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Abstract

The article proposes a simple version of the differential evolution algorithm (abbreviated as sDE) in which the mutation factor and 

crossover constant are chosen randomly in the range (0,1) during the search for the optimal solution. The sDE is the same as the 

original version of the differential evolution algorithm, except the user does not have to choose the best values of mutation constant 

and crossover constant for each optimization problem. Therefore, the optimization process is now very simple as it remains only one 

parameter (i.e. the population size) in the algorithm, besides the stopping criterion (e.g. number of iterations). It also consumes less 

computation time than the original differential evolution as it is not necessary to tune the mutation and crossover constants. In this 

study, the proposed technique is applied to three constrained optimizations, three engineering design problems, and six planar and 

spatial trusses under frequency constraints. Despite the very simple characteristics of the proposed technique, sDE gives promising 

results in comparison with other results in the literature. 
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1 Introduction
For almost thirty years, the differential evolution algorithm 
(DE) [1] has proven its efficiency in solving optimization 
problems in engineering. Based on the original form of dif-
ferential evolution, there are various versions to improve 
its capacity. However, one of the drawbacks of DE ver-
sions is their sensitivity to control parameters. Therefore, 
one of the modification trends is related to the main control 
parameters of DE such as mutation constant F and cross-
over constant CR. These values are known to affect the 
capacity of the algorithm in exploration (affected mainly 
by mutation constant F) and exploitation (affected mainly 
by crossover constant CR). Normally, the larger value of 
F will increase the probability of escaping a local mini-
mum, and a larger value of CR will make the convergence 
faster. In the early period, some authors suggested the 
good ranges of CR and F [1, 2]. Later, the control param-
eters are determined using deterministic rules. For exam-
ple, a simple relation among F, CR, and the dimension of 
the problem in [3], two DE variants with random values 
of F in the range (0.5, 1) or time-varying values of F from 
a predetermined maximum to a predetermined minimum 

value in [4]. The tuning to choose the fittest parameters 
for each optimization problem is often tedious, compu-
tation time-consuming, and more importantly, impossi-
ble to cover all combinations of F and CR. This leads to 
some studies that employ various mechanisms for auto-
matic tuning of these control parameters instead of hand 
tuning. For example, the introduction of self-adapting con-
trol parameters F and CR in [5], versions of DE such as 
the Fuzzy Adaptive Differential Evolution (FADE) [6], 
the Self-adaptive Differential Evolution Algorithm for 
Numerical Optimization (SaDE) [7] and its updated ver-
sion SaDE2 [8]. It is noted that all the above-mentioned 
variants also need extra parameters for the choice of F and 
CR. The readers can find more details of control parame-
ters in DE in the recent reviews [9, 10]. However, to the best 
of our knowledge, there is no study on the simultaneous 
use random values of F and CR without any extra param-
eters. This encourages our study to experiment with the 
random values of F and CR to simplify the optimization 
process without compromising result quality. The article is 
structured as follows. Section 2 will briefly introduce the 
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differential evolution algorithm, Section 3 will propose our 
technique, using random F and CR, as mentioned above. 
Section 4 is for experiments with constrained optimization 
problems and the Section 5 is for some conclusions.

2 Differential evolution
Differential evolution is a population-based algorithm that 
can self-adjust its search direction during the optimization 
process. Three operators of DE include: 

1. mutation using the information within the popula-
tion to alter the search space; 

2. crossover to mix components of individuals; and 
3. selection to reserve the best individual for the next 

generation. 

They are defined as follows:
• Mutation: This study uses 5 available mutation 

strategies [11] 
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where r1 , r2 , r3 , r4 , r5 are random numbers in [1, N], 
integer, mutually different, and different from the 
running index i; F is mutation constant in (0, 1); N is 
the population size; G is the current generation.
In the notation DE/rand/1, rand denotes a randomly 
chosen individual for mutation, and 1 is the number 
of difference individuals used. For DE/best/1 and 
DE/target-to-best/1, best means the individual with 
the lowest objective function. Other strategies DE/
rand/2 and DE/best/2 are similar except two differ-
ence individuals are used.

• Crossover:
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CR is the crossover constant in (0, 1); r is a random 
number in (0, 1); k is a random integer number in [1, D] 
which ensures that ui,G+1 gets at least one component 
from vi,G+1; and D is the dimension of the problem. 

• Selection: 
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where f is the objective function. 

It is noted that strategies with two difference individu-
als (DE/rand/2 and DE/best/2) can generate more different 
trial individuals than those with only one difference indi-
vidual (DE/rand/1, DE/best/1, and DE/target-to-best/1). 
On the other hand, using the best individual makes the 
population tend to the local minimum. 

Differential evolution is originally for unconstrained 
minimization. To apply sDE to constrained minimization 
problems, a constraint-handling technique is based on the 
comparison between two individuals. For a minimization 
problem, the comparison is based on the following prior-
ity: feasibility (all constraints are satisfied), smaller objec-
tive function, or smaller violation (in case constraints are 
not satisfied).

3 Proposed technique
The study proposes a very simple technique, named as sim-
ple differential evolution (sDE). Instead of tuning to choose 
the most suitable values of the mutation constant F and the 
crossover constant CR for each optimization problem, the 
proposed technique uses random values in (0, 1) of F and 
CR during the search for the optimal solution. Therefore, 
the proposed sDE is almost unchanged in comparison with 
the original form of differential evolution, except that there 
remains only one parameter (the population size) in the 
algorithm, besides the stopping criterion which is the num-
ber of iterations in this study. The sDE will be engaged 
with five common mutation strategies (Eqs. (1)–(5) as men-
tioned above) to determine the most effective strategies 
associated with it. For convenience, we use the prefix s- for 
the corresponding strategy, i.e. notations sDE/rand/1, sDE/
best/1, sDE/rand/2, sDE/best/2, and sDE/target-to-best/1. 
The study also surveys the influence of the number of iter-
ations and population on the proposed technique. 
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For comparison purposes, the sDE will be tested with 
common problems that are available in the literature, 
including constrained optimization problems (three test 
functions), engineering design problems (pressure vessel, 
welded cantilever beam, and spring), and trusses under 
frequency constraints (three planar trusses and three spa-
tial trusses). The results will be compared with known 
solutions with fixed mutation constant F and crossover 
constant CR.

4 Experiments and results
4.1 Constrained optimization problems
A constrained optimization problem is formulated as:

Minimize

Subject to:

f Rn
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where x is a vector of size n, f(x) is the objective function, 
gj(x) is the jth inequality constraint, hk(x) is the kth equality 
constraint, and x xi

l
i
u,�� ��  are the lower and upper bounds 

of the variable xi, respectively.
The sDE will be tested on three test functions [3, 12] 

as follows: 
1. Test function 1 

Objective function:
f(x) = 5.04x1 + 0.035x2 + 10x3 + 3.36x5 – 0.063x4x7

Constraints:
g1(x) = 35.82 – 0.222x10 – 0.9x9 ≥ 0
g2(x) = –133 + 3x7 – 0.99x10 ≥ 0
g3(x) = –g1(x) + x9(1/0.9 – 0.9) ≥ 0
g4(x) = –g2(x) + (1/0.99 – 0.99)x10 ≥ 0
g5(x) = 1.12x1 + 0.13167x1x8 – 0.00667x1x8

2 – 0.99x4 ≥ 0
g6(x) = 57.425 + 1.098x8 – 0.038x8

2 + 0.325x6 
– 0.99x7 ≥ 0
g7(x) = –g5(x) + (1/0.99 – 0.99)x4 ≥ 0
g8(x) = –g6(x) + (1/0.99 – 0.99)x7 ≥ 0
g9(x) = 1.22x4 – x1 –x5 = 0
g10(x) = 98000x3/(x4x9 + 1000x3) – x6 = 0
g11(x) = (x2 + x5)/x1 – x8 = 0
0.00001 ≤ x1 ≤ 2000
0.00001 ≤ x2 ≤ 16000
0.00001 ≤ x3 ≤ 120
0.00001 ≤ x4 ≤ 5000
0.00001 ≤ x5 ≤ 2000
85 ≤ x6 ≤ 93
90 ≤ x7 ≤ 95

3 ≤ x8 ≤ 12
1.2 ≤ x9 ≤ 4
145 ≤ x10 ≤ 162
Best-known solution : 
f(xmin) = −1768.80696
xmin = (1698.096, 15818.73, 54.10228, 3031.226, 
2000.0, 90.11537, 95.0, 10.49336, 1.561636, 153.53535)

2. Test function 2 
Objective function:
f(x) = x1x4(x1 + x2 + x3) + x3

Constraints:
x1x2x3x4 – 25 ≥ 0
x1

2 + x2
2 + x3

2 + x4
2 – 40 = 0

1 ≤ xi ≤ 5, i = 1, …, 4
Best-known solution:
f(xmin) = 17.0140173
xmin = (1, 4.7429994, 3.8211503, 1.3794082)

3. Test function 3 
Objective function:
f(x) = exp(x1x2x3x4x5)
Constraints :
x1

2 + x2
2 + x3

2 + x4
2 + x5

2 – 10 = 0
x2x3 – 5x4x5 = 0
x1

3 + x2
3 + 1 = 0

−2.3 ≤ xi ≤ 2.3, i = 1, 2 
−3.2 ≤ xi ≤ 3.2, i = 3, 4, 5
Best-known solution:
f(xmin) = 0.0539498478
xmin = (−1.717143, 1.595709, 1.827247, −0.7636413, 
−0.763645).

It is difficult to find the optimal solution for the three 
test functions, as noted in [13]. For comparison, the param-
eters used in this study are similar to [13], i.e. population 
of 30, iteration of 105, and 50 independent runs for all five 
sDE strategies.

From the results of the three test functions in Table 1, 
it is seen that the strategy sDE/best/2 generally yields the 
best results which are almost as same as the DE/best/2 
with chosen parameters (CR, F) in [13] and the best-
known ones in the literature [12, 14]. The strategy sDE/
rand/2 also gives good results except for the function 3. 
On the other hand, sDE/best/1, and sDE/target-to-best/1 
almost fail in the experiments. Comparison between  
sDE/rand/1 and the corresponding one DE/rand/1 with 
chosen parameters (CR, F) in [12] also shows sDE is 
slightly superior.
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To survey the effect of iterations on the results, we 
compare the sDE/best/2 and the corresponding DE/best/2 
with 9 combinations of the constants (CR, F). The results 
in Table 2 show that sDE with the random values (CR, F) 
is as good as the "best combination" (with CR = 1, F = 0.5) 
and better than other combinations (CR, F) for 105 itera-
tions. As there is an uncountable combination of (CR, F), 
it will theoretically take timeless computation time to 
tune them for the best combination. Therefore, the effec-
tive use of random values (CR, F) in sDE will bring a con-
siderable benefit.

As the number of iterations decreases to 104 and 103, the 
goodness of sDE solutions also decreases in comparison 
with the "best combination" (with CR = 1, F = 0.5) but is 
still better than other combinations (CR, F), as shown in 
Table 3 and Table 4. This implies that the use of sDE might 

be best suitable with enough iterations. On the other hand, 
it also means that the use of sDE is quite good if there is 
not available the "best combination" of CR and F.

4.2 Engineering design problems
Three popular engineering design problems, including 
a pressure vessel, a welded cantilever beam, and a coil 
spring, will be tested. As the number of variables in these 
problems is only 3 or 4, the population is chosen as 20. 
Two values of iterations (100 and 200) are surveyed to 
illustrate the effective use of the proposed technique.

4.2.1 Problem 1: Pressure vessel
A cylindrical vessel with both hemispherical ends [15] is 
shown in Fig. 1. The objective function is the total cost of 
the material and manufacturing. There are four variables, 

Table 2 Comparison between sDE and DE with combinations of (CR, F), iterations = 105

Test 
func.

sDE/best/2
(random CR 

and F)

The original differential evolution DE/best/2 with assigned values of (CR, F)

CR = 0.1 
F = 0.1

CR = 0.1 
F = 0.5

CR = 0.1 
F = 1

CR = 0.5 
F = 0.1

CR = 0.5 
F = 0.5

CR = 0.5 
F = 1

CR = 1 
F = 0.1

CR = 1 
F = 0.5

CR = 1 
F = 1

1 −1735.440 fail fail fail −1131.245 −1525.101 fail fail −1767.981 fail

2 17.014 33.822 fail 85.669 17.307 22.161 18.697 30.734 17.014 19.234

3 0.054 0.071 fail fail 0.233 0.455 0.996 0.317 0.054 0.465

Table 3 Comparison between sDE and DE with combinations of (CR, F), iterations = 104

Test 
func.

sDE/best/2
(random CR 

and F)

The original differential evolution DE/best/2 with assigned values of (CR, F)

CR = 0.1 
F = 0.1

CR = 0.1 
F = 0.5

CR = 0.1 
F = 1

CR = 0.5 
F = 0.1

CR = 0.5 
F = 0.5

CR = 0.5 
F = 1

CR = 1 
F = 0.1

CR = 1 
F = 0.5

CR = 1
F = 1

1 −1230.697 fail fail fail −1012.949 −1255.028 −1213.540 fail −1729.345 fail

2 22.602 88.706 fail fail 25.976 105.722 24.855 25.064 19.662 20.862

3 0.305 0.987 fail fail 0.488 0.440 fail 0.884 0.054 0.587

Table 4 Comparison between sDE and DE with combinations of (CR, F), iterations = 103

Test 
func.

sDE/best/2
(random CR 

and F)

The original differential evolution DE/best/2 with assigned values of (CR, F)

CR = 0.1 
F = 0.1

CR = 0.1 
F = 0.5

CR = 0.1 
F = 1

CR = 0.5 
F = 0.1

CR = 0.5 
F = 0.5

CR = 0.5 
F = 1

CR = 1 
F = 0.1

CR = 1 
F = 0.5

CR = 1
F = 1

1 −950.146 fail fail fail −1271.340 fail fail fail −1440.575 fail

2 20.637 fail fail fail 26.573 fail 31.388 18.855 26.971 17.800

3 0.118 fail fail fail 0.154 0.752 fail 0.069 0.260 0.812

Table 1 Optimal solutions by sDE strategies

Test 
func. sDE/rand/1 sDE/best/1 sDE/rand/2 sDE/best/2 sDE/target-to-best/1

References

DE/rand/1 
in [12]

DE/best/2  
in [13]

Best known 
[12, 14]

1 −1598.930 fail −1768.807 −1735.440 fail −1278.079 −1690.003 −1768.807

2 17.017 fail 17.605 17.014 31.763 20.273 17.014 17.014

3 0.475 fail 0.441 0.054 fail 0.453 0.054 0.054
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including Ts (or x1) and Th (or x2) are the thickness of the 
stem and the head, respectively. For manufacture require-
ments, they are of integer multiples of 0.0625; the radius R 
(or x3) and the stem length L (or x4) are continuous quanti-
ties. The problem is formulated as follows:

Minimize

S

f � � �

�

0 6224 19 84 1 7781
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4.2.2 Problem 2: Welded cantilever beam
The welded cantilever beam [16] with four design vari-
ables (h = x1, d = x2, t = x3, and b = x4) as shown in Fig. 2. 
The objective is to minimize the cost of the beam under 
constraints on shear stress τ, bending stress σ, buckling load 
P, and the end deflection of the beam δ. Given parameters 
P = 6000 lb, L = 14 in, E = 30 × 106 psi, G = 12 × 106 psi, 
τmax = 13600 psi, σmax = 30000 psi, and δmax = 0.25 in, the 
problem is formulated as follows:
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4.2.3 Problem 3: Coil spring
The weight of a coil spring [17] is minimized. The spring 
is in tension/compression under axial force P, and con-
straints on deflection, shear stress, frequency of surge 
waves, and dimension relation. The design variables are 
the wire diameter d (or x1), the mean coil diameter D 
(or x2), and the number of active coils (x3) as in Fig. 3. 

Fig. 1 Pressure vessel dimensions

Fig. 2 Welded cantilever beam dimensions

Fig. 3 Coil spring dimensions
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The problem is formulated as follows:

Minimize f � �� �x x x
3 2 1

2
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The results of three engineering design problems in 
Table 5 [15–19] show that the strategy sDE/best/2 again 
outperforms the other 4 strategies and gives better results 
compared with those in the literature. Similar to the previ-
ous test functions, the strategies sDE/target-to-best/1 and 
sDE/best/1 are not effective in these problems. The results 
improvement as the number of iterations increases from 
100 to 200 is not much (Table 6). This implies that for these 
engineering design problems, the proposed technique does 

not need many iterations to reach good results. Despite the 
random values of the mutation and crossover constants, 
the convergence speeds in Fig. 4 of the proposed technique 
are quite fast in the first 20 iterations.

4.3 Trusses under frequency constraints
The minimization of truss weight under frequency con-
straints is defined as follows:

Minimizing

Subject to:

W L A

i K
A A

i i i
i
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i i

i i
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, ,

, ,

1

1x x x

 (9)

where W is the truss weight; ρi, Li, and Ai are the density, 
length, and cross-section area of the ith element, respec-
tively; ωi and ωi,min are the ith natural frequency and cor-
responding frequency limit; Ai,min and Ai,max are the lower 
bound and upper bound of the ith cross-section area; xi,min 
and xi,max are the lower bound and upper bound of the ith 
coordinates; N, K, and M are the number of elements in 
the truss, number of frequency constraints and number of 
nodes coordinate constraints, respectively.

In this study, three planar trusses (10-bar, 37-bar, and 
200-bar) and three spatial trusses (52-bar, 72-bar, and 120-
bar) are tested. The truss parameters are listed briefly in 
Table 7 [20–29]. Details of these problems can be found 
in [20]. Their shapes are illustrated in Fig. 5. With struc-
tural characteristics of the trusses, for simplification and 
reduction of the search space, elements of some trusses are 
grouped into the same cross-section areas. Also, thanks to 
the symmetry, the coordinates of nodes are grouped into 
the same values. 

Table 5 Optimal results of engineering design problems by sDE strategies

Problem Iterations sDE/rand/1 sDE/ best/1 sDE/rand/2 sDE/best/2 sDE/target-to-best/1 Other methods

Pressure vessel
200 5896.2802 7434.9354 5891.9362 5885.3216 6105.4634 7198.0428 [15]

6288.7445 [18]
5889.911 [19]100 5903.2898 6707.5505 5947.5025 5887.6393 6364.8340

Welded cantilever beam
200 2.3810 2.7373 2.3811 2.3809 2.5164

2.3859 [16]
100 2.3858 2.8574 2.3937 2.3812 2.9246

Spring
200 0.0099 0.0104 0.0099 0.0099 0.0099 0.0127 [17, 18]

0.01267 [19]100 0.0099 0.0109 0.0099 0.0099 0.0100

Table 6 Optimal solutions by the strategy sDE/best/2 with 200 iterations

Problem x1 x2 x3 x4 Optimal results

Pressure vessel 0.7782 0.3846 40.3196 199.9995 5885.3216

Welded cantilever beam 0.2444 6.2175 8.2915 0.2444 2.3809

Spring 0.0500 0.3744 8.5466 n/a 0.0099
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Table 7 Parameters of trusses under frequency constraints, from [20]

Parameters Unit
Data of problems

10-bar 37-bar 200-bar 52-bar 72-bar 120-bar

Modulus of 
elasticity, E N/m2 6.98 × 1010 2.1 × 1011 2.1 × 1011 2.1 × 1011 6.98 × 1010 2.1 × 1011

Material density, ρ kg/m3 2770 7800 7860 7800 2770 7971.81

Frequencies 
constraints Hz

ω1 ≥ 7
ω2 ≥ 15
ω3 ≥ 20

ω1 ≥ 20
ω2 ≥ 40
ω3 ≥ 60

ω1 ≥ 5
ω2 ≥ 10
ω3 ≥ 15

ω1 ≥ 15.916
ω2 ≥ 28.648

ω1 = 4
ω3 ≥ 6

ω1 ≥ 9
ω2 ≥ 11

Cross-section 
bounds m2 [0.645 × 10−4, 

40 × 10−4] [10−4,10−3] [0.1 × 10−4, 
30 × 10−4] [10−4, 10−3] [0.645 × 10−4, 

30 × 10−4] [10−4, 129.3 × 10−4]

Nodes coordinate 
bounds m n/a

upper nodes 
y-coord.
[0.5, 2.5]

n/a free nodes, x and y 
coord. ±2 m n/a n/a

Added masses kg 454 kg at 
nodes 3–6

10 kg at lower 
nodes

100 kg at 
nodes 1–5

50 kg at free 
nodes 1–13

2270 kg at 
nodes 17–20

3000 kg at node 1, 
500 kg at nodes 2–13, 

and 100 kg at 
nodes 14–37

Optimal problem Cross-section 
size

Cross-section 
sizes and y-coord. 

of upper nodes 
(symmetry is 

reserved)

Cross-section 
size

Cross-section 
sizes and free 

nodes' coordinates 
(symmetry is 

reserved)

Cross-section 
size Cross-section size

Number of element 
groups 10 14 19 9 16 7

Minimum weight 
Wmin (sDE/best/2) kg 524.6188 359.3328 2295.3961 190.3183 324.3183 8707.9846

Wmin from [20] kg 524.56 359.45 2296.38 191.28 324.36 8710.90

Wmin from [21] kg n/a n/a 2122.29 n/a 324.704 8889.439

Wmin from [22] kg 529.09 n/a 2298.61 197.31 327.51 9046.34

Wmin from [23] kg 535.61 n/a n/a n/a 326.67 n/a

Wmin from [24] kg 524.88 364.72 n/a 193.36 324.50 n/a

Wmin from [25] kg 535.14 363.03 n/a 207.27 n/a n/a

Wmin from [26] kg 532.34 360.56 n/a 195.62 334.66 8886.92

Wmin from [27] kg 524.49 359.25 n/a 195.19 324.32 n/a

Wmin from [28] kg 530.77 359.94 n/a n/a 327.670 8888.74

Wmin from [29] kg 532.12 358.01 n/a 193.13 328.21 n/a

(a) (b) (c)

Fig. 4 Convergence of the strategy sDE/best/2 in engineering problems: (a) Pressure vessel, (b) Welded cantilever beam, (c) Coil spring

For comparison with the study in [20], parameters 
of sDE are set similarly, i.e. population N = 50 (except 
N = 150 for 200-bar truss), number of iterations I = 150. 
Each problem is performed in 50 independent runs (except 
100 runs for the 200-bar truss).

Results of five strategies of sDE for truss optimization 
problems in Table 8 show the sDE/best/2 again generally 
gives the best solutions which are as good as other results 
in the literature listed in Table 7. Details of the best solu-
tions by sDE/best/2 are given in Table 9 and Table 10. 
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Fig. 5 Truss optimization problems, from [20]: (a) planar 10-bar truss, (b) planar 37-bar truss, (c) planar 200-bar truss, (d) spatial 52-bar truss, 
(e) spatial 72-bar truss, (f) spatial 120-bar truss

(a) (b)

(c) (d)

(e) (f)
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Table 8 Comparison of five strategies of sDE for truss optimization problems

Problem sDE/rand/1 sDE/ best/1 sDE/rand/2 sDE/best/2 sDE/target-to-best/1

10-bar truss 525.8188 524.7329 527.9732 524.6188 539.0347

37-bar truss 360.9799 359.3189 365.8674 359.3328 394.2362

200-bar truss 2367.2908 2297.2156 5815.2890 2295.3961 fail

52-bar truss 199.2699 190.7274 202.5675 190.3183 298.9483

72-bar truss 325.6014 324.3488 327.3215 324.3183 436.2554

120-bar truss 8715.9833 8707.9942 8733.1571 8707.9846 fail

Table 9 Optimal results of planar trusses

10-bar truss 37-bar truss 200-bar truss

Parameters Results Parameters Results Parameters Results

A1 (cm2) 34.5048 Y3, Y19 (m) 0.9406 A1 (cm2) 0.2640

A2 (cm2) 14.8601 Y5, Y17 (m) 1.3359 A2 (cm2) 0.1861

A3 (cm2) 35.2763 Y7, Y15 (m) 1.5113 A3 (cm2) 5.7968

A4 (cm2) 14.4002 Y9, Y13 (m) 1.6557 A4 (cm2) 0.5882

A5 (cm2) 0.6485 Y11 (m) 1.7428 A5 (cm2) 1.4846

A6 (cm2) 4.5936 A1, A27 (cm2) 2.8908 A6 (cm2) 3.0090

A7 (cm2) 24.2256 A2, A26 (cm2) 1.1504 A7 (cm2) 5.3682

A8 (cm2) 23.2799 A3, A24 (cm2) 1.0231 A8 (cm2) 8.0812

A9 (cm2) 12.5059 A4, A25 (cm2) 2.8836 A9 (cm2) 18.6087

A10 (cm2) 12.7069 A5, A23 (cm2) 1.0000 A10 (cm2) 0.1002

Wmin (kg) 524.6188 A6, A21 (cm2) 1.2895 A11 (cm2) 0.1002

A7, A22 (cm2) 2.3845 A12 (cm2) 0.1000

A8, A20 (cm2) 1.3443 A13 (cm2) 0.1000

A9, A18 (cm2) 1.5275 A14 (cm2) 0.1444

A10, A19 (cm2) 2.4881 A15 (cm2) 0.8303

A11, A17 (cm2) 1.1960 A16 (cm2) 1.1969

A12, A15 (cm2) 1.3622 A17 (cm2) 1.5827

A13, A16 (cm2) 2.0690 A18 (cm2) 2.1200

A14 (cm2) 1.0000 A19 (cm2) 4.3291

Wmin (kg) 359.3328 Wmin (kg) 2295.3961

The next good strategies for these problems are sDE/
rand/1 and sDE/best/1. On the other hand, sDE/rand/2 is 
not effective and sDE/target-to-best/1 is the worst.

Despite the random values of CR and F, the conver-
gences of the strategy sDE/best/2 depicted in Fig. 6 show 
stability and fast convergence in about 50 first iterations. 
Again, it is noted that the original DE always needs the best 
tuning values of CR and F, whereas the proposed technique 
does not need it. Therefore, the sDE is very useful for engi-
neering problems that need a large computation time.

5 Conclusions
The very simple version of the differential evolution algo-
rithm (sDE) with the random mutation factor and cross-
over constant shows promising results in constrained 

optimizations, engineering design problems, and trusses 
under frequency constraints. The best advantage of the 
technique is its simplicity and saving computation time 
as it is not necessary to tune the mutation and crossover 
constants for each problem. In the study, the strategy sDE/
best/2 proves its superiority whereas the other strategies 
sDE of the differential evolution do not show a clear advan-
tage in tested problems. The use of the best individual in 
the strategy sDE/best/2 can be considered as a balancing 
role against the exploration characteristic of random val-
ues CR and F. The study also shows a good and quite rapid 
convergence of the strategy sDE/best/2. Therefore, the 
proposed technique can search for optimal solutions much 
simpler and faster in engineering problems, which nor-
mally consumes a large computation resource. However, 
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it needs more comprehensive analyses to evaluate quanti-
tatively the superiority of the proposed method. For exam-
ple, the sensitivity analysis to determine the impact of 
a random selection of mutation and crossover constants, 
in conjunction with the time-complexity analysis.
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Table 10 Optimal results of spatial trusses

52-bar truss 72-bar truss 120-bar truss

Parameters Results Parameters Results Parameters Results

A1 – A4 (cm2) 1.0024 A1 – A4 (cm2) 16.8900 A1 – A12 (cm2) 19.5976

A5 – A8 (cm2) 1.5896 A5 – A12 (cm2) 8.1823 A13 – A24 (cm2) 40.0585

A9 – A12 (cm2) 1.0034 A13 – A16 (cm2) 0.6450 A25 – A36 (cm2) 10.7010

A13 – A16 (cm2) 1.2898 A17 – A18 (cm2) 0.6459 A37 – A60 (cm2) 21.1484

A17 – A24 (cm2) 1.1601 A19 – A22 (cm2) 12.9812 A61 – A84 (cm2) 9.7990

A25 – A32 (cm2) 1.2977 A23 – A30 (cm2) 7.7909 A85 – A96 (cm2) 11.6332

A33 – A40 (cm2) 1.1435 A31 – A34 (cm2) 0.6450 A97 – A120 (cm2) 14.8813

A41 – A44 (cm2) 1.0208 A35 – A36 (cm2) 0.6450 Wmin (kg) 8707.9846

A45 – A52 (cm2) 1.6931 A37 – A40 (cm2) 7.8641

Z1 (m) 5.9154 A41 – A48 (cm2) 7.9666

X2 (m) 2.6180 A49 – A52 (cm2) 0.6450

Z2 (m) 3.7000 A53 – A54 (cm2) 0.6450

X6 (m) 4.1842 A55 – A58 (cm2) 3.4786

Z6 (m) 2.5139 A59 – A66 (cm2) 7.8214

Wmin (kg) 190.3183 A67 – A70 (cm2) 0.6451

A71 – A72 (cm2) 0.6450

Wmin (kg) 324.3183

Fig. 6 Convergence of the strategy sDE/best/2 of six truss problems

(a) (b) (c)

(d) (e) (f)
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