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Abstract

In this paper, the effectiveness of ensemble convolution-based deep learning models is evaluated for predicting autogenous shrinkage/

swelling of cementitious materials. Various ensemble learning techniques are employed, including Simple Average Ensemble, Snapshot 

Ensemble, and Stacked Generalization, to develop predictive models. The models are trained and evaluated using performance metrics 

such as Root Mean Squared Error, Coefficient of Determination, Overall Index of model performance, Mean Absolute Error, and 95% 

Uncertainty. The results show that the integrated stacking model (ISM) outperforms other models in terms of predictive accuracy. 

Furthermore, the SHapley Additive exPlanation (SHAP) technique was used to interpret the ISM model. The analysis reveals that the 

most influential factors affecting shrinkage predictions include time, aggregate to cement ratio (A/C), superabsorbent polymer (SAP) 

content, water to binder ratio, cement content, water to cement ratio, and silica fume content. Also, the ISM model was compared with 

models developed previously by other researchers, namely, K-Nearest Neighbors (KNN), Random Forest (RF), Gradient Boosting (GB), 

and Extreme Gradient Boosting (XGB). With the lowest RMSE and MAE values, the ISM model has exceptional accuracy, demonstrating 

its capacity to create predictions that closely resemble observed values. Additionally, it has the highest coefficient of determination 

value, demonstrating its effectiveness in explaining a sizable percentage of the data variance. The Overall Index (OI) statistic shows 

that the ISM model performs exceptionally well, indicating that it captures more of the underlying information in the data. Additionally, 

it displays lower 95% confidence intervals, demonstrating greater assurance in its forecasts.
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1 Introduction
Due to its affordability, robustness, and readily accessi-
ble local components, concrete is the most used substance 
created by human. Many different types of cementitious 
materials have been created, including self-compacting, 
lightweight, and high- or ultra-high-performance con-
crete [1]. These materials, which were carefully chosen 
based on the necessary mechanical qualities and endur-
ance needed based on their potential exposure to the envi-
ronment, can be vulnerable to many sorts of degradation, 
with cracking being one of the most harmful [2]. Many 
factors can cause cracking to develop during a structure's 
lifetime. Restrained shrinkage, which happens when 
a structural part has a tendency to shrink but is unable to 
do so because of surrounding components, is one of the 

main reasons for cracking within the first few weeks fol-
lowing casting [3, 4]. Autogenous shrinkage is the term 
employed to describe the decrease in the macroscopic vol-
ume of concrete brought on by chemical shrinkage and 
self-desiccation as a consequence of the ongoing hydration 
of cement paste in an atmosphere with stable temperature 
and humidity [5, 6]. Concrete autogenous shrinkage can 
be minimized by adding specific additives [7]. Many dif-
ferent additives can be employed, including both natural 
and synthetic ingredients [8].

For instance, certain light-weight aggregates, such as 
pumice, can aid in reducing shrinkage because of their 
porosity, which gradually releases water in the first few 
days following casting [9]. Concrete shrinkage and crack- 
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ing have been successfully reduced by the use of super-
absorbent polymers (SAP), which are polymer parti-
cles that can absorb and hold additional water during 
mixing and then release it within the first few days [10]. 
It has been demonstrated that SAP can significantly min-
imize autogenous shrinkage, drying shrinkage, and stress 
development when added to the mixture at 0.2–0.6% of 
cement mass [11, 12]. It should be noted, though, that as 
the SAP particles empty, certain further deformations 
might take place [11, 12]. In addition, the high content 
of SAP is not desirable since it can impair mechanical 
properties [13, 14]. Although the chemical structure of 
SAP varies, it has been discovered that SAP with vari-
ous absorption qualities can effectively reduce autogenous 
shrinkage [10]. SAP can help with drying, plastic shrink-
age, self-healing, and freeze-thaw resistance in addition to 
reducing autogenous shrinkage [10]. 

It is crucial to comprehend how SAP affects autogenous 
shrinkage in high-performance and ultra-high-performance 
concrete mixes that contain extra cementitious elements to 
minimize damaging cracking in contemporary concrete. 
Such complex behavior can be found and predicted using 
machine learning (ML) approaches [15]. In reality, artifi-
cial intelligence has been effectively applied in several civil 
engineering applications, including forecasting the strength, 
creep, fracture detection, and microstructural characteris-
tics of concrete. The precision and robustness of ensemble 
ML algorithms against overfitting make them an attractive 
option. Nevertheless, the majority of current ML algorithms 
for drying shrinkage modeling or autogenous shrinkage 
modeling do not take SAP into account.

In this study, a diverse range of advanced ensemble 
convolution-based deep learning algorithms are employed 
to predict concrete shrinkage effectively. Our approach 
incorporates Snapshot ensembles, Integrated Stacking 
Model (ISM), and Separate Stacking Model (SSM), each 
offering distinct advantages in handling complex pre-
diction tasks. Snapshot ensembles leverage the concept 
of training multiple models simultaneously with differ-
ent initializations, enabling us to capture a broader spec-
trum of features and enhance model robustness [16, 17]. 
ISM, on the other hand, combines predictions from mul-
tiple base learners in a unified framework, exploiting the 
complementary strengths of individual models to achieve 
superior predictive performance [16, 17]. Meanwhile, 
SSM employs a distinct approach by training and com-
bining separate models on different subsets of the dataset, 
promoting diversity and mitigating overfitting [16, 17].

This paper's main goal is to evaluate the effectiveness of 
ensemble convolution-based deep learning models for the 
autogenous shrinkage prediction in concrete composites 
and to offer a model that is more precise than the existing 
models. The manuscript includes an overview of the the-
ory and method used to create the models, a discussion 
of the findings, and an analysis of the top model candi-
date using the SHapley Additive exPlanation (SHAP) the-
ory to identify the characteristics that have the greatest 
impact on shrinkage and swelling predictions. In addition, 
the results of the best model developed in this research are 
compared with the results of recently developed models. 
The sections of this article are as follows: The data sets 
are explained in Section 2. The concept of ensemble con-
volution-based learning models is presented in Section 3. 
Discussing the findings is explained in Section 4. Finally, 
Section 5 presents the conclusions.

2 Database description
The database utilized in this study was created by 
Hilloulin and Tranand [18]. It is currently being employed 
by others as a standard for model development and com-
parison. The database including 437 autogenous shrink-
age curves was utilized to create a prediction model for 
autogenous shrinkage of concrete containing superab-
sorbent polymers and other cementitious ingredients. 
These autogenous shrinkage curves yielded more than 
1800 shrinkage data points. Table 1 shows 14 inputs and 
one out variables. The compressive strength and Young's 
modulus are purposefully omitted (as inputs) to build 
a practical model that only needs the simple inputs and 
no extra experiments are required. The shrinking/swell-
ing value at a certain age is the model's targeted value. 
Additionally, the shrinkage measurement technique, 
like inductive sensors, laser sensors, hydrostatic scales, 
and buoyancy method, among others, is not taken into 
account because some databases neglect to provide infor-
mation about the shrinkage measurement approach.

The correlation matrix of the input from a database 
focusing on autogenous shrinkage was computed. Fig. 1 
displays correlation coefficients between input variables. 
Based on the correlation matrix, a moderately strong cor-
relation was observed between the water-to-cement ratio 
and water-to-binder ratio (a correlation coefficient of 0.61). 
In addition, a correlation coefficient of −0.78 indicates 
a strong inverse relationship between the aggregate-to-ce-
ment ratio and the amount of cement used in the concrete 
mix. In other words, as the aggregate-to-cement ratio 
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increases (meaning more aggregate relative to cement), 
the amount of cement used decreases. Additionally, cor-
relations were identified between the percentages of SAP, 
the size of SAP, and the water uptake of SAP. Reasons for 
these correlations:

1. Water-cement ratio, water-binder ratio, aggre-
gate-cement ratio, and cement content correlations: 
These parameters are crucial factors in the concrete 
mix design. The water-cement ratio influences the 

workability and strength of the concrete. The water-
binder ratio also affects the workability and strength. 
The aggregate/cement ratio, as well as the absolute 
cement content, have a significant impact on the 
fundamental composition and density of concrete. 
This relationship is crucial because it controls the 
complex interactions between the various compo-
nents that make up the concrete matrix. Changes in 
these characteristics significantly impact the way 

Table 1 Modeling parameters for autogenous shrinkage of concrete

Input/output Symbol Mean Standard deviation Min. Max.

1 Water-to-cement ratios W/C 0.40 0.17 0.17 1.60

2 Water-to-binder ratios W/B 0.33 0.11 0.16 0.86

3 Aggregate-to-cement ratio A/C 2.83 2.02 0.00 11.56

4 Cement (kg/m3) Cemen 637.41 364.99 167.40 1762.00

5 Silica fume (%) Silic 4.80 8.44 0.00 50.00

6 Fly ash (%) FlyAs 5.13 14.32 0.00 100.00

7 Slag (%) Slag 8.05 36.71 0.00 400.00

8 Metakaolin (%) Metak 0.70 4.85 0.00 57.40

9 Filler (%) Fille 4.51 13.83 0.00 125.00

10 Superplasticizer (%) Super 1.39 1.98 0.00 11.82

11 SAP (%) SAP 0.06 0.16 0.00 0.92

12 SAP size (μm) SAPSi 43.01 107.15 0.00 645.00

13 SAP water uptake (%) SAPWa 4.51 10.89 0.00 61.00

14 Time (days) Time 9.06 9.40 1.00 28.00

15 Shrinkage/Swelling (μm) – −280.93 491.77 −3818.90 1166.70

Fig. 1 Correlation coefficients between input variables
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important components, such cement's binding qual-
ities and the distribution of fine and coarse aggre-
gates, work together to build the final concrete's 
performance, durability, and structural integrity. 
Correlations among these parameters suggest that 
changes in one may necessitate adjustments in others 
to maintain the desired properties and performance 
of the concrete mixture.

2. Percentage of SAP, SAP Size, and SAP water uptake 
correlations: SAP is materials added to concrete to 
improve its properties like shrinkage control. The cor-
relation between the percentage of SAP and SAP size 
could be explained by the fact that a larger SAP size 
might have a higher water-absorbing capacity, affect-
ing the overall water content in the concrete mixture. 
The correlation between the percentage of SAP and 
SAP water uptake indicates that higher SAP con-
tent could lead to more water absorption, potentially 
affecting the autogenous shrinkage behavior of the 
concrete. The interplay of these factors suggests that 
the incorporation of SAP introduces a complex inter-
action between material properties and performance 
characteristics, leading to observed correlations.

3 Ensemble model
With an emphasis on developing strong and flexible mod-
els, deep learning has grown in popularity. These mod-
els are very beneficial for tackling challenging issues like 
image recognition and predictive analytics [19]. Deep 
learning networks have a significant disadvantage despite 
the fact that they increase flexibility and scalability in pro-
portion to the amount of training data available. They are 
trained using a stochastic process, thus each time they are 
trained, they may find a different set of weights since they 
are sensitive to the details of the training data. Because 
of this, the model's predictions can differ, which is known 
as high variance in convolutional neural networks. While 
trying to develop a final model, this might be frustrating. 
Researchers have created ensemble learning techniques, 
which entail training many models and aggregating their 
predictions, to overcome this problem. When compared to 
using a single model alone, ensemble learning can even 
give outcomes that are more accurate in terms of predic-
tion variance. A more reliable prediction model is pro-
duced by combining different models, which enhances 
performance and increases stability [19]. 

When working with complex data sets, where it might 
be challenging to pinpoint the most crucial features or 

relationships, ensemble learning is particularly useful. 
Ensemble learning enables researchers to capture a wider 
range of patterns and relationships by utilizing multiple 
models, resulting in a more thorough understanding of the 
data [20]. Convolutional neural networks are just one exam-
ple of ML learning, which is a general strategy that may be 
used with any ML model. It has been widely applied in 
deep learning and has shown success in a variety of tasks, 
including speech recognition, image classification, and nat-
ural language processing [21]. The method is also helpful 
when the underlying data is prone to errors, noise, or other 
types of uncertainty. When this occurs, ensemble learn-
ing can aid in minimizing the effect that these variables 
have on the final predictions. In this study, simple average 
ensemble, stacked generalization, and convolutional neural 
networks (CNN) as well as deep forest are used to develop 
a model for the autogenous shrinkage/swelling prediction 
of cementitious materials with SAP and additional cemen-
titious materials. Since CNNs are base learners, in the next 
section a brief explanation about them is provided.

3.1 Convolutional neural network (CNN)
Convolutional neural networks (CNNs) are a kind of neu-
ral networks that are frequently employed in computer 
vision applications like segmentation, object detection, and 
image and video recognition [22]. By applying a collection 
of trainable filters, called kernels or weights, to the input 
data, CNNs are intended to automatically and adaptively 
learn spatial hierarchies of features from raw input data. 
A high-level representation of the input data that may be 
used for classification or other tasks is created by combin-
ing the learned features. The ability of CNNs to automat-
ically learn features from unprocessed input data without 
the need for feature engineering is one of their main advan-
tages. As a result, they are especially beneficial where the 
input data may be complex and high-dimensional. Using 
the spatial correlations between the characteristics in the 
input data is another benefit of CNNs. CNNs can learn 
to recognize patterns and features that are spatially con-
nected by applying filters to small areas of the input data.

Convolutional layers, pooling layers, and fully con-
nected layer (flatten layer) are the fundamental compo-
nents of a CNN (Fig. 2). In CNNs, convolutional layers 
serve as the primary feature extractors. Each feature map 
represents a different feature or pattern that the network 
has learned, and they are created by applying a series of 
filters to the input data. By backpropagating the error from 
the input layer to the output layer and modifying the filter 
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weights accordingly, the filters are learned. The feature 
maps created by the convolutional layers are down-sam-
pled using pooling layers. They maintain the most cru-
cial features while lowering the spatial resolution of the 
feature maps. This aids in lowering the network's com-
putational load and avoiding overfitting. The output of 
the convolutional and pooling layers is connected to the 
output layer using fully connected layers. To create the 
final result, they do a weighted sum of the input data 
and then apply a nonlinear activation function. The net-
work is given nonlinearity by using the rectified linear 
unit (ReLU) activation function. They use a rectified lin-
ear activation function, which has been demonstrated to 
enhance network performance, on the output of the pre-
ceding layer. The weights of the filters are then modified 
based on the error, which enhances the network's func-
tionality. The back-propagation algorithm is used to effec-
tively train networks through a method called chain rule. 

3.2 Simple average ensemble
It is feasible to produce a prediction that is more reliable 
and consistent and is less likely to be impacted by random 
variations in the data by integrating the predictions of var-
ious models. The Simple Average Ensemble (SAE) (Fig. 3) 
is a well-liked ML method for combining the results of 
various models. The process is simple; to produce the final 
prediction, the outputs from each model are averaged. 
As it considers the advantages and disadvantages of each 
particular model, this technique can enhance the perfor-
mance of the model. This indicates that it can be applied 
to a variety of situations without the need for specialist 
knowledge or equipment. Moreover, it has been demon-
strated to be successful in enhancing the functionality of 
individual models, particularly when working with noisy 
or ambiguous data. The ability to reduce overfitting, which 
can be a prevalent issue when working with complex mod-
els, is another advantage of the SAE. When working with 

Fig. 2 Fundamental components of the CNN

Fig. 3 Simple average ensemble (SAE) flowchart
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high-dimensional data or when there is a lot of noise or 
fluctuation in the data, this can be quite helpful.

3.3 Snapshot ensembles
Snapshot ensembles are a potent and ground-breaking deep 
learning technique that combines the advantages of vari-
ous models during training to improve the performance 
and stability of neural networks [17]. Snapshot ensembles 
present a novel method where a single model goes through 
multiple "snapshots" of its learning trajectory during train-
ing, in contrast to typical assembling approaches that rely 
on averaging the predictions of separately trained models. 
The model's performance is captured in these snapshots 
at various points, and the ensemble is created by merging 
the data from these snapshots. Utilizing the cyclical learn-
ing rate schedule is the core concept underlying Snapshot 
ensembles. Deep learning models are typically taught uti-
lizing a constant learning rate for the training procedure. 
Contrarily, the cyclical learning rate policy alternates 
between raising and reducing the learning rate regularly, 
which has been demonstrated to accelerate model gener-
alization. Models can explore the solution space and break 
out of local minima with the aid of this policy.

Snapshot ensembles' training can be divided into the 
following steps:

1. Model Training: The procedure starts with typical 
methods for training a neural network. The parame-
ters of the network are changed using backpropaga-
tion and an optimization technique like Stochastic 
Gradient Descent (SGD) or one of its variants after 
the network has been exposed to the training data.

2. Schedule for Cyclical Learning Rate: The learning 
rate fluctuates throughout the training procedure 
within a predetermined range. Hyperparameters like 
cycle length and learning rate range can be selected 
through experimentation or using domain expertise. 
The learning rate can be changed to explore different 
areas of the solution space by changing the model's 
optimization trajectory.

3. Creation of Snapshots: The model's parameters are 
saved at certain points during the training. Here, 
the parameters and performance of the model are 
recorded every 400 epochs.

4. Formation of the Ensemble: Following training, 
the ensemble is created by mixing the saved models. 
This can be done by combining the predictions of the 
models at inference time or by averaging the weights 
of the models from the chosen snapshots.

A method called a learning rate schedule is employed 
to preserve a diverse set of proficient ensembles during 
a single training session. This leads to significant modi-
fications in the model's weights and consequently alters 
the model's traits in each saved snapshot. The technique 
involves adjusting the learning rate as training epochs 
progress using the cosine annealing learning rate equa-
tion (Eq. (1)). Initially, the learning rate begins at a high 
value, then decreases rapidly to a minimal value before 
rising once more. This cyclic process is repeated to yield 
favorable weights after each cycle, capturing a snapshot of 
the model's state:
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where lr(t) is the learning rate at epoch t, lr0 is the maxi-
mum learning rate, T is the total epochs, M is the number 
of cycles, % is the modulo operation, and �� ��  presents 
a floor operation. Fig. 4 shows a plot of the learning rate 
schedule T = 4000, M = 20, lr0 = 0.05.

3.4 Stacked generalization
A meta-learning technique called stacked generaliza-
tion (SG), commonly referred to as stacking, integrates 
numerous basic models to enhance the predictive perfor-
mance of an ML model (Fig. 5) [17, 23]. For stacking to 
function, a variety of base models must first be trained on 
training data, and their predictions must then be fed into 
a meta-learner, a higher-level model. Here, CNNs are used 
as basic models. The meta-learner then discovers how to 
merge the base model predictions into a final prediction. 
Stacking can outperform any single base model in terms 
of accuracy and error rates by combining the advantages 
of numerous base models. Another benefit of stacking is 

Fig. 4 Snapshot learning rate schedule
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that it can handle a variety of ML tasks, including classi-
fication, regression, time-series forecasting, and anomaly 
detection. As it can be applied to any number of base mod-
els and meta-learners and is simple to embed into exist-
ing ML pipelines, the SG is also a versatile and scalable 
approach. The SG is divided into two categories. If a neu-
ral network is used as a meta-learner, it is called an inte-
grated stacking model (ISM), and otherwise, it is called 
a separate stacking model (SSM).

3.4.1 ISM
The meta-learner, constituting a shallow neural network 
architecture, is characterized by possessing a solitary hid-
den layer. Notably, the parameters comprising the weights 
and biases of the sub-models remain static throughout 
the training process of the stacked generalization model. 
Only the parameters governing the weights and biases of 
the meta-learner are subjected to modification during the 
training procedure. An iterative experimentation protocol 
known as GridSearchCV is employed to ascertain opti-
mal configurations encompassing neuron quantities in 
the layer, selection of optimizers, and tuning of hyper-pa-
rameters, among other parameters, for the meta-learner. 
The training dataset is utilized for this purpose. The sec-
ond table, denoted as Table 2, presents an overview of the 
attributes associated with the meta-learner.

3.4.2 SSM
Unlike ISM, in the SSM, the meta-learner is not a neu-
ral network. In this study, DecisionTree regressor (DTR), 
GradientBoosting regressor (GBR), RandomForest regres-
sor (RFR), AdaBoost regressor (ABR), and Bagging 
regressor (BR) algorithms are utilized as the meta-learner 
in the SSM [24]:

• DTR [25]: for regression problems, the DTR is 
a supervised ML algorithm. It builds a binary tree 
structure with each leaf node holding a predicted 
numerical value and each inside node representing 
a choice based on a chosen attribute. Recursively 
dividing the data into subgroups that minimize the 
variance of the target variable within each subset 
is how the model is constructed. By moving up the 
tree from the root to a leaf node and then follow-
ing the choices made at each node, one can deter-
mine the forecast for a new data point. The output is 
the expected value at the leaf node. The DTR can be 
modeled mathematically as:

y f x y x leafleaf i
i

N

i

leaf

� � � � � �� �
�
�
1

,  (2)

where y is the predicted target value, f(x) is the mod-
el's prediction function, Nleaf is the number of leaf 
nodes in the tree, yleafi  is the predicted value at the i th 
leaf node, (.)  is the indicator function that evaluates 
to 1 if the condition is true and 0 otherwise, and x 
represents the input features.

• GBR [26]: a stronger predictive model is produced 
using the ensemble technique known as gradient 
boosting by combining a number of weak learners, 
frequently decision trees. The GBR constructs trees 
in a sequential manner, focusing each one on the 

Fig. 5 Stacked generalization flowchart

Table 2 Properties of meta-learner

Meta-learner

Number of neurons in layer 1 5

Activation ReLU

Optimizer Adam

Learning rate 0.02

Metric MSE



Barkhordari et al.
Period. Polytech. Civ. Eng., 68(4), pp. 1098–1121, 2024|1105

flaws of the one before it. The output of the model 
is the total of all predictions made by each tree, with 
each forecast scaled by a learning rate. By modifying 
the forecasts of the next trees to lessen the residuals 
of the previous ones, the technique minimizes the 
loss function. The GBR's forecast can be expressed 
mathematically as:

y fi
i

Ntrees
� � � �

�
�� x
1

,  (3)

where y is the predicted target value, Ntrees is the 
number of trees in the ensemble, η is the learning 
rate, controlling the contribution of each tree, and 
fi(x) is the prediction of the i th tree.

• RFR [27]: another ensemble method, RFR builds 
numerous decision trees and aggregates their fore-
casts to improve accuracy and reduce overfitting. 
By training each tree on a distinct sample of the 
data and only taking into account a subset of fea-
tures at each node split, it introduces randomization. 
The average of all individual trees' forecasts yields 
the final prediction. The RFR's mathematical fore-
cast can be expressed as follows:

y
N

f
trees

i
i

Ntrees
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�
�1

1

x ,  (4)

where: y is the predicted target value, Ntrees is the 
number of trees in the random forest, and f(x) is the 
prediction of the i th tree.

• ABR [28]: by concentrating on the incorrectly cate-
gorized instances, the ensemble strategy known as 
the ABR iteratively enhances the model's perfor-
mance. It trains a string of weak learners and gives 
samples that were incorrectly labeled with higher 
weights. The weighted average of all learners' pre-
dictions forms the final forecast. The ABR's predic-
tion is denoted mathematically as:

y fi i
i

Nlearners
� � � �

�
� � x
1

,  (5)

where y is the predicted target value, Nlearners is the 
number of weak learners in the ensemble, αi is the 
weight assigned to the ith learner, and f(x) is the pre-
diction of the ith learner.

• BR [29]: bagging, which stands for Bootstrap 
Aggregating, is a method for reducing variance in 
ensembles by training numerous instances of the 
same model on various bootstrap samples of the 

training data. By averaging the results of each indi-
vidual model's projections, the final prediction is 
produced. It functions effectively with erratic mod-
els that are delicate to variations in the training set. 
The BR's prediction is represented as follows:

y
N

fi
i

N
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�
�1

1models

models

x ,  (6)

where y is the predicted target value, Nmodels is the 
number of models in the ensemble, and f(x) is the 
prediction of the ith model.

3.5 Performance evaluation
To assess the reliability and accuracy of the applied mod-
els, several performance indicators are utilized to quanti-
tatively evaluate the agreement between the observed and 
predicted values. These indicators include:

• Root Mean Squared Error (RMSE, Eq. (7)): the RMSE 
measures the average difference between the pre-
dicted and observed values. It is calculated by tak-
ing the square root of the average squared differences 
between the predicted and observed values.

• Coefficient of Determination (R2, Eq. (8)): The R2 

value evaluates the goodness of fit of the developed 
models and indicates the adequacy of the input vari-
ables in predicting the target variable. It is calculated 
as 1 minus the ratio of the sum of squared differ-
ences between the predicted and observed values to 
the sum of squared differences between the observed 
values and their mean.

• Mean Absolute Error (MAE, Eq. (9)): Mean Absolute 
Error (MAE) serves as a measure for gauging the 
average extent of discrepancies between anticipated 
and factual values within a dataset. This metric pro-
vides a direct means of assessing the precision of 
a model's forecasts. In terms of mathematical com-
putation, MAE involves determining the absolute dis-
parity between each projected value and its associated 
actual value. Subsequently, these absolute disparities 
are averaged across the entire set of data points.

• 95% Uncertainty (U95, Eq. (10)): the U95 represents 
a 95% uncertainty band to verify the validity of the 
model. It is calculated as 1.96 times the square root of 
the sum of the squared standard deviation and RMSE. 

• Overall Index of model performance (OI, Eq. (11)): 
OI is a mathematical concept that includes all real 
numbers greater than 0 and less than infinity. In the 
context of model development, OI with an optimistic 
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value of zero is used to evaluate the sufficiency and 
goodness of fit of the developed models. This means 
that the models are evaluated based on how well they 
fit the data within this range, with a lower optimistic 
value indicating a better fit.
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In Eqs. (7) to (11):
•  Pi,O and Pi,P: these variables denote the observed and 

predicted values, respectively;
• Pi O, :  this variable denotes the average of the 

observed shear strength;
•  N: this variable represents the number of samples in 

the dataset.

4 Result and discussion
The procedure for developing applied models is briefly 
discussed before presenting numerical results. The total 
dataset is divided into three subsets: 70% for training, 
15% for validation, and 15% for testing. The same subsets 
are used for all models. Base learner models use the feed 
forward-back propagation procedure for learning. 5 mod-
els with different structures and architecture, which are 
displayed in Appendix A, are trained on the same dataset 
for 4000 epochs. After each forward pass through a net-
work, backpropagation performs a backward pass while 
adjusting the model's parameters (weights and biases). 
GridSearchCV from Scikit-Learn is used to try out several 
values for hyperparameters and select the best values [30].

Overfitting constitutes a prevalent predicament 
encountered in ML, whereby a model assimilates train-
ing data with an undue degree of precision, encapsulat-
ing not solely the fundamental patterns but also stochastic 
fluctuations intrinsic to the data. This outcome engenders 
a model that manifests exceptional performance metrics 

when evaluated against the training data, yet falters in 
the generalization phase when confronted with novel and 
unobserved data instances. This circumstance emanates 
from the model's proclivity to evolve into an intricately 
convoluted and excessively specialized construct, inex-
tricably bound to the intricacies of the training dataset, 
thereby relinquishing its capacity to furnish precise prog-
nostications upon unfamiliar data points.

This analogy likens to rote memorization of solutions 
to a particular suite of queries, bereft of a comprehensive 
comprehension of the underlying concepts, rendering the 
acquired knowledge ineffectual when confronted with novel 
inquiries. Learning curves serve as invaluable diagnostic 
instruments for discerning instances of overfitting within 
ML models. The learning curves of all the base learners are 
shown in Fig. 6. Examining the curves shows that the prob-
lem of overfitting has not occurred for these models.

The predictions are averaged to create a model aver-
aging ensemble. To determine the impact of the number 
of members on train phase accuracy in the SAE method, 
a sensitivity analysis of the member number is performed. 
Fig. 7 shows the changes in the number of members of 
a set (ensemble size) versus performance. The perfor-
mance of each individual model is shown as a blue circle. 
The results indicate that a model averaging ensemble with 
5 models has the maximum value of performance. In other 
words, initially, as the number of members increases, 
the value of the R2 has increased, but gradually, it con-
verges to a value of approximately 0.95.

The second ensemble learning technique discussed in 
the preceding section is known as the Snapshot ensem-
ble. As explained earlier, this method involves training 
the base model using a dynamic learning rate schedule. 
During the training process, different models are saved at 
various points, and these models are subsequently evalu-
ated and selected to create the final ensemble prediction. 
Here, base learner 4 is used to train and save the models at 
various epochs. Fig. 8 shows R2 values of individual and 
ensemble snapshot models. Twenty-one models have been 
saved during the training process. By adding individual 
models into the ensemble snapshot model, the R2 value 
fluctuates around 0.85. Consequently, the ensemble model 
consisting of the twenty recorded models has been consid-
ered for further investigation in the research.

4.1 Comparison of the ML models
In this study, a comprehensive evaluation of eight predic-
tive models, namely ISM, SAE, SNAP, ABR, BR, DTR, 
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Fig. 6 Learning curves and Exp./Pre. Values for base learners; (a) Learning curve of the base learner 1; (b) Exp./Pre. values for the base learner 1; 
(c) Learning curve of the base learner 2; (d) Exp./Pre. values for the base learner 2; (e) Learning curve of the base learner 3; (f) Exp./Pre. values 

for the base learner 3; (g) Learning curve of the base learner 4; (h) Exp./Pre. values for the base learner 4; (i) Learning curve of the base learner 1; 
(j) Exp./Pre. values for the base learner 1

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)
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GBR, and RFR, was conducted using various perfor-
mance metrics. The models were developed for a specific 
task, and their performance was assessed using five key 
metrics: Root Mean Squared Error (RMSE), Coefficient 
of Determination (R2) Overall Index of model perfor-
mance (OI), Mean Absolute Error (MAE), and 95% 
Uncertainty (U95). Tables 3 and 4, along with Fig. 9, dis-
play the values corresponding to each metric.

During the training phase (Table 3), results show that 
the models varied in their predictive capabilities. In terms 
of RMSE, which measures the average magnitude of errors 

between predicted and actual values, SSM-DTR demon-
strated the lowest value (63.61), indicating its superior per-
formance in minimizing prediction errors. SSM-RFR and 
SSM-BR followed closely with RMSE values of 65.55 and 
66.57, respectively. The Coefficient of Determination (R2) 
values offer insights into the proportion of variance in the 
target variable that is explained by the models. Among the 
models, SSM-DTR, SSM-RFR, and SSM-BR exhibited 
relatively high R2 values, with SSM-DTR achieving an R2 
value of 0.9604. This signifies that these models are profi-
cient in capturing the variability of the target variable and 
providing a good fit to the data.

The Overall Index of model performance (OI) takes 
into account multiple performance aspects of the models. 
The OI values for the models ranged between 0.9085 and 
0.9673. Notably, SSM-DTR and SSM-RFR attained high OI 
values, indicating their balanced performance across var-
ious metrics. The Mean Absolute Error (MAE) measures 
the average magnitude of absolute errors between pre-
dicted and actual values. SSM-DTR stood out with the low-
est MAE value of 11.43, implying that, on average, its pre-
dictions deviated less from the actual values compared 
to other models. Additionally, the 95% Uncertainty (U95) 
values provide an estimate of the dispersion of predictions 
around the true values. In this case, SNAP and SSM-ABR 
demonstrated the highest U95 values, suggesting higher 
uncertainty in their predictions compared to other models. 
SSM-DTR attained lowest U95 value.

In the testing phase (as shown in Table 4), the outcomes 
indicate that the models exhibited varying degrees of pre-
dictive capabilities. When considering the Root Mean 
Square Error (RMSE), which gauges the average extent 
of discrepancies between projected and actual values, 
it becomes evident that ISM displayed the most favorable 
outcome with the smallest value (65.08). This outcome 
underscores the superior performance of ISM in mini-
mizing the errors associated with predictions. SAE and 
SSM-BR closely followed suit with RMSE scores of 66.76 
and 69.51, respectively. In terms of the R2 values, which 

Fig. 7 Changes in the number of members

Fig. 8 R2 values of individual and ensemble snapshot models

Table 3 Model results – Training phase

Metrics
Models

ISM SAE SNAP SSM-ABR SSM-BR SSM-DTR SSM-GBR SSM-RFR

RMSE 74.73 76.99 117.62 91.31 66.57 63.61 68.51 65.55

MAE 33.79 36.38 69.01 59.28 20.32 11.43 27.30 19.38

OI 0.9575 0.9554 0.9085 0.9407 0.9648 0.9673 0.9631 0.9656

U95 207.18 213.45 326.04 253.13 184.56 176.35 189.94 181.75

R2 0.9454 0.9425 0.8703 0.9191 0.9566 0.9604 0.9541 0.9580
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furnish insights into the proportion of variability in the 
target variable accounted for by the models, ISM, SAE, 
and SSM-BR demonstrated notable R2 values. Notably, 
ISM achieved an impressive R2 value of 0.9569. This sig-
nifies the proficiency of these models in capturing the 
intricate fluctuations within the target variable, thereby 
establishing a robust fit to the provided data.

The comprehensive evaluation of model perfor-
mance, encapsulated within the Overall Index (OI), takes 
into consideration a multitude of performance metrics. 
Within the testing phase, the OI values spanning across 
the models ranged from 0.8826 to 0.9646. It is particu-
larly noteworthy that both ISM and SAE garnered high 
OI values, a reflection of their well-rounded performance 

Table 4 Model results – Testing phase

Metrics
Models

ISM SAE SNAP SSM-ABR SSM-BR SSM-DTR SSM-GBR SSM-RFR

RMSE 65.08 66.76 132.16 86.67 69.51 82.24 71.29 72.26

MAE 31.528 32.31 81.80 58.66 32.51 38.39 34.45 33.10

OI 0.9646 0.9632 0.8826 0.9433 0.9607 0.9481 0.9590 0.9581

U95 180.19 185.07 366.67 240.16 192.74 228.04 197.66 200.32

R2 0.9569 0.9550 0.8202 0.9242 0.9504 0.9306 0.9478 0.9464

Fig. 9 Models' evaluation curves; (a) RMSE metric; (b) MAE metric; (c) OI metric; (d) U95 metric; (e) R2

(a) (b)

(c) (d)

(e)
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across various evaluative criteria. Furthermore, the Mean 
Absolute Error (MAE), which measures the average mag-
nitude of absolute discrepancies between projected and 
actual values, highlighted ISM's outstanding performance. 
With a remarkably low MAE value of 31.528, ISM emerges 
as the frontrunner in terms of maintaining predictions 
closely aligned with actual values, surpassing the perfor-
mance of other models in this regard. Additionally, the 
95% Uncertainty (U95) values provide a glimpse into the 
spread of predictions around the true values. In this con-
text, both SNAP and SSM-ABR exhibited the highest U95 
values, indicating elevated uncertainty in their predictions 
compared to their model counterparts. Notably, SSM-ISM 
registered the lowest U95 value, suggesting a comparatively 
reduced level of uncertainty in its predictions.

These discernible findings contribute substantial 
insights for the purpose of model selection. Drawing from 
the results of the testing phase, it becomes apparent that 
ISM emerges as the most suitable candidate. This conclu-
sion applies specifically to the task of predicting autoge-
nous shrinkage/swelling of cementitious materials, where 
additional cementitious materials and SAP are considered.

4.2 Model interpretation
Even while advanced ML prediction models are extremely 
accurate and efficient, their use in structural engineering 
is limited by the fact that they are opaque and difficult to 
understand. In this study, the proposed ISM model is inter-
preted using SHapley Additive exPlanation (SHAP) [31], 
a recent game theory-based agnostic technique. The model 
is broken down by SHAP into the sum of the impact of each 
input parameter, and for each feature, a value that indicates 
the influence of each input on the model output is com-
puted. By comparing the model's output with and without 
the parameter, the importance of each variable in SHAP is 
assessed. The input variable with the highest absolute SHAP 
value is considered to be the most crucial component [32].

In SHAP, the explanation model (K(x' )) is used to 
approximate the original model output (M(x)) as follows:
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where x' is the simplified input that transfers to x through 
a function (x = hx(x' )), NI is the number of inputs, and 
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where ��� �T 0, ,M  ′T  is the number of non-zero entries 
in T', � ��T x  is all T' vectors where non-zero entries 
are a subset of the non-zero entries in x', ′T  i  denotes 
setting Ti

0
0= ,  and M E M Tx ST T�� � � � �� ��� ��|  denotes 

SHAP values, where S is the set of non-zero entries in T'.
Fig. 10 illustrates the outcomes obtained from the model 

interpretation using SHAP techniques. The elements pre-
sented in the upper section of the visual representation 
(depicted in Fig. 10(a)) can be linked to the more substantial 

Fig. 10 SHAP-based model interpretation; (a) Relative relevance of 
each input parameter; (b) Summary plot for inputs' effect

(a)

(b)
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contributions affecting the model’s outcomes. Predominant 
factors impacting predictions related to shrinkage encom-
pass time (measured in days since the initiation of shrink-
age assessments), the ratio of aggregate to cement (A/C), 
the content of SAP (Superabsorbent Polymer), the ratio of 
water to binder, the content of cement, the ratio of water to 
cement, and the amount of silica fume used. Each factor 
bears significance in influencing prediction outcomes and 
holds practical implications [33, 36]:

• Time: time is pivotal in shrinkage prediction due 
to the evolving properties of concrete over time. 
Concrete undergoes continuous hydration processes, 
leading to alterations in microstructure and moisture 
content. Early stages exhibit higher shrinkage rates 
due to abundant water content, while later stages 
may experience diminished shrinkage as hydration 
reactions decelerate. Accurate modeling of temporal 
effects aids in long-term performance evaluations of 
concrete structures.

• Ratio of Aggregate to Cement (A/C): the A/C 
ratio significantly influences shrinkage as aggre-
gates provide internal resistance against volume 
changes induced by cement hydration. Higher A/C 
ratios typically reduce shrinkage due to the dilution 
effect of aggregates, while lower ratios may exac-
erbate shrinkage by providing inadequate restraint. 
Understanding A/C ratio effects facilitates optimiz-
ing concrete mix designs for desired shrinkage per-
formance and structural integrity.

• Content of Superabsorbent Polymer (SAP): SAPs 
mitigate shrinkage by absorbing excess water 
during hydration, diminishing capillary stresses 
and shrinkage cracking. Higher SAP contents cor-
relate with lower shrinkage as more water is retained 
within the concrete matrix. Proper SAP dosage and 
distribution are critical for shrinkage reduction 
without compromising other concrete properties. 
The predictive model's ability to capture the non-
linear SAP-shrinkage relationship aids in informed 
decision-making regarding SAP incorporation for 
shrinkage control.

• Ratio of Water to Binder: the water-to-binder ratio 
significantly influences concrete shrinkage by deter-
mining hydration kinetics and water availability. 
Lower ratios generally elevate shrinkage due to lim-
ited water for hydration, while higher ratios may 
increase shrinkage initially due to greater volume 
changes. Balancing this ratio is crucial for achieving 

desired concrete properties, including workability, 
strength, and shrinkage performance.

• Content of Cement: cement content directly impacts 
shrinkage through hydration-induced volume 
changes. Higher cement contents typically amplify 
shrinkage due to increased cementitious materials, 
whereas lower contents may reduce shrinkage but 
compromise strength and durability. Understanding 
these trade-offs is essential for designing sustainable 
concrete mixes with optimal performance.

• Ratio of Water to Cement: The water-to-cement ratio 
governs hydration efficiency and subsequent volume 
changes, significantly affecting shrinkage. Higher 
ratios generally correlate with higher shrinkage due 
to increased water availability, while lower ratios 
may reduce shrinkage but affect workability and 
strength development. Optimizing this ratio involves 
balancing shrinkage considerations with other per-
formance requirements.

• Amount of Silica Fume: Silica fume alters concrete 
microstructure and pore characteristics, influenc-
ing shrinkage behavior. Increased silica fume con-
tent densifies the concrete matrix, reducing pore 
connectivity and capillary stresses, leading to lower 
shrinkage. However, excessive silica fume may hin-
der workability due to increased viscosity. Effective 
utilization requires optimizing dosage for shrink-
age reduction while maintaining workability and 
mechanical properties.

A distinct boundary is discernible for all these vari-
ables, differentiating their influence on the model output 
in terms of high and low feature values (Fig. 10(b)): an ele-
vated A/C ratio leads to increased SHAP values, signify-
ing reduced shrinkage; greater SAP content contributes 
to decreased shrinkage and is often identified as the most 
pivotal factor; increased time values correlate with higher 
levels of shrinkage; augmented water-to-binder and water-
to-cement ratios tend to diminish shrinkage; on the con-
trary, a higher replacement ratio of silica fume or increased 
cement content predominantly triggers heightened shrink-
age. Additionally, larger SAP sizes counteract the benefi-
cial effects of SAP and result in greater shrinkage when 
contrasted with smaller SAP sizes. These effects corre-
spond closely with findings from experimental observa-
tions [18]. Conversely, factors exerting less influence have 
been identified, including superplasticizer, fly ash, slag, 
filler, and calcined clay content. These deductions drawn 
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from the SHAP values are in harmony with empirical 
observations, as these parameters are acknowledged to 
wield a comparatively minor impact on shrinkage in com-
parison to the previously mentioned ones.

4.3 Comparison with previous research
Hilloulin and Tran [18] have developed four kinds of state-
of-the-art ML models for predicting autogenous shrink-
age of concrete using the database that was also used in 
this article. The four ML algorithms were: K-Nearest 
Neighbors (KNN), Random Forest (RF), Gradient 
Boosting (GB), and Extreme Gradient Boosting (XGB). 
In Section 4, the results of their models are compared with 
the results of the best model (ISM) developed in this arti-
cle. The training set and test set used to create the ISM 
model in this article were also used for the training and 
evaluation of the KNN, RF, GB, and XGB models. 

During the training phase (Table 5), the XGB outper-
formed the others with a score of 66.179 in terms of the 
RMSE, indicating that it had the lowest average prediction 
error. The RF model followed closely with an RMSE of 
76.404, suggesting good predictive accuracy. On the other 
hand, the KNN had the highest RMSE of 185, indicating 
that it had the least accurate predictions among the mod-
els. Moving on to the MAE, once again, the XGB per-
formed the best with an MAE of 21.9, signifying its ability 
to make predictions close to the actual values. The RF had 
the second-lowest MAE at 34.01, showcasing its strong 
predictive capabilities as well. The KNN had the highest 
MAE of 111.34, indicating a relatively larger margin of 
error in its predictions.

The coefficient of determination (R2) further emphasizes 
the XGB's excellence, scoring the highest at 0.95719. This 
indicates that the XGB explained a substantial portion of 
the variance in the data, suggesting it is a highly effective 
model for this specific problem. The RF closely followed 
with an R2 of 0.94585, showcasing its strong explanatory 
power. The KNN, on the other hand, had an R2 of 0.66967, 
suggesting that it could only explain a moderate amount of 
variance in the data. However, when it comes to the metric 

of the overall information (OI), it's evident that the RF and 
XGB do not perform as well. The RF and XGB had OI val-
ues of 0.95597 and 0.96517, respectively, indicating that 
they captured more of the data's underlying information 
compared to the KNN, GB, and ISM. Lastly, considering 
the 95% uncertainty (U95) values, it's clear that the KNN 
had the highest U95 of 512.25, implying higher uncertainty 
in its predictions compared to the other models. The GB 
and ISM also exhibited relatively high uncertainty with 
U95 values of 350.4 and 207.18, respectively. In contrast, 
the RF and XGB had lower U95 values of 211.81 and 183.47, 
indicating greater confidence in their predictions.

In the testing phase (Table 6), the ISM model stands out 
as the top performer in terms of the RMSE, with the low-
est score of 65.08, indicating its exceptional accuracy in 
predicting the target variable. The XGB model closely fol-
lows with an RMSE of 123.13, showcasing its strong pre-
dictive capabilities. On the other hand, the KNN exhibits 
the highest RMSE at 217.9, suggesting that it has the least 
accurate predictions among the models, while the GB and 
RF fall in between with RMSE values of 150.7 and 136.24, 
respectively. Examining mean absolute error (MAE), once 
again, the ISM model outperforms its counterparts with 
the smallest MAE of 31.52, signifying its ability to make 
predictions that are closest to the actual values. The XGB 
follows as the second-best performer with an MAE of 
59.56, showcasing its competence in making accurate pre-
dictions. Conversely, the KNN has the highest MAE at 
135.72, indicating a larger margin of error in its predic-
tions, and the GB and RF fall in the middle with MAE 
values of 92.912 and 71.716, respectively. The coefficient 
of determination highlights the ISM's excellence, leading 
the pack with an R2 of 0.956, which signifies its capacity 
to explain a substantial portion of the variance in the data. 
The XGB follows closely with an R2 of 0.845, demonstrat-
ing its robust explanatory power. Conversely, the KNN 
lags with an R2 of 0.516, suggesting that it can only account 
for a moderate amount of variance in the data, while the 
GB falls in between with an R2 of 0.766.

Table 5 Models' comparison – Training phase

Metrics
Models

KNN [18] RF [18] GB [18] XGB [18] ISM

RMSE 185 76.404 126.39 66.179 74.73

MAE 111.34 34.01 83.034 21.9 33.79

OI 0.79513 0.95597 0.89627 0.96517 0.9575

U95 512.25 211.81 350.4 183.47 207.18

R2 0.66967 0.94585 0.85253 0.95719 0.945

Table 6 Models' comparison – Testing phase

Metrics
Models

KNN RF GB XGB ISM

RMSE 217.9 136.24 150.7 123.13 65.08

MAE 135.72 71.716 92.912 59.56 31.52

OI 0.71 0.876 0.851 0.896 0.964

U95 603.14 377.96 418.11 341.62 180.19

R2 0.516 0.809 0.766 0.845 0.956
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When considering the overall information (OI) metric, 
the ISM model appears to be more effective, with OI values 
of 0.964, indicating that they capture more of the underlying 
information in the data compared to the XGB, GB, and RF. 
The KNN has the lowest OI value. Lastly, analyzing the 
95% uncertainty (U95) values, KNN has the highest U95 of 
603.14, suggesting a higher level of uncertainty in its pre-
dictions compared to the other models. The GB and XGB 
also exhibit relatively high uncertainty with U95 values of 
418.11 and 341.62, respectively. In contrast, RF and the ISM 
model have lower U95 values of 377.96 and 180.19, respec-
tively, indicating greater confidence in their predictions. 
In summary, the ISM model outperforms other models.

Boxplots of the results in the testing phase are displayed 
in Fig. 11. Fig. 11 shows that the predicted shear strength 
values for RF, XGM, and ISM models thoroughly follow 
the experimental results. However, comparing the differ-
ence between experimental and predicted values from 
Fig. 11 indicates that the KNN had the worst performance 
in testing phase.

The superior performance of the (ISM) over other con-
volution-based algorithms be attributed to several key fac-
tors [37, 40]:

1. Model Fusion Strategy: ISM combines the strengths 
of multiple base models through a sophisticated stack-
ing mechanism. Unlike SAE, which relies on simple 
averaging of predictions, ISM integrates predictions 
from diverse base models in a strategic manner, lever-
aging the complementary nature of individual models. 
This fusion strategy enables ISM to capture nuanced 
patterns and relationships within the data more effec-
tively, enhancing predictive accuracy [15].

2. Feature Engineering and Selection: ISM incorporates 
advanced feature engineering techniques and robust 

feature selection mechanisms since its meta-learner 
is a neural network. By identifying and incorporat-
ing relevant features while filtering out noise and 
irrelevant information, ISM optimally leverages the 
available data, resulting in improved model perfor-
mance compared to other techniques like Snapshot 
Ensemble and SSM.

3. Model Diversity: ISM harnesses the power of diverse 
base models, each trained using distinct algorithms 
or architectures. This diversity mitigates the risk of 
overfitting and increases the model's ability to gener-
alize to unseen data. In contrast, Snapshot Ensemble 
and SSM may exhibit limited diversity in their 
ensemble members, potentially constraining their 
predictive capabilities.

4. Model Complexity and Flexibility: ISM's ability 
to capture nonlinear relationships and interactions 
between predictor variables and shrinkage outcomes 
allows it to outperform simpler models like KNN. 
The flexibility of ensemble methods enables ISM 
to adapt to the inherent complexity of the concrete 
shrinkage prediction problem more effectively.

5. Robustness to Noise and Outliers: ISM's ensemble 
nature and robust aggregation strategy make it less 
susceptible to noise and outliers in the data com-
pared to individual models like RF, GB, and XGB. 
By combining predictions from multiple models, 
ISM can effectively filter out erroneous predictions 
and focus on the underlying patterns in the data.

5 Conclusions
In this paper, the effectiveness of ensemble convolu-
tion-based deep learning models for predicting autogenous 
shrinkage and swelling in cementitious materials was eval-
uated. The goal was to offer a model that surpasses existing 
models in terms of precision. To achieve this, a thorough 
exploration of various ensemble learning techniques was 
conducted, including Simple Average Ensemble, Snapshot 
Ensemble, and Stacked Generalization, and compared 
their performance.

Findings reveal that ensemble learning techniques 
when applied to the prediction of autogenous shrinkage 
and swelling, offer substantial advantages. Among the 
models evaluated, the Integrated Stacking Model (ISM) 
emerged as the most suitable candidate for this specific 
task. ISM demonstrated superior performance in terms of 
RMSE, Coefficient of Determination (R2), Mean Absolute 
Error (MAE), and Overall Index of model performance (OI) 

Fig. 11 Boxplots for the autogenous shrinkage of the concrete
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during both the training and testing phases. This suggests 
that ISM not only captures the intricate patterns in the 
data but also generalizes well to unseen instances.

Moreover, we employed SHapley Additive exPlana-
tion (SHAP) to interpret the ISM model, shedding light 
on the key factors influencing autogenous shrinkage and 
swelling predictions. The analysis highlighted the signif-
icant impact of variables such as time, the ratio of aggre-
gate to cement (A/C), the content of Superabsorbent 
Polymer (SAP), water-to-binder and water-to-cement 
ratios, cement content, and the amount of silica fume used. 
These insights provide valuable information for concrete 
mix design and construction practices.

The comparison with previous research adds valuable 
insights to the study's conclusions. Overall, the ISM model 
consistently demonstrates superior performance compared 
to the previously developed models, namely K-Nearest 
Neighbors (KNN), Random Forest (RF), Gradient 
Boosting (GB), and Extreme Gradient Boosting (XGB). 
The ISM model demonstrates remarkable accuracy with 
the lowest RMSE and MAE values, indicating its ability 
to make predictions that closely align with actual values. 
Furthermore, it achieves the highest coefficient of deter-
mination value, signifying its proficiency in explaining 
a substantial portion of the variance in the data. The ISM 
model excels in the Overall Index (OI) metric, suggesting 
that it captures more of the underlying information in the 
data. Additionally, it exhibits lower 95% uncertainty val-
ues, highlighting increased confidence in its predictions.

The limitations of the research can be summarized as 
follows:

• Limited Generalizability: While the study focuses 
on predicting autogenous shrinkage of concrete con-
taining superabsorbent polymers (SAP) and addi-
tional cementitious materials, its findings may not 
be readily applicable to other concrete compositions 
and applications due to various factors. Concrete 
mix designs can vary significantly based on climate, 
intended use, and available materials, potentially 

impacting the predictive accuracy of the models 
across different contexts.

• Data Quality and Representation: The effectiveness 
of machine learning models heavily relies on the 
quality and representativeness of the training data. 
Although the database used in this study is consid-
ered standard for model development and compar-
ison, there could still be limitations regarding data 
completeness, accuracy, and representativeness. 
Therefore, incorporating additional data from new 
experiments in the future is necessary to enhance 
the robustness of the models.

• Limited Comparison with Alternative Approaches: 
While the study compares the performance of 
ensemble convolution-based deep learning models 
with other machine learning algorithms previously 
proposed in the literature, it only examines a spe-
cific set of models (K-Nearest Neighbors, Random 
Forest, Gradient Boosting, and Extreme Gradient 
Boosting). Alternative modeling approaches, such 
as metaheuristic algorithms, which could poten-
tially offer comparable or superior results, are not 
included in the analysis. Exploring a broader range 
of modeling techniques could offer valuable insights 
into the most effective strategies for predicting con-
crete shrinkage.

In conclusion, this research demonstrates the efficacy 
of ensemble convolution-based deep learning models, 
particularly ISM, in predicting autogenous shrinkage and 
swelling in cementitious materials. The use of ensemble 
learning techniques enhances the accuracy and reliabil-
ity of predictions, making them a valuable tool for engi-
neers and researchers in the field of structural engineer-
ing. Furthermore, the model interpretation through SHAP 
contributes to a deeper understanding of the underlying 
factors influencing autogenous shrinkage and swelling, 
paving the way for more informed decision-making in 
concrete construction and design.
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Appendix A

Fig. A1 Structures and architecture of base learner 1
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Fig. A2 Structures and architecture of base learner 2
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Fig. A3 Structures and architecture of base learner 3
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Fig. A4 Structures and architecture of base learner 4
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Fig. A5 Structures and architecture of base learner 5
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