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In which, I is the identity matrix. Cm and Cr are the stiff-
ness tensors for the concrete and ferric oxide (Fe2O3) rein-
forcements respectively. Vm and Vr are the volume frac-
tion of the matrix and the reinforcement, while S is the 
Eshelby's tensor, which is in conjunction with the Poisson 
ratios of nanoparticles. 

The stiffness tensors of iron nanoparticles Cr and of the 
concrete matrix Cm , which are considered isotropic, are 
expressed as Eq. (12):
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Herein, E denotes the young's modulus either of the 
concrete matrix (α = m), or the ferric oxide nanoparti-
cle reinforcement (α = r). The υ is the Poisson's ratio. 
The used indexes (1, 2, 3) stands for (x, y, z) directions of 
the Cartesian co-ordinate system of the plate respectively.

Eshelby's tensor S for reinforcement with spherical 
form, is given as Eq. (13):
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where Eq. (14): 
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The υr denotes here the Poisson's ratio of iron nanopar-
ticles reinforcements.

2.5 Equations of motion
Next, the principle of the virtual work is applied in order 
to provide the equations of motion of the plate in Eq. (15): 
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where δUp and δUf signify the virtual variation of the 
internal strain energy of the plate and the elastic founda-
tion respectively. The δV is the virtual work that is done by 
external bending loads.

The expression of the virtual strain energy done by the 
plate is depicted as follows in Eq. (16):
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By substituting strain expression Eq. (7) in Eq. (16), one 
finds Eq. (17):
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Where the stress resultants generated by the internal 
strain energy can be defined as Eq. (18):
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By substituting Eq. (9) into Eq. (18), one can obtain 
the stress resultants in the form of material stiffness 
and displacement components ( u0 , v0 , wb , ws , wz ) in 
Eqs. (19)–(23):

Q
Q

A

w
y

w
y

w
x

w
x

yz

xz
sij

s z

s z

�
�
�

�
�
�
� �� ��

�
�

�
�
�

�
�

�
�
�

�

�
��

�
�
�

�

�
��

�
�
�

 (19)

N
N
N

A

du
dx
dv
dy

du
dy

dv
dx

x

y

xy

ij

�

�
�

�
�

�

�
�

�
�
� �� ��

�

�

�

�
�
�

�

�
�
�

�

�

�0

0

0 0

��
�

�

�
�
�

� �� ��

�

�

�

�
�
��

�

�
�
�
�

�

�

�
�
��

�

�
B

d w
dx
d w
dy
d w
dxdy

ij

b

b

b

2

2

2

2

2

2
��
�
�

� �� ��

�

�

�

�
�
��

�

�
�
�
�

�

�

�
�
��

�

�
�
�

B

d w
dx
d w
dy
d w
dxdy

sij

s

s

s

2

2

2

2

2

2
��

�
�

�
�

�
�

�

�
�

�
�

P w
P w

z

z

13

23

0

;

 (20)

M
M
M

B

du
dx
dv
dy

du
dy

dv
dx

x
b

y
b

xy
b

ij

�

�
�

�
�

�

�
�

�
�
� �� ��

�

�

�

�
�
�

�

�
�
�

0

0

0 0

��

�

�
�
�

�

�
�
�

� �� ��

�

�

�

�
�
��

�

�
�
�
�

�

�

�
�
�

D

d w
dx
d w
dy
d w
dxdy

ij

b

b

b

2

2

2

2

2

2

��

�

�
�
�
�

� �� ��

�

�

�

�
�
��

�

�
�
�
�

�

�

�
�
��

�

D

d w
dx
d w
dy
d w
dxdy

sij

s

s

s

2

2

2

2

2

2

��
�
�
�

�
�

�
�

�
�

�

�
�

�
�

S w
S w

z

z

13

23

0

;

 (21)



848|Kecir et al.
Period. Polytech. Civ. Eng., 68(3), pp. 842–858, 2024

M
M
M

B

du
dx
dv
dy

du
dy

dv
dx

x
s

y
s

xy
s

sij

�

�
�

�
�

�

�
�

�
�
� �� ��

�

�

�

�
�
�

�

�
�

0

0

0 0��

�

�

�
�
�

�

�
�
�

� �� ��

�

�

�

�
�
��

�

�
�
�
�

�

�

�

D

d w
dx
d w
dy
d w
dxdy

sij

b

b

b

2

2

2

2

2

2

��
��

�

�
�
�
�

� �� ��

�

�

�

�
�
��

�

�
�
�
�

�

�

�
�
�

H

d w
dx
d w
dy
d w
dxdy

sij

s

s

s

2

2

2

2

2

2

��

�

�
�
�
�

�
�

�
�

�
�

�

�
�

�
�

Ss w
Ss w

z

z

13

23

0

;

 (22)

R P

du
dx
dv
dy

du
dy

dv
dx

S

d

z ij ij� �� ��

�

�

�

�
�
�

�

�
�
�

�

�

�
�
�

�

�
�
�

� �� ��

0

0

0 0

22

2

2

2

2

2

2

w
dx
d w
dy
d w
dxdy

S

d w

b

b

b

sij

�

�

�

�
�
��

�

�
�
�
�

�

�

�
�
��

�

�
�
�
�

� �� ��

ss

s

s

z

dx
d w
dy
d w
dxdy

L w

2

2

2

2

33

2�

�

�

�
�
��

�

�
�
�
�

�

�

�
�
��

�

�
�
�
�

�

 (23)

where Eq. (24): 
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The strain energy generated by Winkler/Pasternak/
Kerr elastic foundation can be expressed as Eq. (25):
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In which the subscripts are denoting the type of elas-
tic foundations. By substituting the expression of the dis-
tributed loads of each elastic foundation in Eq. (25), the 
expression of the virtual strain energy becomes Eq. (26):
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Where Kw and Kp are the transverse and shear stiffness 
coefficients of the Winkler-Pasternak foundation respec-
tively. The Kerr model foundation contains three parame-
ters counting a shear layer with stiffness Ks , independent 
upper and lower elastic layers modelled by distributed 
springs with the stiffness Kl and Ku respectively.

As for the reinforced concrete plates subjected to trans-
verse bending loads q, the virtual work can be described 
as follows in Eq. (27):

� � � �V q w w g z w dAb s z
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� � � � � �� ��  (27)

by substituting the internal and the external strain ener-
gies expressed in Eqs. (17), (26) and (27) into Eq. (15), 
then, integrating by parts and collecting the coefficients of 
δu0 , δv0 , δwb , δws , δwz , the following equations of motion 
are obtained in Eq. (28):
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2.6 Navier's analytical solutions
Consider a simply supported rectangular concrete plate 
Fig. 2 with length a, width b and total thickness h under 
the transverse bending loads.

Based on Navier's solution approach, the admissible 
displacement functions in the form of trigonometric series 
which satisfy the boundary condition of the problems are 
illustrated below in Eq. (29):



Kecir et al.
Period. Polytech. Civ. Eng., 68(3), pp. 842–858, 2024|849

u x t U x x

v x t V x x

mn
n

mn
n

0

1

0

, cos sin ;

, sin cos

� � � � � � �

� � � � � � �

�

�

�

� � �

� �
11

1

�

�

�

�

�� � � � � � �

� � � � �

;

, sin sin ;

, sin si

w x t W x x

w x t W x

b bmn
n

s smn

� �

� nn ;

, sin sin ;

�

� �

x

w x t W x x

n

z zmn
n

� �

� � � � � � �

�

�

�

�

�

�
1

1

 (29)

with α = mπ/a, β = nπ/b, ( Umn , Vmn , Wbmn , Wsmn , Wzmn ) are 
the arbitrary parameters to be determined.

The proposed Navier's solution can satisfy the bound-
ary conditions for a simply supported concrete plate 
in Eq. (30):
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The transverse bending load q can be also expanded in 
the Double-Fourier's sine series as Eq. (31):
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where Eq. (32): 
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The closed-form solutions can be obtained from 
Eq. (33):
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where Eq. (34): 

(a) (b)

(c) (d)

Fig. 2 Nano Fe2O3-reinforced concrete slabs resting on elastic foundation (a) under sinusoidal loading; and (b) under uniformly distributed loadings; 
(c) linearly distributed loading; and (d) concentrated loading
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3 Results and discussion
To evaluate the analytical bending behaviour of simply 
supported nano-Fe2O3 reinforced rectangular concrete 
slabs, a range of simulations are presented and discussed. 
It is important to emphasize that the objective of this 
research is to identify the most effective approach for uti-
lizing iron nanoparticles in concrete matrices. Transverse 
displacements (ω̄  ), axial displacements (U), normal and 
shear stresses ( σ̄  x , τ̄  xz ) are thus calculated using the refined 
Quasi-3D shear deformation theory.

In this analysis, the Young's modulus of the concrete 
slab is set to Em = 20 GPa, the matrix is incorporated 
with ferric oxide Fe2O3 nanoparticles with Young's modu-
lus of Er = 200 GPa, and Poisson's ratios are υm = 0.3 and 
υr = 0.291 for concrete and iron nanoparticles respectively.

Dimensionless displacements and stresses engendered 
by the mechanical external loads are presented with refer-
ence to the following definitions in Eq. (35): 
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The non-dimensional coefficients of the three-parame-
ter foundations are utilized as Eq. (36):
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3.1 Validation of the mathematical plate modelling
First, it is quite important to check the accuracy of the 
present mathematical model, since there are no numerical 
results in the literature regarding the bending analysis of 
iron nanoparticles reinforced concrete slabs.

By making allowance for the similar material and geo-
metric parameters as proposed by Thai and Choi [40], and 
by eliminating the influence of iron nanoparticles and 
Winkler-Pasternak-Kerr foundation, the results of non-di-
mensional transverse displacements (w̄) as well as shear 
stresses ( τ̄xz ) of FG plates while varying the power index p 
are implemented to be compared with the present refined 
Quasi-3D theory.

The comparison of the results displayed in Table 1 
[39, 40, 43, 44], elucidate that the different theories are in 
accordance with the predicted transverse displacement (w̄) 
and shear stresses ( τ̄xz ). Nevertheless, there is a slight dif-
ference in the current theory when compared to RPT and 
TSDT theories, as this is mainly because of the 3D-Quasi 
theory being used in our analysis, and which takes into 
account the stretching effect that evolves through the plate 
thickness. However, higher order shear deformation the-
ories predict more accurate results than the first order 
(FSDT) and the classical (CPT) plate theories.

3.2 Validation of the homogenization model
Moreover, in order to validate the obtained elastic prop-
erties ( reduced elastic constants CT

ij ) of a concrete matrix 
reinforced with iron oxide ( Fe2O3 ) nanoparticles estimated 
using Eshelby's analytical approach and due to the lack 
of relevant studies dealing with similar analytical mod-
els, a comparison has been made between the elastic stiff-
ness ( CT

ij ) obtained from a concrete slab reinforced with 
iron nanoparticles (using the Eshelby's homogenization 
model), and the elastic stiffness ( CT

ij ) obtained from a con-
crete slab reinforced with silica nanoparticles obtained 
by Chatbi et al. [9], using Voigt's homogenization model; 
without taking into account the agglomeration effects of 
SiO2 nanoparticles in the matrix.

By way of explanation, Fig. 3 illustrates that both 
reinforcements ( Fe2O3 and SiO2 ) improved the elastic 
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properties of the concrete, as it is also observed that the 
reduced elastic stiffness ( CT

ij ) of the concrete slab grows 
up with an increasing reinforcement concentration ( Vr ). 
Yet, it is particularly detected in Fig. 3 that the stiff-
ness of a concrete slab reinforced with iron nanoparticle 
( Fe2O3 ) is more improved than the nano scale silicon diox-
ide ( SiO2 ) reinforcement; especially in the case of ( CT

13 ) 
which represents the elastic stiffness in (x, z) plan of the 
plate. In this case, the stiffness tensor ( CT

13 ) increases by 
40% for nano-silica reinforcement and almost doubles for 
iron oxide reinforcements. This improvement is mainly 
due to the high elastic properties of the iron nanoparticles.

3.3 Bending analysis of Fe2O3 reinforced concrete slab
In order to justify the choice of using iron nanoparti-
cles in a concrete matrix as a reinforcement, the effect of 
Fe2O3 nanoparticles on the transverse displacement (w̄) 
of a concrete plate is presented and compared to those of 
a concrete plate reinforced with SiO2 silica nanoparticles 
(Fig. 4). The plate is simulated using the refined Quasi-3D 

plate theory, while being considered as a simply supported 
and subjected to single-sine distributed loads. 

As shown in Fig. 4, the non-dimensional transverse dis-
placements (w̄) are presented as a function of reinforce-
ment volumes ( Vr ) that vary from 0% (unreinforced slab) 
to 30%. Apparently, for thin plates (a/h = 100), both rein-
forcements have a strengthening effect on the slab as the 
lateral displacement decreases by increasing the reinforce-
ment volume in the concrete matrix. By incorporating 
30 wt% of reinforcement, the lateral displacement tends 
to decrease by 30% for nano-silica reinforcement and 45% 
for ferric oxide nano-reinforcements. 

However, the use of iron nanoparticles in the con-
crete matrix gives even more additional strength to the 
slab and makes it increasingly resistant to the external 
mechanical load.

Table 2 discloses the effect of thickness-to-length ratio 
on the non-dimensional transverse displacement, normal 
and shear stresses ( σ̄  x , τ̄  xz ) of a simply supported reinforced 
concrete slab (Vr = 20%) subjected to sinusoidal loading.

Table 1 Comparison of the current plate theory to other published theories, (a/h = 10, a = b)

Theories Shape function
p = 0 p = 0.5 p = 1 p = 5

w̄ τ̄  xz w̄ τ̄  xz w̄ τ̄  xz w̄ τ̄  xz

Quasi-3D deformation theory: Thai and Choi [40] f z z z
h

� � � �
�

�
�

�

�
�1

4

3

2

2
0.294 0.239 0.229 0.237 0.177 0.234 0.021 0.141

Refined plate theory (RPT): Thai and Choi [40] f z z z
h

� � � �
�

�
�

�

�
�

1

4

5

3

2

2 0.296 0.239 0.231 0.237 0.181 0.234 0.025 0.141

Trigonometric shear deformation theory (TSDT): 
Reddy [39]

f z z z
h

� � � �
�

�
�

�

�
�1

4

3

2

2 0.296 0.239 0.231 0.237 0.181 0.234 0.025 0.141

First order shear deformation theory (FSDT): Whitney [43]* f(z) = z 0.245 0.191 0.191 0.189 0.149 0.183 0.020 0.079

Classical plate theory (CPT): Kirchhoff [44] f(z) = 0 0.280 – 0.219 – 0.171 – 0.024 –
* The shear correction factor for the FSDT is set to 5/6

Fig. 3 A comparison between the obtained reduced elastic constants CT
ij 

of nano-iron and nano-silica reinforced slabs
Fig. 4 A comparison between the effect of the using reinforcement 

nanoparticles on the transverse deflection of concrete slab (a/h = 100)
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Table 2 Effect of thickness to length ration on the transvers displacement, normal and shear stress of a simply supported square plate subjected to 
sinusoidal load (Vr = 20%)

Theories Shape function
L/h = 5 L/h = 10 L/h = 40

w̄ σ̄x τ̄  xz w̄ σ̄x τ̄  xz w̄ σ̄x τ̄  xz

Quasi-3D deformation theory:  
Thai and Choi [40]

f z z z
h

� � � �
�

�
�

�

�
�1

4

3

2

2
0.1515 0.1384 0.1384 0.1511 0.1194 0.1515 0.1384 0.1384 0.1511

Refined plate theory (RPT):  
Thai and Choi [40]

f z z z
h

� � � �
�

�
�

�

�
�

1

4

5

3

2

2 0.1410 0.1573 0.1573 0.1532 0.1532 0.1410 0.1573 0.1573 0.1532

Trigonometric shear deformation theory 
(TSDT): Reddy [39]

f z z z
h

� � � �
�

�
�

�

�
�1

4

3

2

2 1.6963 1.5471 1.5471 1.9072 1.5072 1.6963 1.5471 1.5471 1.9072

First order shear deformation theory 
(FSDT): Whitney [43]* f(z) = z 0.1400 0.1241 0.1241 0.1273 0.1194 0.1400 0.1241 0.1241 0.1273

Classical plate theory (CPT): 
Kirchhoff [44] f(z) = 0 0.1343 0.1543 0.1543 0.1532 0.1532 0.1343 0.1543 0.1543 0.1532

* The shear correction factor for the FSDT is set to 5/6

Table 3 The effect of the iron nanoparticles concentration Vr on the 
transverse deflection

a/h
Iron nano-particles volume Vr

0 wt% 5 wt% 10 wt% 15 wt% 20 wt% 30 wt%

4 0.2476 0.2207 0.1976 0.1775 0.1599 0.1305

10 0.2142 0.1917 0.1722 0.1551 0.1400 0.1305

20 0.2092 0.1874 0.1684 0.1518 0.1371 0.1123

40 0.2080 0.1863 0.1675 0.1510 0.1364 0.1117

70 0.2077 0.1861 0.1673 0.1508 0.1362 0.1116

100 0.2077 0.1860 0.1672 0.1507 0.1362 0.1116

The results related to the present refined Quasi-3D ana-
lytical are exhibited and thus compared with those esti-
mated by the refined plate theory (RPT), the trigonomet-
ric plate theory (TPT), the first-order deformation theory 
(FSDT), and the classical plate theory (CPT). It is quite 
clear from the results listed in Table 2, that the trigonomet-
ric plate theory (TPT) is in a complete agreement with the 
refined theory of Thai and Choi [38], simply for the reason 
that both theories are HSDT's.

The remarkable difference between these two theories 
and the results of the present refined Quasi-3D theory is 
mainly due to the fact that the present theory takes into 
account the effect of the stretch that evolves through the 
plate thickness, making it therefore more accurate when 
compared to the other theories. However, the results 
obtained using CPT are rather less accurate.

Table 3 shows the effect of Fe2O3 reinforcement concen-
trations ( Vr ) in the concrete matrix on the non-dimensional 
lateral displacement (w̄) of nanocomposite plate using 
the refined Quasi-3D plate theory. Several geometrical 

rations' (a/h) of a square plate (a/b) subjected to sinusoidal 
loads are considered. It can be inferred from the results in 
Table 3 that the lateral displacement decreases as the rein-
forcement volume in the concrete matrix increases with 
regard to the length-to-thickness ratio (a/h).

The effect of dissimilar external bending loads on the 
transverse displacement (w̄) of a concrete plate reinforced 
with iron nanoparticles ( Fe2O3 ) is represented in Fig. 5. 
The plate is simulated with the refined quasi-3D theory, 
whereas the displacements are calculated along the entire 
length of the plate (x/a). It is deduced from the results 
that the nanoparticles incorporated in the concrete matrix 
have a reinforcing effect regardless of the external applied 
mechanical load. Among the examined loads, the uniform 
load is the most critical one on the transverse displace-
ment, while the concentrated load has the least effect on 
the plate. It is also worth noting that the maximum trans-
verse displacement occurs at the mid-span of the plate for 
all types of loading.

The axial displacements (U) of nano-iron Fe2O3 rein-
forced concrete plate is illustrated in Fig. 6 in which sev-
eral load patterns are considered. In this regard, we can 
observe that the axial displacements are symmetrical and 
they have the value 0 at the median plane (z = 0). This is 
mainly due to the accomplished homogeneity between the 
reinforcements and the matrix in the slabs using Eshelby's 
homogenisation approach besides the distribution assump-
tions of iron nanoparticles into the concrete matrix. We can 
also notice the difference between Fig. 6 (a) and Fig. 6 (b), 
in which the concentration of nano-iron plays a reinforc-
ing role to reduce the axial displacements. 
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By the application of different external bending loads 
on a nano-iron reinforced concrete plate, the non-dimen-
sional shear stress ( τ̄  xz ) of a simply supported square plate 

(a/b = 1) is significantly presented in Fig. 7. As it has been 
observed before, the uniformly distributed load has the 
major effect on the shear stress of the reinforced plate, due 

(a) (b)

Fig. 5 The dimensionless transverse displacement of a RC slab under various types of loading, (a/h = 4): (a) Vr = 5 wt%; (b) Vr = 30 wt%

(a) (b)

Fig. 6 The dimensionless axial displacement of a RC slab under various types of loading, (a/h = 4): (a) Vr = 5 wt%; (b) Vr = 30 wt%

(a) (b)

Fig. 7 The dimensionless shear stress of a RC slab under various types of loading, (a/h = 4): (a) Vr = 5 wt%; (b) Vr = 30 wt%
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to the homogeneity of the nano composite plate in which 
we can see the symmetrical shape of stress distribution 
across the  plate thickness (z/h). The symmetry is with 
respect to the mid-plane (z = 0), and it is where the stresses 
get their maximum values for all the loading cases.

3.4 Effect of Winkler/Pasternak elastic foundation 
on bending of Fe2O3 RC slabs
In order to widen the scope of this study, we will fur-
ther assume that the ferric oxide ( Fe2O3 ) reinforced con-
crete slab rests on an elastic foundation by introducing the 
elastic parameters. Fig. 8 embodies a concrete slab rein-
forced with Fe2O3 nanoparticles on a Winkler-Pasternak 
elastic foundation. This type of elastic foundation con-
tains a shear layer of stiffness constant kw , and a linked 
Pasternak springs of stiffness kp .

Fig. 9 shows the effect of spring constant factors kw and 
kp on the transverse shear stress ( τ̄  xz ) of a square plate rest-
ing on Winkler-Pasternak's elastic foundation subjected 
to a sinusoidal bending loading. It can be detected that 
increasing the parameters of the elastic foundation leads 
to the decrease of the shear stress. One can also deduce 
that the maximum value emerges at the median plane 
of the plate and this is due to of the homogeneity of the 
nano-composite plate.

Fig. 9 shows the effect of spring constant factors kw and 
kp on the transverse shear stress ( τ̄  xz ) of a square plate rest-
ing on Winkler-Pasternak's elastic foundation subjected 
to a sinusoidal bending loading. It can be detected that 

increasing the parameters of the elastic foundation leads 
to the decrease of the shear stress. One can also deduce 
that the maximum value emerges at the median plane 
of the plate and this is due to of the homogeneity of the 
nano-composite plate.

As far as Fig. 10 is concerned, the refined Quasi-3D plate 
theory has been used in order to determine the effects of the 
shear layer constant kp of Winkler-Pasternak's elastic founda-
tion on the non-dimensional shear stress of ferric oxide rein-
forced concrete plate across the thickness of the plate (z/h).

It is thus obvious that the shear layer of Pasternak has 
a major effect on the non-dimensional shear stress of the 
plate, because the shear stress decreases as whilst the shear 
layer constant ks increases and this is noticeable along the 
entire thickness of the plate. It should be also noted that 
the effect of Pasternak's shear layer is rather more signifi-
cant inside the plate.

(a)

(b)

Fig. 8 A concrete slab reinforced with iron nanoparticles resting of 
elastic foundation (Winkler-Pasternak's type)

Fig. 9 The effect of the elastic foundation (Winkler-Pasternak model) 
on the shear stress of a reinforced concrete slab, (a/h = 30, Vr = 30%)

Fig. 10 The effect of the Pasternak's shear layer constant ks on the shear 
stress of a reinforced concrete plate, (a/h = 4, Vr = 30%, kl = 0)
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3.5 Effect of Kerr elastic foundation on bending of 
Fe2O3 RC slabs
A simply supported square (a/b = 1) concrete plate on the 
top of Kerr's elastic foundation is illustrated in Fig. 11.

In order to analyze the effect of Kerr's elastic founda-
tion on the dimensionless transverse displacement and 
the shear stresses of the nano composite plate, the refined 
Quasi-3D shear deformation theory is adopted, since this 
theory takes into account the stretching effect and the 
shear stress that evolve all over the slab thickness. 

The results are hence presented in Table 4, as it worth 
pointing out that in order to reduce the computation rate, 
the Kerr's foundation's lower spring stiffness ( kl ) is set to 
a constant value (kl = 10).

It can be inferred from Table 4 that the shear layer ks 
and the upper spring parameters ku have a sliding effect on 
the dimensionless transverse displacement (w̄) as well as 
on the transverse shear stress ( τ̄  xz ). In fact, the shear layer 
parameter ( ks ) seems to be more effective than the upper 

spring constant, with respect to the ferric oxide ( Fe2O3 ) 
concentration exponent ( Vr ). It can be also deduced from 
Table 2 that the presence of an elastic Kerr foundation sig-
nificantly affects the static response of the RC slab, caus-
ing therefore the deflection to decrease along increase of 
stiffness components.

3.6 Non-local bending analysis of Fe2O3 reinforced 
nano-slabs
Fig. 12 shows the effect of the non-local parameter (μ) on 
the non-dimensional deflection (w̄) of a simply supported 
nano-iron reinforced concrete nano plate. The nano-sized 
plate is deemed to be subjected to a sinusoidal distributed 
bending load. The calculated values using the non-lo-
cal refined Quasi-3D plate theory are compared to those 
estimated by other plate theories. In this respect, a wide 
range of non-local parameters (μ) are used, while the rein-
forcement volume concentration ( Vr ) is set to 15% and the 
length/depth ratio (a/h = 10).

Fig. 11 A concrete slab reinforced with iron nanoparticles resting of Kerr's elastic foundation

Table 4 The non-dimensional transverse deflection and shear stresses of a S-S iron nanoparticles RC slab resting on Kerr elastic foundation (kl = 10, a = b)

a/h ( ku ; ks )
w̄ (×10)

Vr = 5% Vr = 15% Vr = 30% Vr = 5% Vr = 15% Vr = 30%

4

(10;0)

2.2068 1.7748 1.3047 0.2381 0.2381 0.2381

10 1.1265 0.9116 0.6739 0.2386 0.2386 0.2386

20 0.5791 0.4691 0.3471 0.2387 0.2387 0.2387

100 0.1168 0.0946 0.07 0.2387 0.2387 0.2387

4

(10;10)

1.7109 2.3321 4.2036 0.3179 0.3771 0.4847

10 0.4957 0.5507 0.6964 0.6023 0.6427 0.7496

20 0.102 0.1063 0.1154 0.5235 0.5355 0.5609

100 0.00358 0.00361 0.00366 0.4849 0.4867 0.4901

4

(10;20)

1.7542 2.0935 3.4403 0.8412 0.958 1.4213

10 0.2031 0.2115 0.2296 0.5367 0.549 0.5756

20 0.0469 0.0477 0.0495 0.5004 0.5053 0.515

100 0.00176 0.00177 0.00178 0.4812 0.4821 0.4837
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In view of Thai and Choi [38] mathematical formula-
tion of the refined plate theory (RPT), the first order shear 
deformation theory and the classical plate theory (CPT) 
while considering the effect of Eringen's non-local theory, 
it is thus observed that the refined Quasi-3D and the RPT 
theories are in agreement, except for a slight difference 
between them due to the stretching effect that is evident 
in the Quasi-3D theory. Another exception concerns the 
classical plate theory (CPT) that neglects the shear effect 
in thick plates. However, in all plate theories, increasing 
the non-local parameter leads to an increase in deflections.

At last, Table 5 represents the effect of the non-local 
parameter (μ) on the non-dimensional deflection (w̄), nor-
mal and shear stresses ( σ̄  x , τ̄  xz ), while several proportions 
of reinforcement concentrations in the concrete plate are 
taken into consideration. It should be noted that μ = 0; cor-
responds to the local plate theory. In regard of to the size 

of the plate, the iron volumes have the same strengthening 
effect on the matrix. It decreases the transverse displace-
ment making therefore the plate less bent.

4 Conclusions
An analytical model has been proposed for simulat-
ing a concrete plate reinforced with iron nanoparticles. 
To enhance the comprehension of the static behaviour of 
nano-iron reinforced concrete slabs, a refined Quasi-3D 
slab theory, accounting for the stretching effect, was metic-
ulously incorporated for analysis and achieving research 
objectives. Various types of loads were applied to the slab, 
under the assumption of it resting on an elastic Winkler-
Pasternak-Kerr foundation. Finally, Eringen's non-local 
theory was employed to precisely characterize the static 
behaviour of the slab at the nano-scale level.

The following succinctly summarizes the research 
paper's main conclusions:

• Incorporating iron nanoparticles Fe2O3 in a concrete 
matrix improves the elastic properties of the mixture.

• Fe2O3 nanoparticles makes the reinforced concrete 
plates more resilient to the external mechanical 
bending loads.

• Increasing the concentrations of iron nanoparticles in 
the matrix significantly reduces the transverse deflec-
tion of concrete plates subjected to concentrated, sin-
gle sine, uniformly, and linearly distributed loads.

• The presence of Winkler-Pasternak-Kerr elastic foun-
dations significantly reduces the transverse displace-
ment and shear stress of the reinforced concrete plate. 

• As far as the size of the plate is concerned (macro 
or nano-sized plate), the iron volumes have the same 
reinforcing effect on the matrix. It decreases the trans-
verse displacement, which makes the plate less curved.

Finally, the researchers anticipate that the findings 
from this study will provide preliminary insights into pre-
dicting the mechanical behavior and elastic properties of 
nanoparticle-reinforced concretes. This predictive capa-
bility will allow for informed assessments of the effects of 
these nanoparticles, thereby enabling researchers to antic-
ipate outcomes before conducting expensive experiments.
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Table 5 The dimensionless transverse deflection (w̄), normal stress ( σ̄x ), 
and shear stress ( τ̄  xz ) of nano-slabs reinforced with iron nanoparticles

a/h
μ = 0 μ = 0.1

w̄ σ̄x τ̄  xz w̄ σ̄x τ̄  xz

4 0.2532 0.1668 0.2460 0.2782 0.1813 0.2674

10 0.2019 0.1577 0.2461 0.2219 0.1714 0.2675

20 0.1634 0.1511 0.2461 0.1796 0.1642 0.2675

100 0.1334 0.1465 0.2461 0.1466 0.1592 0.2675

a/h
μ = 0.2 μ = 0.3

w̄ σ̄x τ̄  xz w̄ σ̄x τ̄  xz

4 0.3087 0.2012 0.2968 0.3393 0.2211 0.3262

10 0.2463 0.1902 0.2968 0.2707 0.2090 0.3262

20 0.1993 0.1823 0.2969 0.2191 0.2003 0.3263

100 0.1627 0.1766 0.2969 0.1788 0.1941 0.3263

Fig. 12 The effect of the non-local parameter on the transverse 
displacemnt of RC plates, (a/h = 10, Vr = 15%)
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