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Abstract

Effective design of bituminous mixes for road pavements requires a robust understanding of their mechanical properties to ensure 

durability and safety. Conventional experimental methods for assessing these properties are time-consuming and costly. To address 

this challenge, advanced machine learning techniques have gained prominence in predicting bituminous mix behaviour. In this study, 

we focus on predicting Marshall Stability (MS) and Flow (MF) of foamed bitumen bound asphalt pavements using essential input 

parameters: Temperature, Foam Content, Expansion Ratio, and Half-Life. Leveraging a neural network model, accurate prediction 

equations and surface analyses were developed for optimizing pavement design. Furthermore, integration equations are also 

introduced to enhance the accuracy of the methodology. Sensitivity and Parametric Analyses provide insights into parameter impacts, 

and R-squared measures model goodness of fit. The research work presented not only streamlines pavement design but also advances 

the understanding of intricate input-output relationships in bituminous mixtures.
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1 Introduction
The quest for robust and efficient road pavements to 
withstand climate conditions and ever-increasing heavy 
traffic loads demands effective design of asphalt mix-
tures. Insufficient mechanical properties in pavement 
materials can give rise to an array of detrimental conse-
quences, including the emergence of low-temperature or 
fatigue cracks, stripping of aggregate grains, and per-
manent pavement deformations. These issues pose sig-
nificant threats to the service life of pavements and the 
safety of road users [1]. Hence, characterizing mixture 
performance based on composition is essential for opti-
mizing the procedure of mix design [2, 3]. Conventional 
experimental methods assessing bituminous mix perfor-
mance [4, 5] necessitate costly laboratory experiments and 
skilled labour, making any composition change in bitumen 
content, type, or aggregate gradation rather time-consum-
ing and costly [2]. To expedite this process, researchers 
have focused on developing numerical or mathemati-
cal relationships for the mechanical behaviour of asphalt 

mixtures, enabling quick and accurate predictions. 
Advanced machine learning (ML) methods, such as artifi-
cial neural networks (ANN) [6, 7], have gained popularity 
for their reliability and prediction capabilities. ML tech-
niques are increasingly used to model complex behaviours 
of pavement engineering materials [8, 9], and data min-
ing in material, civil, and pavement engineering has been 
widely reported due to rapid ML advancements [10]. Soft 
computing methods (SCMs) and artificial intelligence 
techniques (AITs), like hybrid ANNs with support vector 
machines (SVM) and adaptive neuro-fuzzy inference sys-
tems (ANFIS), have facilitated various models alongside 
conventional statistical models [11–13].

Specifically, ANNs mimic biological neural net-
works [14–16], while ANFIS combines fuzzy algorithms 
and ANNs [17, 18]. The method of genetic programming, 
known as MEP (Multivariate Evolutionary Polynomial 
Regression), stands out as an efficient and powerful alter-
native for predicting complex and nonlinear problems [19]. 
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MEP has shown promise in material engineering for pre-
dicting properties, among others, tensile and compressive 
strength [20], Marshall parameters [19], soil classifica-
tion [21], and deformation moduli [22].

Traditionally, fewer data points and limited correlations 
in governing parameters were limitations in prior statis-
tical studies for predicting Marshall Stability (MS) and 
Marshall Flow (MF) of asphalt pavements [23]. Moreover, 
laboratory tests for MS and MF are time-consuming and 
costly [24, 25]. To address these challenges, researchers 
have employed ANN and ANFIS approaches using basic 
input parameters for predicting MS and MF [24, 26, 27].

In this research study, the primary objective is to develop 
a model that reliably predicts Marshall Stability (MS) 
and Flow (MF) of asphalt mixtures with foamed bitumen 
binder using key input parameters that are both straightfor-
ward and cost-effective. The following four essential prop-
erties were chosen as input parameters: Temperature (T), 
Percentage of Foamed Bitumen Content (FBC), Expansion 
Ratio (EX), and Half-Life (HL). These selected input 
parameters play a critical role in determining the perfor-
mance of the asphalt mixtures and are readily obtainable in 
practical scenarios. The output parameters of the study are 
MS (corrected Stability in kg) and MF (flow in 0.25 mm), 
which are essential indicators of pavement durability and 
load-carrying capacity. By leveraging these input parame-
ters and applying advanced modelling techniques, a robust 
and accurate prediction model was established. It can sig-
nificantly contribute to optimizing pavement design and 
ensuring long-lasting and safe road infrastructure.

This research work strives to enhance the predic-
tion process for asphalt pavement properties and create 
an equation that will be using and leading to more efficient 
and cost-effective road designs.

2 Data collection and pre-processing
A comprehensive and detailed dataset comprising numer-
ous data points was meticulously examined to develop 
predicting models utilizing the advanced ANN approach. 
Bitumen of grade 50/70 was consistently used across all 
datasets under consideration. Additionally, exhaustive 
tests related to foamed bitumen, coarse, and fine aggre-
gates were meticulously conducted. The distribution of 
these datasets plays a pivotal role in gauging the effective-
ness of the models developed [14]. Factors such as data 
characteristics, input-output parameter relationships, and 
data size significantly influence the model's accuracy [28]. 
To achieve optimal predictions for MS and MF, four input 
parameters were carefully selected for the ANN approach, 

ensuring the model's efficiency and simplicity. In deter-
mining the correlation of the output parameters (MS and 
MF) based on the distribution of all input parameters, 
the Spearman rank coefficient was employed, as illustrated 
in Tables 1 and 2. Previous research highlights the impor-
tance of avoiding excessive inputs with low correlation to 
the desired output, as it can negatively impact the model's 
performance and lead to unnecessary complexity [29, 30].

In the pursuit of modelling excellence, we embarked 
on a transformative method, amalgamating all elements 
together, creating a unique and dynamic approach referred 
to as "complex".

3 Machine learning models
The parameter selection is the initial step in developing 
the appropriate models. In this case: MS, MF = f (T, EX, 
HL, FBC).

3.1 Neural Network Architecture
Fig. 1 presents the architectural design of the neural net-
work specifically tailored for predicting Stability and 
Flow in foamed bitumen mixtures. This neural network 
is crafted as a Feedforward Neural Network (FFBP) with 
a single hidden layer containing 18 neurons. The network 
takes four inputs, namely Temperature, Foam Content, 
Expansion Ratio, and Half-life, and produces two out-
puts, Stability and Flow. Each neuron in the hidden layer 
employs the Rectified Linear Unit (ReLU) transfer func-
tion, while the output neurons use the Linear transfer 
function. The model's parameters (weights and biases) are 
skillfully optimized using the Levenberg-Marquardt algo-
rithm, facilitating faster convergence during training.

Table 1 Correlation for parameters of Stability

T FBC EX HL S

T 1

FBC 0.57142857 1

EX 0.57142857 0.98976582 1

HL −0.19047619 0.47619048 0.47619048 1

S −0.21428571 −0.4047619 −0.4047619 −0.23809524 1

Table 2 Correlation for parameters of Flow

T FBC EX HL F

T 1

FBC 0.35714286 1

EX 0.35714286 0.98976582 1

HL 0.14285714 0.47619048 0.47619048 1

F −0.61904762 −0.4047619 −0.4047619 −0.23809524 1
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To ensure efficient learning, the network employs 
a learning rate of 0.01. A total of 18 nonlinear parame-
ters are involved in this intelligent architecture. The neu-
ral network undergoes rigorous training for 500 epochs, 
iteratively refining its performance and accuracy.

3.2 Training and validation loss
Fig. 2 showcases the dynamic behaviour of the neural 
network's training and validation loss over 500 epochs, 
using Mean Squared Error for the evaluation. The train-
ing loss represents the disparity between the predicted 
Stability and Flow values and the true values within the 
training dataset. Similarly, the validation loss measures 

the dissimilarity for a separate validation dataset. As the 
neural network undergoes training, the optimization pro-
cess aims to minimize these losses, leading to increas-
ingly accurate predictions. It is vital for both training and 
validation losses to converge, indicating that the model is 
adept at generalizing to new, unseen data.

Overall, the resulted charts help assess the performance 
and architecture of the neural network model, provid-
ing valuable insights into the prediction of Stability and 
Flow in foamed bitumen mixtures based on the specified 
inputs. To make accurate predictions for Stability and 
Flow, the model is trained on a dataset containing input 
features (Temperature, Foam Content, Expansion Ratio, 
and Half-life) and corresponding Stability and Flow val-
ues. The  raining process aims to minimize the difference 
between the predicted values and the actual values, result-
ing in a reliable model for predicting Stability and Flow for 
different input combinations. (Loss function used is MSE).

4 Results and discussion
4.1 Equations involved
During the forward propagation phase, the output of each 
neuron based on the input values and the current weights 
of the network were calculated. The following equa-
tion [31] is used to compute the output of a neuron in the 
hidden layer (Fig. 3):

h w x bi
j

n

ij j i� �
�

�
�

�

�
��

�

� � � ���
1

1 1
,  (1)

where:
•  hi : is the output of the i th neuron in the hidden layer,
• wij

1� �
:  is the weight connecting the ith neuron in the 

hidden layer to the jth input node,
•  xj : is the j th input value,
• bi

1� �
:  is the bias term associated with the i th neuron 

in the hidden layer,
•  σ : is the activation function (e.g., sigmoid, tanh, 

ReLU, etc.).

Similarly, the output of a neuron in the output layer is 
computed using the following equation:
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where:
•  Ok : is the output of the k th neuron in the output layer,
• wki

2� �
:  is the weight connecting the k th neuron in the 

output layer to the i th neuron in the hidden layer,

Fig. 1 Structure of neural network

Fig. 2 Dynamic behavior of the neural network
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•  hi : is the output of the i th neuron in the hidden layer,
• bk

2� �
:  is the bias term associated with the k th neuron 

in the output layer.

In the pursuit of enhancing our predictive model's accu-
racy, we delve into determining the optimal values for the 
input parameters using a surface analysis. By visualizing 
the relationship between multiple input parameters and the 
corresponding output values, the combination of parameters 
can be pinpointed that yields the highest predicted outcomes.

A three-dimensional surface plot was constructed that 
maps the input parameters onto the horizontal axes and the 
predicted output (either Stability or Flow) onto the verti-
cal axis. The surface plot offers a comprehensive view of 
how changes in input values interact to influence the out-
put predictions. Peaks and valleys in the surface illustrate 
areas of higher or lower predicted values, allowing us to 
identify the optimal parameter combination that leads to 
the desired outcome.

Additionally, the concept of R-squared (coefficient of 
determination) is also utilized to quantify the goodness of fit 
of the model. R-squared measures the proportion of the vari-
ance in the dependent variable (output) that can be explained 
by the independent variables (inputs). A higher R-squared 
value indicates a better fit of the model to the data.

By combining the surface analysis and R-squared 
evaluation, the identification of the parameter configu-
rations was strived that exhibit strong explanatory. This 
dual approach aids in refining the model, ensuring that it 
not only produces accurate predictions but also provides 
insights into the underlying relationships between the 
inputs and outputs (Fig. 4).

4.2 Verification of asphalt foaming model
The model was built using 420 laboratory results. 300 of 
them with 5 variable values of FBC (1.5–3.5 %), increased 
by 0.5%, and 60 variable values of both EX and HL. At the 
same time, the rest of data set (120) was obtained with 

Fig. 3 Method of computation in hidden layer

Fig. 4 R-squared and optimal values
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4 variable values of Temperature (160–190 °C), increased 
by 10 °C, 80 % of these data was used to build the model 
and the remaining 20% served for the checking process.

Fig. 5 represents the resulting heatmap visually, which 
describes the strength and direction of the relationships 
between these variables. The heatmap uses a colour spec-
trum ranging from cool (blue) to warm (red) to indicate 
the strength of the correlation. Dark blue indicates a strong 
negative correlation (close to −1), meaning that as one 
variable increases, the other tends to decrease. Dark red 
indicates a strong positive correlation (close to 1), mean-
ing that as one variable increases, the other also tends to 
increase. Lighter shades represent weaker correlations, 
closer to 0. The diagonal line of the heatmap represents 
the correlation of each variable with itself, which is always 
1 since it is perfectly correlated with itself. The correlation 
does not imply causation; it merely indicates the statistical 
association between variables [31].

Overall, the heatmap results provide valuable insights 
into the relationships between the input and output vari-
ables, aiding in understanding the factors that influence 
Stability and Flow in asphalt pavements.

4.3 Scatter Plots
The Scatter Plots in the analysis play a pivotal role in visu-
ally encapsulating the intricate relationships between input 

variables and the corresponding output predictions of the 
neural network model. The resulted plots serve as a direct 
window into how changes in inputs reverberate through 
the model, resulting in varying predictions for Stability 
and Flow. By juxtaposing input values against output pre-
dictions, these Scatter Plots lay bare the patterns, trends, 
and potential outliers within the data. Each point on the 
plot represents an instance, where the model has made 
a prediction based on specific input parameters. The place-
ment of these points along the plot’s axes reveals the extent 
of influence each input wields over the outputs (Fig. 6). 

The Scatter Plots bring to light the nuances within the 
Temperature, Foam Content, Expansion Ratio, and Half-
Life inputs and their impact on Stability and Flow predic-
tions. Clusters of points, their dispersion, and any discern-
ible trends provide immediate visual insights into how the 
neural network's internal calculations translate into real-
world predictions (Fig. 7). 

This visual representation is instrumental in making 
informed decisions about model adjustments, identify-
ing potential areas of improvement, and gaining a deeper 
understanding of the model's performance. The Scatter 
Plots are more than just visual aids; they are analytical tools 
that help us navigate the complex landscape of inputs and 
outputs in our neural network model, guiding us towards 
enhanced predictions and a refined model architecture.

Fig. 5 Correlation analysis
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Fig. 6 Effects of changed inputs for Stability and Flow

Fig. 7 Scatter plots
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4.4 Sensitivity and Parametric Analysis
Sensitivity and Parametric Analyses stand as critical pil-
lars in comprehending the intricate dynamics of complex 
systems, such as the neural network model we employed. 
These analyses allow us to unravel the intricate relation-
ships between inputs and outputs, offering invaluable 
insights into the model's behaviour and its responsive-
ness to various factors [32]. Sensitivity Analysis strives to 
decipher the influence of individual input variables on the 
model's outputs, uncovering which inputs wield the most 
profound impact. In parallel, Parametric Analysis dives 
into the consequences of altering specific parameters 
while keeping other variables constant, fostering a deeper 
understanding of the system's intricacies [33].

In our scenario, both Sensitivity and Parametric 
Analyses were undertaken on a neural network model 
crafted for predicting two key outputs: Stability and Flow, 
with four input parameters in play – Temperature, Foam 
Content, Expansion Ratio, and Half-Life. Sensitivity 
Analysis made it possible to quantify the sensitivity of 
each output to these inputs, unraveling the core drivers 
behind the model's predictions. The impact of each param-
eter was quantified using following equations [31]:

Equation (3) for the calculation of the sensitivity of each 
input parameter on the neural network model's outputs:

K N x N xi i i� � � � � �max min
,  (3)

where:
•  Ki : is the sensitivity of the output to the i th input 

parameter,
•  Nmax(xi ): is the maximum predicted value of the out-

put when the i th input parameter (xi ) is at its maxi-
mum value,

•  Nmin(xi ): is the minimum predicted value of the out-
put when the i th input parameter (xi ) is at its mini-
mum value.

Equation (4) calculates the range of predicted values of 
the output (N  ) due to variations in i th input parameter (xi ).

S
K
K

a
i

n

j
i

� ��� 1
100,  (4)

where:
•  Sa : is the sensitivity analysis value or the sensi-

tivity of the output to the i th input parameter as 
a percentage,

•  Ki : is the sensitivity of the output to the i th input 
parameter, as calculated in Eq. (3),

• 
n

j
iK

�� 1

:  is the sum of sensitivities across all input 
parameters.

Equation (4) compared how each input parameter can 
affect the model's output. It is performed by dividing 
the sensitivity of each input parameter (Ki ) by the total 
sensitivity of all input parameters added together. It is 
expressed in percentage. So, the input parameters could 
be identified, which have the biggest impact on the mod-
el's predictions.

It was found that, for Stability, the Expansion Ratio 
carries a monumental influence, while for Flow, it is 
the Foam Content that exerts the most substantial sway. 
The Parametric Analysis allowed us to delve deeper into 
these relationships. Through a meticulous exploration 
of each parameter's effects on the outputs, a comprehen-
sive understanding of their contributions was formulated. 
Notably, the Expansion Ratio displayed a steep decline in 
Stability as it escalated Fig. 8, while Foam Content exhib-
ited a proportional rise in flow with its ascent as shown 
in Fig. 9. By blending the insights of Sensitivity and 
Parametric Analyses, a panoramic comprehension of our 
model's inner workings was gained. Armed with equations 
and a granular understanding, we stand poised to make 
targeted refinements to the model, optimizing its architec-
ture, and zeroing in on pivotal parameters. Ultimately, this 
synergy of analyses allows not only to enhance the model's 
predictive process but also to gain a deeper understand-
ing of the intricate interplay between inputs and outputs, 
all within the realm of Stability and Flow prediction.

4.5 Empirical equations
The next step in the analysis is the formulation of the 
empirical equations that have crystallized from former 
comprehensive exploration. The resulted equations consti-
tute a concise representation of the intricate relationships 
revealed between the input parameters and the predictions 
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Fig. 8 Sensitivity and Parametric Analyses for Stability

Fig. 9 Sensitivity and Parametric Analyses for Flow
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for both Stability and Flow produced by our neural net-
work model. The resulted equations encapsulate the 
underlying patterns and interactions governing the pre-
dictive behaviour of the model:

1. Equation for Stability:

Stability Temperature

Expansion Ratio

� � ��
� � ��
�

0 0711

0 4020

0

2

2

.

.

..

.
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 (5)

2. Equation for Flow:

Flow Temperature

Expansion Ratio
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 (6)

Equations (5) and (6) embody the culmination of former 
meticulous analysis and allow us to predict the model's 
output values with consideration of the input parameters. 
To provide an intuitive understanding of the equations, 
charts were generated that visually depict the relation-
ships they encode. The resulted charts illustrate the inter-
play between individual input parameters and the resultant 
outputs of Stability and Flow (Figs. 10 to 13). By merging 
the power of mathematical modelling with tangible visual-
izations, a comprehensive tool of comprehending was pro-
vided utilizing the insights gained from the analysis. 

In our endeavor of achieving enhanced accuracy and 
deeper insights, a novel approach was introduced that 
involves integration equations. The resulted equations are 
designed to utilize the power of integration to capture even 
more nuanced relationships between the input parameters 
and the predictions for both Stability and Flow, as derived 
from the neural network model presented before.

For the Stability equation (Eq. (7)), the integration of 
the input parameters leads to the following refined form:

Stability Temperature

Expansion Ratio

� � � � �
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 (7)

Similarly for flow:

Flow Temperature

Expansion Ratio
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 (8)

These integration equations hold the potential to 
uncover subtler patterns and dependencies within the data. 
By considering the cumulative effect of the input parame-
ters through integration, to provide an even more accurate 
representation of the complex relationships underlying the 
neural network's predictions was aimed at. The idea was 
incorporating this advanced methodology into the analy-
sis in order to underscore our commitment to unraveling 
the intricate dynamics of the system and refining our pre-
dictive capabilities.

5 Conclusions
In the pursuit of efficient and cost-effective roadway pave-
ments, the research work presented leverages advanced 
machine learning techniques to predict the critical prop-
erties of asphalt mixtures. By utilizing a neural network 
model, we have successfully established accurate predic-
tion equations for Marshall Stability (MS) and Flow (MF), 
integrating essential input parameters. Through surface 
analyses and integration equations, we have unveiled 
intricate relationships between inputs and outputs, pro-
viding a more comprehensive understanding of the sys-
tem's dynamics. Sensitivity and Parametric Analyses have 
illuminated the pivotal parameters and their impacts on 
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predictions, enhancing our ability to optimize pavement 
design. Additionally, R-squared measures have quantified 
the model's goodness of fit, ensuring the reliability of our 

predictions. This study not only contributes to efficient 
road infrastructure but also advances the domain's knowl-
edge in material engineering and predictive modeling.

Fig. 10 Stability and Flow vs. Half Life

Fig. 11 Stability and Flow vs. Temperature

Fig. 12 Stability and Flow vs. Expansion Ratio
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In conclusion, this study stands as a testament to the 
power of modern computational techniques in revolu-
tionizing pavement engineering. By embracing advanced 
machine learning, we've shifted the paradigm from 
resource-intensive experiments to swift, accurate predic-
tions. The model's equations and insights into sensitiv-
ity, combined with the innovative integration equations, 
offer a holistic approach to understanding bituminous mix 

behaviour. This research not only advances the realm of 
pavement engineering but also paves the way for cost-ef-
fective, durable road infrastructure that can withstand the 
test of time and changing conditions. As we drive forward 
on the path of progress, this study serves as a beacon of 
innovation and knowledge in the field of material engi-
neering and predictive modelling.

Fig. 13 Stability and Flow vs. Foam Content
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