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Abstract

The paper presents the combination of the load transfer method (computational model) and the genetic algorithm (optimization model) 

for the automated inverse analysis of instrumented pile load tests. The output of this process are the input parameters governing the 

shape of the load-transfer functions and thus the prediction accuracy when the load-transfer method is used as a design tool for deep 

foundations. The optimization problem is converted into an unconstrained task by applying the static penalty approach. Two types of 

measurements are considered in a newly proposed objective function: the load-displacement curve monitored in a pile head and the 

axial force profiles along a pile derived from strain gauges. Firstly, the local sensitivity analysis via the Design of Experiments is carried 

out to identify the parameters of the genetic algorithm which significantly influences the rate of convergence during the optimization 

process. Subsequently, a fully automated inverse analysis of the loading test of the large-diameter bored pile in multilayered geological 

conditions is presented. The simultaneous combination of two instrumentation sources leads to a stable unique solution with a sufficient 

match between the prediction and measurements despite a larger number of unknown – optimized variables.
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1 Introduction
The load-transfer (t-z) method is a well-established design 
tool in geotechnical engineering. To determine the values 
of input parameters governing the shape of load transfer 
curves, it is appropriate to perform the back analysis of 
an instrumented loading test. However, the performance 
of such an analysis via a trial-error procedure can be 
time-consuming due to the following reasons: multilay-
ered geological conditions, the application of a load-trans-
fer function defined by multiple parameters, or the need to 
conduct a back analysis on a larger number of loading tests.

The proposed paper presents a combination of the load 
transfer method for large-diameter piles with the stochastic 
optimization model in order to automate and thus increase 
the time and cost-efficiency of the back-analysis process. 

First, a sensitivity study of the parameters governing 
the optimization model via the Design of Experiments 
(DOE) was conducted. Subsequently, the automated back 
analysis of a large-diameter pile load test was performed.

2 Load-transfer method
Introduced by Seed and Reese [1], the load-transfer 
method has become an accepted computational method. 
It was initially used for the prediction of the load-displace-
ment response of large-diameter axially loaded tension 
piles [2–4] and others and compression piles [5, 6] and oth-
ers. Several modifications and improvements to the original 
procedure were derived for various types of geotechnical 
constructions, such as piles subjected to loading-unloading 
cycles [7], rectangular closed diaphragm walls [8], and pile 
groups [9]. A similar technique called the p-y method is 
also available for horizontally loaded piles [10]. The axial 
load-transfer method (t-z method) is based on the idea 
that an axially loaded member (e.g., a tension or compres-
sion pile) can be divided into a finite number of segments 
which are each assigned a unique dependence between the 
segment's vertical displacement (ss ) and the shear stress 
mobilized on its surface (qs ). The function is called the 
load-transfer (mobilization) function (curve). A similar 
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function between the normal stress at the pile base (qb ) 
and the corresponding base displacement (sb ) is added for 
the pile tip in the case of compressive loads. Load-transfer 
functions are in general represented by nonlinear springs 
that replace both the pile-soil interface and the soil contin-
uum (Fig. 1). Various load-transfer curves are available in 
the literature and can be categorized as follows:

1. Linear elastic – perfectly plastic functions [11, 12];
2. Bilinear, trilinear curves [13, 14];
3. Nonlinear – hyperbolic and cubic root curves [15, 16].

The hyperbolic load-transfer function for the shaft 
(Eq. (1)) and the base (Eq. (2)) proposed by [15] were 
adopted in this study, where qs,ult is the ultimate skin fric-
tion, qb,ult is the ultimate base resistance, B is the pile diam-
eter, and Ms and Mb are the stiffness parameters governing 
the initial slope of the load-transfer functions of the shaft 
and base, respectively:
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3 Stochastic optimization methods
Stochastic optimization methods have become increas-
ingly popular in the geotechnical engineering during the 

recent decades. Several algorithms belong to this category, 
the basic ones are listed below:

• particle swarm optimization (PSO) [17];
• genetic algorithms (GA) [18];
• differential evolution algorithm (DE) [19];
• artificial bee colony (ABC) [20];
• ant colony optimization (ACO) [21].

The application of these methods and their modifica-
tions might be divided into two main areas of the geotech-
nical engineering:

• Inverse modelling and soil parameter identifica-
tion especially for complex soil constitutive models 
(f. e. [22, 23]).

• Structural optimizations (f. e. [24, 25]) which might 
be further divided into the topology optimization, 
shape optimization and dimensional optimization.

Further evolution of the single objective optimization 
procedures (SOOP) led to the development of the multi-
ple optimization techniques (MOOP), in which multi-
ple objective functions are considered simultaneously. 
Comprehensive overview of MOOPs might be found 
in [26] and [27]. 5 different MOOPs were compared for the 
time-continuous optimization-based updating of predic-
tions during the deep excavation project in the latter one.

The development of the stochastic optimization meth-
ods was based on the laws of natural genetics and the nat-
ural selection and motivated by the several limitations 
of commonly used search procedures such as the gradi-
ent-based methods. The main limitations of these classical 
methods can be summarized as follows [28]:

• The convergence depends on the initial solution and 
is sensitive to the presence of local optimums.

• The partial derivates of the objective function must 
be evaluated (the objective function must be known 
a priori).

• Parallel computing cannot be utilized effectively.

GAs provides a significantly different approach com-
pared to the classical optimization techniques. The flow-
chart of a basic GA is shown in Fig. 2. First, the solution 
(the values of the input parameters of the load transfer 
functions in the current case) is binary coded. Each binary 
string (chromosome) consists of a predefined number of 
bits (genes). The length of the chromosome (the number of 
genes) depends on the number of input parameters and the 
required number of levels of each parameter. For exam-
ple, two input parameters are needed for analysis of a pile 

Fig. 1 Discretization of an axially loaded member into the predefined 
number of elements and assignment of load-transfer functions
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loaded by tension and situated in a single geological layer 
via the load-transfer method: the ultimate shaft friction 
qs,ult and the shaft stiffness parameter Ms. The length of the 
part of the chromosome li belonging to each input param-
eter is given by Eq. (3), where nalt is the required number 
of levels of the given parameter. 64 levels of two parame-
ters therefore require a binary string consisting of 12 bits:

nalt
li= 2 .  (3)

To use non-integer values of input parameters, the fol-
lowing mapping rule is utilized:

x x x x DV si i
i i

l ii
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where xi is the current (non-integer) value of the input 
parameter, xi

min and xi
max are the lower and upper limits, 

respectively, DV (si ) is the decoded (integer) value of the 
given input parameter. 

The first population of possible solutions (members) is 
randomly generated during the initialization. The fitness 
(objective function value) of each member is evaluated.

A specific formulation of the objective function consid-
ering both the measured load-displacement curve in the 
pile head and the axial strain profiles along the pile is pro-
posed in Section 5. The primary objective of the reproduc-
tion operator is to increase the number of members with 
above-average fitness values. The binary tournament selec-
tion operator was used for this purpose. The crossover and 
mutation operators manipulate the binary coding of the 
chosen members and thus create new solutions and main-
tain their diversity. The single-point crossover operator 
(Fig. 3) is adopted in this study. Two solutions are selected 

and a single cross-site (position in the binary string lc ) is 
chosen randomly. The segments of binaries to the right of 
the cross-site are exchanged with each other. The number 
of solutions used in the crossover is governed by the cross-
over probability pc. The mutation operator changes the 
value of only one bit (gene) at a position lm with a small 
mutation probability pm (Fig. 4). At this point a new genera-
tion of solutions is completed, the fitness value of each one 
is evaluated and the whole process is repeated until a pre-
scribed value of the objective function is reached.

The theoretical concept of GAs is based on the Schema 
Theorem [18]. A schema is a sequence of bits which 
repeats itself in binary strings of solutions across genera-
tions. If a particular schema produces a solution with the 
above average fitness, the number of this schema increases. 
According to the Schema Theorem, the number of schema 
H at time t + 1 is given as:
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where m(H, t + 1) and m(H, t) are the number of the 
schema H at time t and t + 1, respectively, f  (H  ) is the 

Fig. 2 Flowchart of a GA

Fig. 3 Principle of crossover operator; (a) Binary strings of two members 
before crossover; (b) Binary strings of two members after crossover

(a)

(b)
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fitness of a particular schema H, f  is the average fitness, 
pc is the cross-over probability, pm is the mutation proba-
bility, l is the length of H, and δ(H ) and o(H ) are the length 
and the order of schema H, respectively.

4 Analyzed pile load test
The large-scale pile load test was conducted in the city of 
Brno in the Czech Republic [29]. The cover of the tertiary 
deposits in the particular area consists of Quaternary flu-
vial sediments of sandy clay (saCl), with a sand fraction of 
up to 30%. The thickness of these sediments ranges from 
4 to 6 m. The pre-Quaternary base is formed from clay (Cl) 
with the gradually increasing consistency from soft to stiff.

The tested bored pile was 880 mm in diameter and 16 m 
long. The first meter of the pile was equipped with an outer 
steel ring which separated the pile from the surrounding 
soil. The pile is therefore considered to be 15 m long in the 
presented analysis. The load test was monitored in a stan-
dard manner, which involved the measurement of loads 
and displacements in the pile head. The pile was addition-
ally equipped with 10 vibrating wire tensometers placed 
at 5 different depths: 1.0 m; 4.5 m; 8.0 m; 11.5 m and 
15.0 m (Fig. 5).

The test procedure consisted of 13 loading stages, includ-
ing 2 unloading – reloading cycles. The load at a given load 
stage was held constant until the acceptance criterion was 
fulfilled. The measured load-displacement curve and axial 
load distributions are shown in Figs. 6 and 7, respectively.

The load level of 2000 kN was the last one at which 
the acceptance criterion was fulfilled. Pile settlement 

started to increase rapidly during the subsequent loading. 
The load level of 2400 kN was reached; however, no set-
tlement stabilization occurred, and the test was ended. 
The axial load profiles derived from the strain measure-
ments revealed three distinct sections with the substan-
tially different ultimate skin frictions. These sections are 
considered as three independent soil layers with the thick-
nesses of 3.5; 3.5 and 8 meters. It is interesting to note that 
the sudden change in the slope of the axial force profiles 
at a depth of 3.5 m approximately coincides with the posi-
tion of the interface between the Quaternary (sandy clays) 
and the pre-Quaternary deposits (clays). The vector of the 

Fig. 4 Principle of mutation operator; (a) Binary string of one member 
before mutation; (b) Binary string of one member after mutation

(a)

(b)

Fig. 5 Setup of analyzed static load test

Fig. 6 Measured load – displacement curve
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optimized (unknown) variables X (Eq. (6)) governing the 
shape of the load transfer functions has 8 members: 6 for 
the shaft and 2 for the pile base.

X q M q M q M q Ms ult s s ult s s ult s b ult b� � �, , , ,
, , , , , , ,

1 1 2 2 3 3  (6)

5 Formulation of the optimization task
The optimization task presented in this paper is consid-
ered as a constrained minimization problem which is fur-
ther converted into an unconstrained one by applying the 
static penalty approach [30]. The expanded objective func-
tion �� �X  is defined as:

�� � � � � � � �X f X p X ,  (7)

where f (X  ) is the fitness function quantifying the dif-
ferences between the measurements and predictions and 
p(X  ) is the penalty function. The fitness function was 
formulated using the weighted sum method and consists 
of two components (Eq. (8)): the differences between the 
measured and predicted load-displacement curves and the 
axial strain (force) profiles are quantified via the load-dis-
placement term (   f ld(X  )) and the strain term (   fstr(X  )), 
respectively. Their relative contributions to the over-
all value of the fitness function f (X  ) are governed by the 
weight factors kld and kstr.

f X k f X k f Xld ld str str� � � � � � � �  (8)

Both the displacements and respective forces should 
be considered in the load-displacement term. Thus, the 
approximate residual area Ares(X  ) between the computed 
and the measured load-displacement curve is determined 
via the trapezoidal rule (Eq. (9)). Fp,i and Fm,i are the pre-
dicted and measured pile head loads, respectively. up,i and 
um,i are the corresponding pile head movements and n is 
the total number of computational steps. Ares(X  ) is nor-
malized by the area below the predicted load-displace-
ment curve Ap(X  ) (Eq. (10)).
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The second term of the fitness function (   fstr(X  )) for a par-
ticular loading stage is formulated as the average relative 
difference between the measured and predicted axial forces 
from all positions of the strain gauges (Eq. (11)). Tp,  j and Tm,  j 
are the calculated and measured axial forces, respectively, 
and nstr is the number of strain gauges along the pile.
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The penalty function p(X  ) is defined as:
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while g (X  ) is the constrained function (Eq. (13)) and 
Rk is the penalty coefficient (Eq. (14)). Fm,ult and Fp,ult are 
the measured and predicted ultimate forces, respectively. 
g (X  ) depends on the Fm,ult / Fp,ult ratio similarly to the fitness 
function f (X  ). Adding the constrained function to the objec-
tive function (Eq. (7)) ensures that solutions with the pre-
dicted ultimate bearing capacity higher than the measured 
one will be penalized. The descent factor ns in Eq. (14) con-
trols the rate of increase in the penalty function as the dif-
ference between the measured and predicted bearing capac-
ity increases. The impact of the descent factor ns on the 
expanded objective function shape is illustrated in Fig. 8.

The penalty function is formulated in such a way that 
slightly infeasible solutions have sufficiently low penal-
ties and thus the exploration of a slightly infeasible region 
by the GA is not prevented. In other words, an infeasible 
solution with a predicted ultimate capacity that is 5% above 

Fig. 7 Measured axial force profiles
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a measured capacity will probably be closer to an optimal 
solution than one that yields a feasible prediction of the ulti-
mate bearing capacity that is 50% below the measured one.

g X
F X
F
p ult

m ult
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�,

,

1  (13)

R n f Xk s� � �� �max  (14)

6 Sensitivity analysis of GA settings
The GA's search process is controlled by 8 parameters:

•  ngen: number of generations (iterations);
•  nalt: number of levels of each optimized variable;
•  npop: number of members in populations, each mem-

ber is represented by an individual set of values of 
input parameters;

•  pc: crossover probability;
•  pm: mutation probability;
•  ns: descent factor;
•  kld , kstr: weight factors.

In order to set these parameters appropriately, local 
sensitivity analysis was performed via the Design of 
Experiment (DOE). Both the load transfer method and 
the genetic algorithm were programmed in the form of 
scripts in the Python programming language. All param-
eters except the mutation probability (  pm ) and the weight 
factor for the strain measurements ( kstr ) were involved 
in the sensitivity analysis. The upper and lower bounds 
of the analyzed parameters are summarized in Table 1. 
The mutation probability pm is much lower than the cross-
over probability pc and thus a lower impact on the optimi-
zation process might be expected. The weight factor of the 
strain measurements is not an independent variable as the 
sum of both factors ( kld , kstr ) is equal to one.

A full factorial design with two levels of each fac-
tor (2k ) and three repetitions of the design of experiments 
was implemented. Thus, a total of 192 optimization runs 
were required. The mean of the objective function �� �X  
(Eq. (15)) after reaching the final generation was chosen as 
the output variable for the subsequent statistical evaluation. 
A Pareto chart of the standardized effects is shown in Fig. 9.

�� � �
�� �

��X
X

n
i

n
i

pop

pop

1  (15)

Based on the t-test with the null hypothesis that the 
effect of the particular parameter is zero on the signifi-
cance level of 0.05 and considering only primary effects, 
it might be concluded that factors ngen, nalt , pc and kld have 
significant effects on the efficiency of the optimization 
process. The primary effects of these terms are summa-
rized in Table 2.

Increasing the number of generations ngen led to a sig-
nificant decrease in the �� �X  value. The trend is oppo-
site for the crossover probability pc. Increasing this prob-
ability caused the generation of too many new original 
members in the subsequent iteration and thus slowed the 
process of reduction of the objective function. It seems 
that relying solely on the results of standard monitoring 
(the load-displacement curve in the pile head) by increas-
ing the kld value resulted in a higher �� �X  value. It is 

Fig. 8 Expanded objective functions for different descent factor values

Table 1 List of variables involved in the sensitivity analysis

Variable Lower bound (LB) Upper bound (UB)

ngen 15 60

nalt 128 512

npop 32 128

pc 0.5 0.9

ns 2 4

kld 0.2 0.8

Fig. 9 Pareto chart of the standardized effects
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therefore important to combine at least two sources of 
measurements in similar applications.

Increasing the descent factor ns resulted in a small drop 
in the objective function compared to the previously men-
tioned factors. It is also interesting to note that, within the 
chosen limits, the size of the population  npop is signifi-
cantly less important than the number of levels of each 
variable nalt. It seems that the crossover and mutation 
operators are able to create enough new and possibly bet-
ter solutions throughout the optimization process regard-
less of the initial population size.

7 Case study – pile load test in multi-layered geological 
conditions
Based on the results of the sensitivity study, the follow-
ing GA settings were applied in the case study: ngen = 45, 
nalt = 256, npop = 64, pc = 0.5, pm = 0.05, ns = 2, kld = 0.2, 
kstr = 0.8. The optimized values of each input variable are 
summarized in Table 3. The ultimate skin frictions cor-
respond to the distributions of axial forces along the pile. 
The highest ultimate shaft friction value predicted in the 1st 
layer might be due to the significant amount of sand fraction 
present in this stratum. The presence of the second (weak) 
layer is considered correctly as the lowest ultimate skin 

friction value and the highest value of Ms (indirectly pro-
portional to the initial stiffness of the load-transfer curve) 
was identified in this layer. The values obtained for the 
stiffness parameters are within the range recommended 
by [15]: the average value of Ms = 0.0038 and Mb = 0.01. 
Fig. 10 illustrates the gradual convergence of the predicted 
load-displacement curves towards the measured curve. 
For the purpose of clarity, only the predictions in four 
selected generations (1, 5, 15, 30) and for the first 20 mem-
bers are shown here. It is obvious from this image that the 
load-displacement curves obtained from randomly gener-
ated inputs gradually converge towards a unique solution 
that is close to the measured load-displacement curve.

The shape of the expanded objective function, its load- 
displacement term (   f ld(X  )) and the strain term (   fstr(X  )) 
are shown in Fig. 11. No significant reduction in the objec-
tive function value was observed after the 30th genera-
tion. Similar plots are shown for qs,ult , qb,ult and Ms , Mb in 
Figs. 12 and 13, respectively. These are the average values 
of the corresponding parameter in each generation.

The ultimate skin frictions and the tip resistance reach 
stable values between the 16th and 18th generation, which 
is earlier than the corresponding stiffness parameters. 

Table 2 Estimated primary effects of statistically significant terms

Variable ngen nalt pc kld

Effect −0.03925 −0.01515 0.03356 0.03994

Effect plot

Fig. 10 Predicted load-displacement curves for 20 members in 
four different generations (1, 5, 15 and 30); (a) Generation no. 1; 
(b) Generation no. 5; (c) Generation no. 15; (d) Generation no. 20

(a) (b)

(c) (d)

Table 3 Selected ranges and final (optimal) values of parameters 
controlling the shape of load-transfer functions

Group Xi Unit Xi,min Xi,max Xi,opt

Shaft stiffness

– 0.0013 0.0076 0.0055

– 0.0013 0.0076 0.0061

– 0.0013 0.0076 0.0043

Shaft strength

kPa 10 100 82.1

kPa 10 50 11.4

kPa 10 100 41.3

Base stiffness Mb – 0.005 0.03 0.024

Base strength qb,ult kPa 750 2000 948.4

Ms
1

Ms
2

Ms
3

qs ult,
1

qs ult,
2

qs ult,
3
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The average value of the tip resistance in the first iteration 
(both generated randomly) is overestimated and the GA 
algorithm significantly upgrades this value throughout the 
optimization process.

The optimized prediction and measured axial force pro-
files are compared in Fig. 14. The predicted force profile 
for the last load level (2400 kN) is not shown here as the 
computed ultimate bearing capacity was lower than the 
measured one. The GA search algorithm was able to dis-
tinguish between three layers, although it slightly under-
estimates the skin friction in the first layer. Very low and 
moderate skin frictions in the second and third layers, 
respectively, are predicted with a good accuracy.

8 Conclusions
The combination of the axial load-transfer method for 
the compression piles (the computational model) and the 
genetic algorithm (the optimization model) was presented 
in this paper. In this way, it is possible to automate inverse 
analysis of instrumented loading tests and thus decrease 
the time and financial requirements of the back-analysis 
process. This process can be useful especially in situations 
where many tests need to be analyzed.

The modified penalty approach was utilized in order to 
transform the constrained optimization task into the uncon-
strained one. Predictions with a higher-then-measured ulti-
mate bearing capacity were penalized. Two sources of mea-
surements were combined into the objective function: the 
load-displacement response in the pile head and the axial 
load profiles along the pile for different loading stages. 
Sensitivity analysis revealed that increasing the number 
of generations and the number of levels of input variables 
improves the prediction accuracy. In contrast, increasing 
the crossover probability too much leads to a slower con-
vergence rate as many new and possibly low-fitness solu-
tions are created in subsequent generations.

The case study of the loading test of the large-diame-
ter bored pile demonstrated that predictions obtained from 
inputs generated randomly in the first iteration converged 
towards a unique solution that was in acceptable agree-
ment with the both sources of measurements. Two types of 
measurements recorded throughout the test (the load-dis-
placement curve in the pile head and the axial force pro-
files along the pile) proved to be an important factor as the 
values of 8 input parameters were searched for.
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Fig. 12 The progression of the qs,ult and qb,ult parameters during optimization

Fig. 13 The progression of the Ms and Mb parameters during optimization

Fig. 11 The progression of the objective function during optimization

Fig. 14 Measured axial force profiles and their optimized predictions
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