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Abstract

This paper covers aspects of quantifying the symmetry of two- and three-dimensional elastic bar-and-joint structures. The concept 

of symmetry as a quantitative property instead of a binary question of 'yes' or 'no' is widely accepted and thoroughly investigated, 

for example, in molecular physics but also in engineering sciences, mainly in chemical engineering. Similarly to most of the articles 

written on this topic, our method is also based on the comparison of specific metrics of the analyzed structure and a reference one, 

i.e., which possesses the desired (perfect) symmetry. The deviation of the analyzed (imperfect) structure from the reference structure 

is quantified by one scalar. The novelty in our approach is that we consider not just the relative position of the nodes but also the 

normal stiffness of the truss members, even for structures with higher-order, i.e., polyhedral symmetries. For both geometric and 

material properties to be accounted for, the eigenvalues of the stiffness matrix were chosen as metrics. The difficulty lies in finding 

the reference structure which will be carried out based on energy principles.
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1 Introduction
1.1 Motivation
The state of symmetry in structural engineering is still 
mostly considered binary; a structure is either symmetric 
or not symmetric. In other fields of science, however, 
several methods exist that allow us to consider symmetry 
as a quantitative property. This paper aims to give an 
easy-to-use method to measure the degree of symmetry 
of truss structures with imperfect or disturbed higher-
order symmetries, considering both the geometry and the 
stiffness properties.

In the field of civil engineering, structures with high-
er-order symmetries also exist; it is sufficient to mention 
geodesic domes, which are sensitive to geometric imper-
fections: even minor disturbances in their geometry may 
cause considerable changes in their structural behavior. 
Quantifying the 'health' of such structures is possible 
using an adequate symmetry measure.

Our further motivation is to understand the shape evo-
lution of objects (e.g., biological tissues) that can also be 
modeled as truss structures. With an adequate measure of 

symmetry, the direction of a process of shape evolution 
starting from a nearly symmetric state could be understood, 
namely, if it approaches a more or less symmetric state.

1.2 State-of-the-art
This subsection briefly introduces the already existing 
approaches to the quantification of symmetry. A good 
starting point could be mentioning the concept of 
continuous symmetry measure (CSM) for measuring 
the degree of symmetry of molecules introduced by 
David Avnir and coauthors [1–6].

Among all the papers dedicated to this topic, the 
most influential to our work was the paper dealing 
with the regular (Platonic and Archimedean) polyhedra 
of Pinsky  and Avnir  [4]. In its Appendix A, a detailed 
algorithm can be found for the determination of the value 
of CSM, which will be shortly summarized here.

Let us suppose that we have a disturbed set of points 
with the center of mass at the origin, which had, in its 
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undisturbed configuration, the symmetries of one of the 
regular polyhedra. The goal is to find a perfectly sym-
metric set of points best fitted to the disturbed one, which 
means here that the sum of the squares of the distance 
between each point in the original configuration and its 
pair in the symmetric one is minimal. In order to find 
this set, we depart from a perfectly symmetric set whose 
points are on the unit sphere. This set is scaled and rotated 
till a minimum deviation of the squares of the distances 
between the corner points (in terms of the scaling fac-
tor and the angles of rotation, e.g., the Euler angles) is 
obtained. If the pairing of the points from the two sets 
is not trivial, all possible pairings must be checked to 
determine whether a better fit can be achieved. Once the 
reference set is obtained, the CSM value is the sum of 
the squares of the distances of the pairs normalized by 
the sum of the squares of the norms of the vectors point-
ing from the origin to the points of the reference set. 
Note that, because of the normalization, the value of CSM 
is between 0 and 1 (in the above-referenced papers, it is 
given as a percentage); 0 stands for the perfectly symmet-
ric state, so it is a measure of asymmetry instead.

Several authors updated or made somehow more effi-
cient the original algorithm of Avnir and coauthors; for 
example, Alikhanidi and Kuzmin [7] introduced the 
MCSM, the 'modified continuous symmetry measure' 
which can handle sets of points in which the points have 
different mass or Alon and Tuvi-Arad [8] reached better 
running times with their update of the original algorithm.

A way different but interesting method uses Voronoi 
entropy [9,  10]. A set of points (seeds) in a plane defines 
Voronoi cells (sets of closest points to each seed), forming a 
Voronoi tessellation. The Voronoi entropy is defined as fol-
lows: S P Pvor i ii

� �� ln , , where i = 3, 4,..., and Pi is the num-
ber of n-sided polygons over the total number of polygons 
in the Voronoi tessellation (the simplest polygon, i.e., hav-
ing the lowest number of sides, is the triangle). The Voronoi 
entropy gives information on the orderliness of the set of 
points. Bormashenko et al. [11] compared the CSM and the 
Voronoi entropy specifically for a Penrose tiling and pointed 
out that these symmetry measures are not objective.

Fang et al. [12] introduced the degree of symme-
try (DoS) and simultaneously the degree of asymmetry 
(DoAS) in the field of quantum physics. Suppose we have 
a quantum system at a certain energy level (characterized 
by its Hamiltonian). In that case, an operation that leaves 
the system at the same energy level is considered a sym-
metry operation. If the energy level changes, then the 

degree of asymmetry can be determined from the devia-
tion from the original energy level. Similar formulations 
of this method are available in [13, 14]. Note that 'degree 
of symmetry' in the present paper is used as a general 
term to describe any measure of symmetry, including the 
one introduced in the forthcoming section.

We mention some examples of symmetry measures in 
biology, too. Esposito et al. [15] examined the symmetry 
of the connectivity diagram of the human brain, setting 
up the adjacency matrix of the neurons, which is quite 
similar to the stiffness matrix considered later in this 
paper. Gandhi et al. [16] used the concept of entropy to 
process and measure the symmetry of biological patterns 
(note that Avnir and coauthors also dealt with incomplete 
symmetries appearing in images; see [17]). Jaśkowski and 
Komosinski [18, 19] quantified the reflection symmetry of 
'3D stick creatures', which are similar to the truss struc-
tures analyzed in this paper, and the authors called atten-
tion to the problem of the different weights of the sticks.

Finally, let us cite some papers close to our topic and related 
to the field of structural engineering. Kaveh and Khazaee [20] 
dealt with originally symmetric structures with minor distur-
bance in their symmetry and showed examples in which the 
calculation of eigenvalues of the stiffness matrix (providing 
information about the eigenmodes) of the closest symmet-
ric structure instead of the actual one causes negligible error. 
Once the error is negligible (which, from the point of view of 
this paper, means that the symmetry measure of the current 
state shows closeness to the perfect one) and a symmetric 
reference state can be found, then several methods exist to 
make use of the symmetry in order to simplify the eigenvalue 
problem, see for example the paper of Kangwai et al. [21] or 
the textbook of Kaveh [22].

Chen and Büyüköztürk [23] dealt with health monitor-
ing and damage to structures. Damages usually imply cer-
tain asymmetry (symmetry breaking) in originally symmetric 
structures, and this asymmetry shows up in the mode shapes 
of the structures. Hence, applying CSM to the mode shapes 
gives information about the health of a structure.

2 The method
This section presents the steps for finding a reference bar-
and-joint structure in the geometric neighborhood of the 
analyzed structure. Further, it introduces our measure of 
symmetry as the normalization of the sum of the squares 
of the deviation between the eigenvalues of the analyzed 
and the reference structure by the sum of the squares of 
the eigenvalues of the latter one.
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It is meaningful to mention that one can read more 
about the utilization of symmetry by (i.e., a more effective 
way of) determining the eigenvalues of perfectly sym-
metric structures with a high degree of freedom, among 
others, in [24–26].

First, the following assumptions are adopted: the struc-
ture consists of linearly elastic straight bars with no ini-
tial strains or stresses; bars are connected by frictionless 
ball joints; external supports and loads along bars are not 
considered. We also assume that deformations are small 
(this condition might not be met in cases where the initial 
imperfect structure is far from being symmetric, but such 
cases are not dealt with here).

2.1 Finding the reference structure
As has been mentioned above, our method is also one of 
those that first determines a reference structure, consid-
ered to have a perfect symmetry in contrast to the imper-
fect symmetry of the analyzed, 'near-symmetric' struc-
ture. In the present case, the symmetry of the reference 
structure is required from both the aspects of geometry 
and stiffness. The reference structure is identified based 
on energy principles as follows. Consider a structure with 
imperfect symmetry: For simple arguments of geometry, 
it is always possible to deform this structure into a per-
fect one by applying an appropriate set of nodal forces. 
The perfect structure is defined by some primary nodes 
and the orbit (set of images of a primary node under all 
symmetry operations of the given symmetry) of each. 
During this deformation process strain energy accumu-
lates in the structure: we will consider the structure to be 
the closest one, i.e., that defines the geometry of the refer-
ence structure, for which the strain energy U(r10,..., rp0,..., 
rq0,...,  rn0)  =  U(R0), as a function of initially unknown 
position vectors of primary nodes Fig. 1, has a minimum 
(R0 contains the column vectors of the primary nodes).
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The interpretation of the variables is as follows: rp0 denotes 
the position vector of the pth out of n primary nodes; its orbit 
can therefore be expressed as rpi =  Ti rp 0 where Ti ,  i = 0,..., 
m–1 stand for matrices of symmetry operations, and m is the 
order of the respective symmetry group. The internal sum in 
(1) is governed by the connectivity parameter χ ij, pq set to 1 
if there is a directed bar with starting node rpi and final node 
rqj and zero otherwise. Observe  that both p = q and i = j are 

possible but not simultaneously. It should also be noted that 
the number of scalar unknowns in U does not equal 2n (in 
2D) or 3n (in 3D) since, on the one hand, the orientation of 
the position vector of the first primary node is free up to a 
rigid-body rotation of the structure; on the other hand, there 
exist reference structures with some nodes lying on sym-
metry elements (i.e., mirror planes or axes of rotation) that 
remove some of the geometric freedoms of node positions. 
An example structure with n = 2 and C4 symmetry (hence 
m = 4) can be seen in Fig. 1, where some orbits of bars con-
tain 4, but others only have 2 bar members.

Setting all first derivatives of (1) to zero can be 
expressed in a compact form as follows:

gradU R
0� � � 0 .	 (2)

Note that a simple stationarity condition is sufficient to be 
checked because a minimum always exists, and (2) results in 
a linear system of equations. Note also that in more complex 
cases, e.g., when there are more primary nodes, (2) can typi-
cally be solved for vectors rp 0 numerically; however, since rigid 
body motions do not affect the strain energy, we can simplify 
the problem departing from some position vectors, e.g., paral-
lel to one of the coordinate axes. Analytical solutions to exam-
ples with one single orbit will be shown in the next section.

Fig. 1 Interpretation of variables of the strain energy: the number 
of orbits of nodes, the order of symmetry, and the primary nodes. 

The reference structure (drawn only by its nodes and position vectors 
in dashed lines) with C4 symmetry is generated by two primary nodes 
(r10 and r20) and their orbit, but for the sake of simplicity, y10 can be set 

to zero. The initial structure is drawn in solid lines.
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Once the coordinates of the nodes of the reference 
structure have been determined, the rest length of the bars 
of the reference structure can also be obtained.

As soon as the geometry of the reference structure is 
known, the stiffness values are to be determined. Here, the 
normal stiffness of the bars of different lengths can differ 
from each other without disturbing the symmetry; the only 
requirement is that the bars of the same orbit must have 
the same normal stiffness. These unknown stiffness values 
are determined from the following condition: the analyzed 
and the reference structure have to store the same amount 
of strain energy if the same normal strain is applied to all 
bars of both structures (one can imagine that the structure is 
proportionally 'swollen'). In order to write this strain energy 
in a proper form, it is convenient to consider a symmetric 
structure as d sets of bars where each set contains nd 
symmetry images (as an orbit) of a particular bar element, 
including that element itself (for instance, a diagonally 
braced near-square plane truss shown later in Fig. 4 implies 
a square reference structure with d = 2, hence n1 = 4 for the 
contour and n2 = 2 for the diagonals). Let us apply a normal 
strain ε to the bars in both structures and equate the strain 
energies by orbits of bars (each orbit t in the perfect structure 
should have the same normal stiffness EApt , but they may be 
different for each orbit):

EA
l n

EA
lkt

k

n

kt d
pt

pt

d

2 21

0

2 2

�
� �

,
� � ,	 (3)

where subscript p stands for perfect, t = 1,..., d. We can 
express the th perfect normal stiffness from (3) as follows:

EA
EA l
n lpt

kt ktk

n

d pt

d

� �� 01 , .	 (4)

2.2 The measure of symmetry
Once the geometry and the normal stiffness(es) of the ref-
erence structure are known, the quantification of symme-
try will be done based on the comparison of the eigen-
values of the stiffness matrices of the analyzed and the 
reference structure. The stiffness matrix for skeletal 
structures is as follows [27]:

K GF G� �1 T
, 	 (5)

where G is the equilibrium matrix, and F is the flexibil-
ity matrix containing values li / EAi in its main diagonal. 
The stiffness matrix seems to be an adequate object to quan-
tify symmetry because it contains both geometric data (G T is 
also known as compatibility matrix) and element flexibilities.

It is essential to mention that in this paper we do not deal 
with the supports or external loads of the structures (clearly, 
supports in an asymmetric arrangement would also break 
the symmetry of the structure). Thus, zero eigenvalues will 
also appear in structures with no internal (inextensional) 
flexibility: their number is 3 and 6 for two and three-
dimensional structures, respectively, in accordance with 
the number of independent rigid-body displacements of 
the whole assembly. Sorting the eigenvalues is also of key 
importance since each eigenvalue is to be compared to its 
'pair' obtained from the imperfect structure.

The measure of the symmetry is introduced as the sum 
of squares of the deviations of the eigenvalues normalized 
by the square of the length of the vector containing the 
eigenvalues of the reference structure as follows:

S i p ii

N

p ii

N�
�� ��

�

�
�
� �

�
,

,

2

1

2

1

,	 (6)

where λi is the ith eigenvalue of the stiffness matrix of the 
analyzed structure, while λp,i is the ith eigenvalue of the 
stiffness matrix of the reference structure, and N is the 
number of degrees of freedom of the structure. Note that 
S = 0 holds for a perfectly symmetric structure; values 
close to 0 mean almost perfect symmetry, and moving 
away from 0 means increasing asymmetry.

Several remarks are to be given regarding this method. 
Firstly, just like other mentioned measures of symmetry, our 
method is not an objective one, e.g., the reference structure 
could have been determined differently, for example, by 
measuring directly the deviation between the Frobenius 
norm of the stiffness matrix of the analyzed structure and that 
of the stiffness matrix of a (possible) perfectly symmetric 
structure which would depend on rotation angles and a 

Fig. 2 Geometry and numbering of bars of the triangle in Example 1. 
Coordinates are to be understood in meters.
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scaling factor. This approach (which would have resulted in 
the generalization of the CSM [28]) was discarded because of 
the lack of a clear physical interpretation.

Secondly, handling the geometry and normal stiffness 
together in one measure might cause the measure to be 
more sensitive to disturbances in geometry than in the 
stiffness values or vice versa. This behavior will be illus-
trated through some examples in the next section.

3 Examples
This section presents examples of determining the refer-
ence structure and computing the measure of symmetry.

Example 1 (triangle). First, we show how our method 
is differently sensible to disturbances of geometry and 
normal stiffness, respectively, analyzing a simple triangle 
(Fig. 2). In two different cases, we apply two types of dis-
turbances to an initially regular triangle written in a circle 
(the normal stiffness values are initially set to some basic 
unit, e.g., EA = 1 kN, and the side lengths are s = 1 m). In 
the first case, we displace vertically the two ends of bar 
#2 with the same distance Δs / 2 (Δs is positive for elon-
gation and negative or shortening). Fig.  3  (a) shows the 
effect of Δs on the measure of symmetry for the cases 
Δs= –0.2,..., 0.2 m.

In the second case, however, the perfect initial sym-
metry of the geometry of the structure is not changed, 
unlike the normal stiffness values: only bar #2 is affected; 
its normal stiffness is modified as EA2 = EA + ΔEA. 
In  Fig.  3  (b), the effect of the changes in the normal 
stiffness of bar #2 on the measure of symmetry can be 
observed from the values ΔEA = –0.2,..., 0.2 kN, while the 
contour plot in Fig.  3  (c) illustrates the change in S for 
both disturbances simultaneously.

Fig.  3 allows two different conclusions to be drawn. 
Firstly, if pure disturbances are only considered, the method 
seems to be more sensitive to changes in geometry. Secondly, 
there exists a particular combination of disturbances in 
geometry and stiffness that has little impact on the symmetry 
measure. The 'valley' in Fig. 3 (c) is found to have a char-
acteristic oblique direction, which can be explained by the 
fact that a proportional increase in both EA and l leaves the 
flexibility values unchanged. Of course, the constant growth 
in l2 induces changes in both the slope and flexibility of the 
inclined members, which makes the symmetry measure grad-
ually deviate from zero even in this direction.

Example 2 (square). Consider disturbed square shapes 
with only one, e.g., horizontal, diagonal bracing of length 
2s (Fig. 4), allowing modifications only in the geometry 

but keeping the normal stiffness EA to be 1  kN for all 
bars. The disturbance is carried out by pulling away or 
pushing towards each other two opposite corners A and 
C of the square by Δs, such that two geometrically simi-
lar assemblies could be obtained (of course, rotated by 90 
degrees). We give the solutions to the particular case of 
Δs = 0.2 m summarized in Table 1.

(c)

(a) (b)

Fig. 3 Plots of measure of symmetry in Example 1: (a) Effect of the 
change of geometry; (b) Effect of the change of stiffness; (c) Contour 

plot of the measure of symmetry as a function of disturbance in length 
and stiffness (vertical and horizontal lines in the center correspond to 

sections displayed in panels (a) and (b), respectively).

Fig. 4 Examples of disturbed square-shaped structures. Coordinates 
are to be understood in meters.
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Since we have only one orbit of joints, we now have one 
unknown vector r10=[x10  y10]

T ( p = 1, q is not used). We have 
C4 symmetry (so m = 4, i, j = 0,1,2,3), and the matrices repre-
senting the symmetry operations are as follows (subscripts 0, 
1, 2, and 3 correspond to nodes A, B, C and D, respectively):

T T T T
0 1 2 3

1 0

0 1

0 1

1 0

1 0

0 1

0 1

1 0
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The χij,11 values are as follows: χ13, 11 is zero, and the 
others are units since all of the nodes are connected 
except for the nodes B and D. When the diagonal AC is 
extended (Case 1), the initial length for the contours and 
the horizontal diagonal are 61 5m  and 12 / 5 m, respec-
tively. However, with a shortened diagonal AC (Case 2), 
the same lengths are 61 6m  and 5 / 3 m, respectively, 
to maintain similarity. As was mentioned before, setting 
the unknown vector r10 parallel to one of the coordinate 
axes is a reasonable simplification since the rigid body 
rotation does not affect the strain energy. Assuming that 
y10 is zero, only the first component of the gradient vector 
is to be dealt with, and the solution in both cases can be 
obtained analytically from (2) as follows:

Case m

Case

1
5

3

40

61
61 4 2 2 0 1 128

2
12

5

48

61
6

10 10
: , . .

:

��
�
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�
�
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�

x x

11 4 2 2 0 0 8960
10 10

�
�
�

�
�
� � � � �x x, . .m

The joints of the reference structure are now deter-
mined by the orbit of the position vector r10 = [x10 0]T, 
i.e.,  T0r0 , T1r0 , T2r0 , T3r0 , and restoring both diagonal 
bars according to the requirements of a fourfold symme-
try we get the geometry of the reference structure. The 
perfect stiffness values are to be calculated from (4) sep-
arately for d = 2 orbits, one for n1 = 4 bars at the contour 
and another for n2 = 2 bars in diagonal position. Numeric 
results for both the geometry and stiffness are summa-
rized in Table 1.

Example 3 (tetrahedron). Let us consider spatial exam-
ples starting with a regular tetrahedron with nodal coordi-
nates (1, –1, –1), (–1, 1, –1), (–1, –1, 1), and (1, 1, 1)  [m]. 
All normal stiffness values are initially of 1 kN. The fol-
lowing cases will be considered (these cases can also 
exemplify the different effects on the measure of symme-
try of the changes in geometry and normal stiffness):

(a) The normal stiffness of three edges sharing the 
same node is reduced; meanwhile, the geometry remains 
unchanged. This way, from a mechanical point of view, 
we obtain a structure with one corner that can be dis-
placed more easily.

(b) One of the corners is pushed radially towards the 
center of mass of the tetrahedron, while the other corners 
and the normal stiffness values remain unchanged.

(c) The cases (a) and (b) together.
We give the results for disturbances of 10 % (i.e., the 

reduced normal stiffness values in Case (a) are 0.9  kN, 
and the distance of the modified node to the origin in Case 
(b) is 0 9 3. m).

In these examples, consider the initial unknown 
vector r10 [x10 x10 x10 ]

T and rotate it about the axis 
� ��� ��1 3 1 3 1 3, ,

T  by 120 and 240 degrees and about 
axis z by 180 degrees. Note that the choice of the applied 
symmetry operations in this case is not unique since the 
nodes all lie on some symmetry elements (axes of threefold 
rotation). We give a possible equation for x10 (the gradient 
of U, which is a simple differentiation now):

Case a x x

Case b x
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Case c x x

m

00
0 9760� . m.

The results are summarized in Table 2. The conclusion 
is the same as in Example 1., i.e., modification in the geom-
etry causes one magnitude larger measure of asymmetry.

Example 4 (octahedron). Our next example is a ran-
domly disturbed octahedron, both from the aspect of 
geometry and stiffness (Fig.  5). Both disturbances have 
been carried out with the help of randomly generated 
numbers. The octahedron was initially written in the unit 
sphere with one of the coordinates being ±1m , and the 
bars were all of normal stiffness EA = 1  kN. To modify 
the stiffness values, we generated twelve integers (for 
the twelve edges) in the closed interval [20, 20] with uni-
form distribution, which were all multiplied by 0.01 kN 

Table 1 The results obtained for squares with Δs=0.2 m.

Case 1 Case 2

Initial side lengths 61 5m 61 6m

Initial (horizontal) diagonal length 12/5 m 5/3 m

Obtained primary node r10
1 128

0

. m�

�
�

�

�
�

0 8960

0

. m�

�
�

�

�
�

Perfect side lengths 1.595 m 1.267 m

Perfect contour normal stiffness (EAp,s) 0.9792 kN 1.027 kN

Perfect diagonal normal stiffness (EAp,d) 0.5319 kN 0.4650 kN

Measure of symmetry (S) 0.02689 0.01486
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and added to the initial value of the normal stiffness. 
Likewise, in the case of the geometry, the closed inter-
val in which 18 integers were randomly generated with 
uniform distribution was [0, 9], and the integers were 
multiplied by 0.02  m and added to the original coordi-
nate values. In Fig. 5., both the analyzed and the reference 
structure are shown, while Tables 3 and 4 give the initial 
data of the disturbed structure. Without getting into the 
details, we obtain l = 1.434 m for the perfect edge length, 
EAp = 0.9806  kN for the perfect normal stiffness, and the 
symmetry measure evaluates to S =0.002852.

Example 5 (spatial truss structure with fivefold 
rotational symmetry). As a last and more practical 
example, let us quantify the symmetry of a structural unit 
of a triangulated shell shown in Fig. 6. Initially, the lower 
nodes were the nodes of a regular pentagon written in the 
unit circle; the upper nodes, however, were written in a 
circle of radius 0.5 m at the height of 1 m, the original 
axis of rotational symmetry is the vertical axis z. The bars 
were all of normal stiffness EA = 1 kN. The disturbances 
were carried out the same way as shown at the octahedron. 
For the sake of reproducibility, we provide the initial data 
of the disturbed structure in Tables 5 and 6. Fig. 6. shows 
the reference structure as well.

Again, for the lower initial node (denoted by r10), we 
get [1.055,0,0]T, and for the upper one (r20) is obtained 
as [0.6282,–0.04342,1.034]T. Note that a relative rotation 
about axis z of the two orbits is permitted without 
disturbing the fivefold rotational symmetry. To determine 
perfect stiffnesses, we distinguished four sets of bars: 
Set  1 contains the edges of the lower pentagon (EAp,1), 
Set  2 is composed of the edges of the upper pentagon 
(EAp,2), in Set 3 contains all bars which were initially 
coplanar with z (e.g., bar 1–6; EAp,3) and finally, the 
diagonals of the trapezoidal faces belong to Set 4 (EAp,4). 
The perfect stiffnesses are as follows: EAp,1 = 1.033  kN, 
EAp, 2 = 0.9582 kN, EAp, 3 = 1.035 kN, and EAp, 4 = 1.048 kN, 
while the symmetry measure evaluates to S = 0.004664.

4 Conclusions
In this paper, a possible measure of symmetry of bar-
and-joint structures has been presented. The method 
consists of two main parts: first, a reference structure 
that is perfectly symmetric both from the point of view of 

Fig. 5 The disturbed octahedron (in black, 1–6) and the reference 
structure (in gray, 1'–6').

Table 2 The results obtained for differently disturbed tetrahedra.

Case (a) Case (b) Case (c)

Initial edge lengths 2 2m
723 10m,

2 2m  
723 10m,

2 2m

Obtained primary node r10

1

1

1

m

m

m

�

�

�
�
�

�

�

�
�
�

0 9747

0 9747

0 9747

.

.

.

m

m

m

�

�

�
�
�

�

�

�
�
�

0 9760

0 9760

0 9760

.

.

.

m

m

m

�

�

�
�
�

�

�

�
�
�

Perfect edge length 2.828 m 2.757 m 2.761 m

Perfect normal stiffness (EAp) 0.9500 kN 1.001 kN 0.9506 kN

Measure of symmetry (S) 1.214 
×10–5

5.950 
×10–4

5.972 
×10–4

Table 3 Coordinates of the nodes of the disturbed octahedron.

x [m] y [m] z [m]

Node 1 1.14 0.02 0.08

Node 2 0.06 1.08 0.12

Node 3 –1.00 0.10 0.04

Node 4 0.18 –0.92 0.02

Node 5 0.10 0.14 –0.84

Node 6 0.02 0.08 1.10

Table 4 Normal stiffness of the bars of the disturbed octahedron in kN.

Bar 1–2 1–4 1–5 1–6 2–3 2–5 2–6 3–4 3–5 3–6 4–5 4–6

EA 0.93 0.86 1.12 1.12 0.89 1.00 1.03 1.04 0.85 0.81 1.10 0.99
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geometry and stiffness is found, and second, the measure 
of symmetry is determined by comparing the eigenvalues 
of the stiffness matrix of the reference and the analyzed 
structure. The main achievement of the method is a novel 
procedure of finding the reference structure: it is done 
based on energy principles, and the eigenvalues of the 
stiffness matrix as metrics to be compared have been 
chosen because they possess information regarding both 
the geometry and the stiffness properties. We emphasize 
that our symmetry measure, like all other measures of 
symmetry, is not objective; there might be other ways to 
determine the reference structure and different metrics 
can also be chosen for comparison.

The method seems to be applicable in a further inves-
tigation of the shape evolution of (nearly) symmetric 
objects that can be modeled as truss structures under 
different types of loading. A symmetry measure of gen-
eral scope is fundamental in understanding the shape and 
structural evolution processes more deeply from the point 
of view of symmetry, namely if a structure with disturbed 
symmetry tends to reach a more or even less symmetric 
state under given conditions.
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Table 5 Coordinates of the nodes of the disturbed structure.

x [m] y [m] z [m]

Node 1 1.050 0.1479 0.06000

Node 2 0.1338 0.9910 0.1000

Node 3 –0.8705 0.5317 0.1000

Node 4 –0.7766 –0.7505 0.08000

Node 5 0.3884 –1.051 0.02000

Node 6 0.6567 0.06589 1.160

Node 7 0.1609 0.6194 1.160

Node 8 –0.5490 0.3663 1.160

Node 9 –0.4329 –0.3861 1.000

Node 10 0.2227 –0.5355 1.020

Table 6 Normal stiffness of the bars of the disturbed structure in kN.

Bar 1–2 2–3 3–4 4–5 1–5 6–7 7–8 8–9 9–10 6–10

EA 0.84 0.97 1.11 1.08 1.14 0.93 0.89 0.95 0.87 1.14

Bar 1–6 2–7 3–8 4–9 5–10 1–7 2–8 3–9 4–10 5–6

EA 0.92 1.18 1.06 0.89 1.12 0.83 1.04 1.18 1.09 1.08

Fig. 6 The disturbed spatial truss structure with fivefold rotational 
symmetry (in black, 1–10) and the reference structure (in gray, 1'–10'). 

Nodes 1–5 belong to the lower orbit, and 6–10 belong to the upper orbit.
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